Chemistry 201: General Chemistry II - Lecture

Size: px
Start display at page:

Download "Chemistry 201: General Chemistry II - Lecture"

Transcription

1 Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 14 Study Guide Concepts 1. Solutions are homogeneous mixtures of two or more substances. 2. solute: substance present in smaller amount. 3. solvent: substance present in greater amount. 4. Liquid solutions are easiest to study because: (1) components are localized, (2) components mix well, and (3) they are easy to handle/transfer. 5. Solutions do not have to be liquid based. 6. solubility: amount of substance that will dissolve in a given amount of solvent. 7. Formation of a gas phase solution comprised of two noble gases is driven by entropy, not energy. 8. entropy: measure of energy of randomization or energy dispersal in a system. 9. Formation of liquid solutions are driven by entropy and intermolecular forces. 10. In solution, there are three types of particle interactions. 11. Like dissolves like rule: when solute and solvent have similar intermolecular forces, they tend to form a solution. 12. miscible: term used to describe two liquids that are soluble in all proportions. 13. The relationship between solvent-solute, solvent-solvent, and solute-solute interactions determines when a solution will form. If solvent-solute interactions are about equal to solvent-solvent and solute-solute interactions, entropy will decide whether a solution forms. 14. Energy changes are observed when solutions form. The enthalpy of solution, H soln, is the enthalpy associated with solution creation, and it can be estimated with a Hess s Law type calculation. 15. Formation of a solution can be broken up into three steps: (1) separation of solid into its constituent particles, H solute ; (2) separation of solvent particles to make room for solute, H solvent ; (3) mixing solute particles with solvent particles, H mix. 16. For ionic, water-based solutions, H solvent and H mix can be combined into H hydration. 1

2 17. heat of hydration: enthalpy change when 1 mole of gaseous solute ions are dissolved in water. 18. For ionic compounds, H solute = H lattice. 19. When excess solid is added to a solution, an equilibrium is set up between the dissolution and deposition processes. If an equilibrium is established, the solution is said to be saturated. 20. If an equilibrium cannot be established, then the solution is unsaturated. 21. Supersaturated solutions hold more solute than is theoretically possible. 22. Generally, higher temperatures result in higher solubility of solids. 23. Henry s Law states that if we push a gas hard enough (with external pressure), more of it should dissolve in solution. Note however that higher temperatures generally decrease gas solubility. 24. Since molarity varies with temperature, sometimes it s necessary to express concentrations in temperature-independent units. 25. mass percent: ratio of mass of component to mass of solution times 100%. 26. molality (m): moles of solute per 1 kg solvent. 27. mole fraction (X): ratio of moles of component to total moles of solution. 28. ppm and ppb are parts by mass concentrations. 29. Raoult s Law expresses how the vapor pressure of a solvent is affected when a nonvolatile solute is added. 30. For solutions of two volatile liquids, Raoult s Law can be combined with Dalton s Law of Partial Pressures to get the total vapor pressure of the solution. 31. Ideal solutions obey Raoult s law at all concentrations for both solute and solvent. Typically ideal solutions have H soln = 0. Physically, this means that the IM forces between solute-solute and solvent-solvent are equal to the IM forces between solventsolute, i.e. a solute particle doesn t feel more or less attraction to a solvent particle and vice versa. 32. Negative deviations from Raoult s Law are due to stronger forces of attraction in solution than in the pure liquid. 33. Positive deviations from Raoult s Law are due to weaker forces of attraction in solution than in the pure liquid. 34. colligative properties: properties that depend on the amount of solute and not the type of solute. 2

3 35. Freezing point depression and boiling point elevation are two colligative properties that deal with changes in freezing and boiling temperatures as a function of added solute. 36. osmosis: the flow of solvent from a solution of lower solute concentration to one of higher solute concentration. 37. The pressure needed to stop the flow of solvent is called the osmotic pressure. 38. If the solute is an electrolyte (salt that can dissociate), then its effective molality is higher. 39. The formation of ion pairs can lead to deviations from the expected freezing/boiling point depression/elevation. Ion pairs are closely associated ions of opposite charge that act as one species instead of completely dissociating. 40. van t Hoff factor: a number that gives an idea of the amount of dissociation in an electrolyte. Equations 1. H soln = H solute + H solvent + H mix (enthalpy of solution calculation) 2. S gas = k H P gas at constant T (Henry s Law) 3. P solution = X solvent P solvent (Raoult s Law) 4. T f = mk f (freezing point depression) 5. T b = mk b (boiling point elevation) 6. Π = MRT (osmotic pressure) 7. i = moles particles in soln moles formula units dissolved (van t Hoff factor) 8. T f = imk f (freezing point depression, for ionics) 9. T b = imk b (boiling point elevation, for ionics) 10. Π = imrt (osmotic pressure, for ionics) Representative Problems 68. In an aqueous solution of sulfuric acid, the concentration is 1.89 mole % of acid. The density of the solution is g/ml. Calculate the following: (a) the molal concentration of H 2 SO 4, (b) the weight percent of the acid, and (c) the molarity of the solution. 3

4 Whenever you re given mole percent or weight percent, the best starting point is the assume that you have 100 units of it. If we do this for 1.89 mole % sulfuric acid, then it means we have: 1.89 mole H 2 SO total moles = 1.89 mole H 2 SO mole H 2 SO mole H 2 O From here, it s probably easiest to go the weight percent, which is mass H 2 SO 4 divided by the total mass and then multiplied by 100%. To get there, we need to calculate the masses from the moles that we got above mole H 2 SO g 1 mole H 2 SO 4 = g For (b), we have: mole H 2 O g 1 mole H 2 O = g weight % H 2 SO 4 = mass H 2SO 4 total mass 100% = g H 2 SO g 100% = % = 9.49% For (a), we want to calculate the molality, which is mole per kg solvent. We already have all the necessary numbers, so we just plug it in. m H 2 SO 4 = mole H 2SO 4 kg H 2 O 1.89 mole = kg = 1.07 For (c), we need to use the density. However, note that it s the density of the sulfuric acid solution, not just plain water. Therefore, we need to have total mass in the denominator. Recall that molarity is in mole per L mole H 2 SO g g 1 ml 1000 ml 1 L = mole/l = 1.03 M 72. Pentane (C 5 H 12 ) and heptane (C 7 H 16 ) are two hydrocarbon liquids present in gasoline. At 20 C, the vapor pressure of pentane is 420 torr and the vapor pressure of heptane is 36.0 torr. What will be the total vapor pressure (in torr) of a solution prepared by mixing equal masses of the two liquids? 4

5 This a Raoult s Law and Dalton s Law of Partial Pressures problem. First it says that we re mixing equal masses of the two liquids, so we need to pick something. I will choose a total mass of g which means that each component will have a mass of 50.0 g. Raoult s Law deals with mole fractions, so we need to calculate the mole fractions of each component. We start by finding the moles of each component g pentane 1 mole pentane g = mole pentane 50.0 g heptane Now we calculate mole fraction of each. 1 mole heptane g = mole heptane mole pentane X pentane = total moles mole = mole = Since the mole fractions of all components must add up to one, we know that the mole fraction of heptane must be ( ). Now we calculate the new vapor pressures of the components using Raoult s Law. P pentane = X pentane Ppentane = (0.581)(420 torr) = 244 torr P heptane = X heptane Pheptane = (0.419)(36.0 torr) = 15.1 torr Now we use Dalton s Law of Partial Pressures to get the total vapor pressure of the solution. P total = P pentane + P heptane = 244 torr torr = torr = 259 torr 81. A solution of g of an unknown nondissociating compound dissolved in g of benzene freezes at 3.45 C. Calculate the molecular mass of the unknown. 5

6 We use the freezing point depression equation for this problem. Benzene freezes at 5.45 C and has a K f of 5.07 C/m. T f = K f m 5.45 C C = (5.07 C/m)m 2.00 C = (5.07 /m)m m = Now, we need to find out how many moles of the compound exist in this solution. The problem states that we have only g of benzene, or kg kg mole compound 1 kg = mole compound Molecular mass is expressed in g/mole. We re given that g of the unknown was added, and from out calculation above, this corresponds to mole. MW unknown = g mole = 152 g/mole 89. What is the osmotic pressure, in torr, of a 2.0% solution of NaCl in water when the temperature of the solution is 25 C? Assume the density of the solution is 1.00 g/ml. This is an osmotic pressure problem that involves an ionic compound. Colligative property problems with an ionic compound involve using the van t Hoff factor. Looking up the van t Hoff factor for NaCl, we see that i = 1.9. We plug in what we know into the osmotic pressure equation. Π = im RT = (1.9) M ( L atm/k mole) ( K) We are given the concentration in % mass, so we need to convert to molarity. 2.0 g NaCl 1 mole NaCl 1.00 g solution 1000 ml = M NaCl g solution g NaCl 1.00 ml solution 1 L We substitute into the osmotic pressure equation we ve started: Π = (1.9) M ( L atm/k mole) ( K) = (1.9) ( M) ( L atm/k mole) ( K) = atm 6

7 We finish the problem by converting to torr: atm 760 torr 1 atm = torr 7

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Physical Properties of Solutions Types of Solutions (13.1) A Molecular View of the Solution Process (13.2) Concentration Units (13.3) Effect of Temperature on Solubility

More information

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy. Chapter 4 Physical Properties of Solutions

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy.   Chapter 4 Physical Properties of Solutions General Chemistry CHEM 11 (3+1+) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 4 Physical Properties of Solutions 1 Types of Solutions A solution is a homogenous mixture of 2 or more substances.

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chapter 13 Properties of Solutions Learning goals and key skills: Describe how enthalpy and entropy changes affect solution formation. Describe the relationship between intermolecular forces and solubility,

More information

Chapter 13. Properties of Solutions. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 13. Properties of Solutions. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 13 Properties of John D. Bookstaver St. Charles Community College Cottleville, MO are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

Properties of Solutions. Chapter 13

Properties of Solutions. Chapter 13 Properties of Solutions Chapter 13 Sodium acetate crystals rapidly form when a seed crystal is added to a supersaturated solution of sodium acetate. Saturated solution: contains the maximum amount of a

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 13 Properties of John D. Bookstaver St. Charles Community College St. Peters, MO 2006,

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of John D. Bookstaver St. Charles Community College Cottleville, MO Chapter

More information

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 12 Solutions Sherril Soman, Grand Valley State University Thirsty Seawater Drinking seawater can cause dehydration. Seawater Is a homogeneous mixture of salts with water Contains

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Chapter 13 Properties of Solutions Warm - Up Why doesn t salt dissolve in nonpolar solvents such as hexane? How does the orientation of water around Na + differ from the orientation of water around Cl

More information

Chapter 17: Phenomena

Chapter 17: Phenomena Chapter 17: Phenomena Phenomena: Different masses of solute were added to 1 kg of either H 2 O or C 6 H 6. The boiling and freezing points of the solutions were then measured. Examine the data to determine

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The Solution Process A solution is a homogeneous mixture of solute and solvent. Solutions may be gases, liquids, or solids. Each substance present is a component of the solution.

More information

Chapter 11. Properties of Solutions

Chapter 11. Properties of Solutions Chapter 11 Properties of Solutions Section 11.1 Solution Composition Various Types of Solutions Copyright Cengage Learning. All rights reserved 2 Section 11.1 Solution Composition Solution Composition

More information

Chapter 11 Review Packet

Chapter 11 Review Packet Chapter 11 Review Packet Name Multiple Choice Portion: 1. Which of the following terms is not a quantitative description of a solution? a. molarity b. molality c. mole fraction d. supersaturation 2. Which

More information

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form Ummm Solutions Solutions Solutions are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed uniformly throughout the solvent. Solutions The intermolecular forces

More information

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions 1 Chapter 12 :Solutions Tentative Outline 1. Introduction to solutions. 2. Types of Solutions 3. Solubility and the Solution Process: Saturated,

More information

Colligative Properties

Colligative Properties Slide 1 Colligative Properties Practical uses of solutions Slide 2 Units of Concentration Whatever units you use, the goal is the same: specify the quantity of 1 component (the solute s ) relative to the

More information

Big Idea Three Topics

Big Idea Three Topics Big Idea Three Topics 1. Molecular, Ionic, Net Ionic Equations 2. Stoichiometry 3. Synthesis, Decomposition Reactions 6. Chemical Change Evidence 7. Endothermic & Exothermic Reactions 8. Electrochemistry

More information

PHYSICAL PROPERTIES OF SOLUTIONS

PHYSICAL PROPERTIES OF SOLUTIONS PHYSICAL PROPERTIES OF SOLUTIONS Do all the exercises in your study guide. PHYSICAL PROPERTIES OF SOLUTIONS A solution is a homogeneous mixture of a solute and a solvent. A solvent is a substance that

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Chapter 12: Solutions. Mrs. Brayfield

Chapter 12: Solutions. Mrs. Brayfield Chapter 12: Solutions Mrs. Brayfield 12.1: Solutions Solution a homogeneous mixture of two or more substances Solvent the majority component Solute the minority component What is the solute and solvent

More information

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions Chapter 13 Solutions Characteristics of a Solution A solution is a homogeneous mixture A solution is composed of a: Solute: the substance in lesser amount Solvent: the substance in greater amount Two liquid

More information

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative properties to the concentrations of solutions. Calculate

More information

Chapter 12. Properties of Solutions

Chapter 12. Properties of Solutions Chapter 12. Properties of Solutions What we will learn: Types of solutions Solution process Interactions in solution Types of concentration Concentration units Solubility and temperature Solubility and

More information

Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of Solutions

Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of Solutions Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of Dr. Ayman Nafady John D. Bookstaver St. Charles Community College Cottleville,

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces Solutions Chapter 14 1 Brief Review of Major Topics in Chapter 13, Intermolecular forces Ion-Ion Forces (Ionic Bonding) 2 Na + Cl - in salt These are the strongest forces. Lead to solids with high melting

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

Solutions: Physical Properties and Behavior

Solutions: Physical Properties and Behavior Solutions: Physical Properties and Behavior In the previous chapter you were exposed to a great deal of information about the forces present in and the properties of individual pure substances (for example,

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Solutions Solutions Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Colligative Properties - Ways of Expressing Concentration

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties Chapter Outline 11.1 Energy Changes when Substances Dissolve 11.2 Vapor Pressure 11.3 Mixtures of Volatile Substances

More information

StudyHub: AP Chemistry

StudyHub: AP Chemistry StudyHub+ 1 StudyHub: AP Chemistry Solution Composition and Energies, Boiling Point, Freezing Point, and Vapor Pressure StudyHub+ 2 Solution Composition: Mole Fraction: Formula: Mole Fraction of Component

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties Chapter Outline 11.1 Energy Changes when Substances Dissolve 11.2 Vapor Pressure 11.3 Mixtures of Volatile Substances

More information

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i = Properties of Solution Practice Exam Solutions Name (last) (First) Read all questions before you start. Show all work and explain your answers. Report all numerical answers to the proper number of sig.

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces! When two molecules approach one another, they are attracted to some extent! Polar molecules are attracted through the electrostatic interaction of their dipole moments! Non-polar

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions 11.1 Solution Composition. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole Fraction

More information

Solution Formation. Copyright Houghton Mifflin Company.All rights reserved. Presentation of Lecture Outlines, 12 2

Solution Formation. Copyright Houghton Mifflin Company.All rights reserved. Presentation of Lecture Outlines, 12 2 Solutions Solution Formation A solution is a homogeneous mixture of two or more substances, consisting of ions or molecules. (See Animation: Solution Equilibrium). A colloid, although it also appears to

More information

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties Chapter Outline 11.1 Energy Changes when Substances Dissolve 11.2 Vapor Pressure 11.3 Mixtures of Volatile Substances

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Molality. Molality (m) is the number of moles of solute per kilogram of solvent. mol of solute kg solvent. Molality ( m) =

Molality. Molality (m) is the number of moles of solute per kilogram of solvent. mol of solute kg solvent. Molality ( m) = Molality Molality (m) is the number of moles of solute per kilogram of solvent. Molality ( m) = mol of solute kg solvent Sample Problem Calculate the molality of a solution of 13.5g of KF dissolved in

More information

Properties of Solutions. Course Learning Outcomes for Unit III. Reading Assignment. Unit Lesson UNIT III STUDY GUIDE

Properties of Solutions. Course Learning Outcomes for Unit III. Reading Assignment. Unit Lesson UNIT III STUDY GUIDE UNIT III STUDY GUIDE Properties of Solutions Course Learning Outcomes for Unit III Upon completion of this unit, students should be able to: 1. Describe how enthalpy and entropy changes affect solution

More information

Chapter 17 - Properties of Solutions

Chapter 17 - Properties of Solutions Chapter 17 - Properties of Solutions 17.1 Solution Composition 17.2 Thermodynamics of Solution Formation 17.3 Factors Affecting Solubility 17.4 Vapor Pressures of Solutions 17.5 Boiling-Point Elevation

More information

Properties of Solutions

Properties of Solutions Properties of Solutions Reading: Ch 11, section 8 Ch 12, sections 1-8 * = important homework question Homework: Chapter 11: 85*, 87 Chapter 12: 29, 33, 35, 41, 51*, 53, 55, 63*, 65, 67*, 69, 71, 75*, 79*,

More information

Chemistry I-Honors Solution Chemistry Notes

Chemistry I-Honors Solution Chemistry Notes Chemistry I-Honors Solution Chemistry Notes The Solution Process Must consider three sets of interactions and the energy (and entropy) associated with each. (1) Solute-solute interaction (2) Solvent-solvent

More information

Colligative Properties

Colligative Properties Colligative Properties Vapor pressures have been defined as the pressure over a liquid in dynamic equilibrium between the liquid and gas phase in a closed system. The vapor pressure of a solution is different

More information

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys 1 of 6 I. The solution process Solutions, colloids, and suspensions Solution: homogeneous mixture, equally dispersed at the molecular level, uniform throughout in its physical and chemical properties Colloid:

More information

Solutions. π = n RT = M RT V

Solutions. π = n RT = M RT V Solutions Factors that affect solubility intermolecular interactions (like dissolves like) temperature pressure Colligative Properties vapor pressure lowering Raoult s Law: P A = X A P A boiling point

More information

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar) 68 HOW THINGS DISSOLVE - Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)... what happens? - Water molecules pull the sugar molecules out of

More information

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1. 70 Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.049 g/ml molality definition molarity definition To solve the problem,

More information

Solutions Definition and Characteristics

Solutions Definition and Characteristics Solutions Solutions Definition and Characteristics Homogeneous mixtures of two or more substances Appear to be pure substances Transparency Separation by filtration is not possible Uniform distribution

More information

Chapter 12. Physical Properties of Solutions. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chapter 12. Physical Properties of Solutions. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chapter 12 Physical Properties of Solutions Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry

More information

Chapter 11. Properties of Solutions Solutions

Chapter 11. Properties of Solutions Solutions Chapter 11. Properties of Solutions Solutions Homogeneous Mixture 1 Solution Composition Equivalent moles of solute (mol) Acid-Base reaction Molarity (M) = liter of solution (L) 1 eq: the quantity of acid

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

Colligative Properties

Colligative Properties Slide 1 Colligative Properties Practical uses of solutions Slide 2 Solution homogeneous mixtures composition may vary from one sample to another appears to be one substance, though really contains multiple

More information

Chapter 17 - Properties of Solutions

Chapter 17 - Properties of Solutions Chapter 17 - Properties of Solutions 17.1 Solution Composition 17.2 Thermodynamics of Solution Formation 17.3 Factors Affecting Solubility 17.4 Vapor Pressures of Solutions 17.5 Boiling-Point Elevation

More information

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46 1 / 46 2 / 46 Overview Types of Solutions. Intermolecular forces in solution Concentration terms Colligative properties Osmotic Pressure 3 / 46 Solutions and Colloids A solution is a homogeneous mixture

More information

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM August 13, 2011 Robert Iafe Chapter Overview 2 Phases and Phase Transitions Solubility Colligative Properties Binary Liquid Mixtures Phases and Phase Transitions 3

More information

concentration of solute (molality) Freezing point depression constant (for SOLVENT)

concentration of solute (molality) Freezing point depression constant (for SOLVENT) 74 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

Chapter 11: Properties of Solutions

Chapter 11: Properties of Solutions Chapter 11: Properties of Solutions Apr 1 11:01 AM 11.1 Solution Composition Solve problems relating to the mass percent, mole fraction and molality. Mar 26 1:09 PM 1 Molarity (M) is defined as moles of

More information

Let's look at the following "reaction" Mixtures. water + salt > "salt water"

Let's look at the following reaction Mixtures. water + salt > salt water Mixtures What happens to the properties (phase changes) when we make a solution? Let's look at the following "reaction" water + salt ------> "salt water" Which has the higher entropy? A. The water + the

More information

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases.

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases. 73 COLLIGATIVE PROPERTIES - properties unique to solutions. - depend only on the CONCENTRATION of a solution and not the IDENTITY of the solute** **ionic solutes: Remember that they dissociate into MULTIPLE

More information

Properties of Solutions. Overview of factors affecting solubility Ways of expressing concentration Physical properties of solutions

Properties of Solutions. Overview of factors affecting solubility Ways of expressing concentration Physical properties of solutions Properties of Solutions Overview of factors affecting solubility Ways of expressing concentration Physical properties of solutions Learning objectives Define terms solute, solvent and solution Distinguish

More information

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar) 68 HOW THINGS DISSOLVE - Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)... what happens? - Water molecules pull the sugar molecules out of

More information

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Properties of Solutions Types of mixtures: homogenous

More information

Mixtures. What happens to the properties (phase changes) when we make a solution? Principles of Chemistry II. Vanden Bout

Mixtures. What happens to the properties (phase changes) when we make a solution? Principles of Chemistry II. Vanden Bout Mixtures What happens to the properties (phase changes) when we make a solution? Let's look at the following "reaction" water + salt ------> "salt water" Which has the higher entropy? A. The water + the

More information

Name AP CHEM / / Chapter 11 Outline Properties of Solutions

Name AP CHEM / / Chapter 11 Outline Properties of Solutions Name AP CHEM / / Chapter 11 Outline Properties of Solutions Solution Composition Because a mixture, unlike a chemical compound, has a variable composition, the relative amounts of substances in a solution

More information

75 A solution of 2.500g of unknown dissolved in g of benzene has a freezing point of C. What is the molecular weight of the unknown?

75 A solution of 2.500g of unknown dissolved in g of benzene has a freezing point of C. What is the molecular weight of the unknown? 75 A solution of 2.500g of unknown dissolved in 100.0 g of benzene has a freezing point of 4.880 C. What is the molecular weight of the unknown? Solving for Cm (molality) will allow us to calculate how

More information

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule. 73 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity.

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity. 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assuming 100 g solution,

More information

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES Phase Diagrams Solutions Solution Concentrations Colligative Properties Brown et al., Chapter 10, 385 394, Chapter 11, 423-437 CHEM120 Lecture Series Two : 2013/01

More information

Chapter 13. Ions in aqueous Solutions And Colligative Properties

Chapter 13. Ions in aqueous Solutions And Colligative Properties Chapter 13 Ions in aqueous Solutions And Colligative Properties Compounds in Aqueous Solution Dissociation The separation of ions that occurs when an ionic compound dissolves H2O NaCl (s) Na+ (aq) + Cl-

More information

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is:

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is: 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assume a basis of 100g

More information

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure Learning objectives Describe meaning of colligative property Use Raoult s law to determine vapor pressure of solutions

More information

Born-Haber Cycle: ΔH hydration

Born-Haber Cycle: ΔH hydration Born-Haber Cycle: ΔH hydration ΔH solution,nacl = ΔH hydration,nacl(aq) U NaCl ΔH hydration,nacl(aq) = ΔH hydration,na + (g) + ΔH hydration,cl (g) Enthalpies of Hydration 1 Sample Exercise 11.3 Use the

More information

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources 16 SOLUTIONS Chapter Test B A. Matching Match each term in Column B to the correct description in Column A. Write the letter of the correct term on the line. Column A Column B 1. the number of moles of

More information

Aqueous Solutions (When water is the solvent)

Aqueous Solutions (When water is the solvent) Aqueous Solutions (When water is the solvent) Solvent= the dissolving medium (what the particles are put in ) Solute= dissolved portion (what we put in the solvent to make a solution) Because water is

More information

AP Chemistry--Chapter 11: Properties of Solutions

AP Chemistry--Chapter 11: Properties of Solutions AP Chemistry--Chapter 11: Properties of Solutions I. Solution Composition (ways of expressing concentration) 1. Qualitatively, use dilute or concentrated to describe 2. Quantitatively a. Mass Percentage

More information

AP CHEMISTRY CHAPTER 8 PROBLEM SET #2. (Questions 1-3) Select the letter of the answer that best completes the statement or answers the question.

AP CHEMISTRY CHAPTER 8 PROBLEM SET #2. (Questions 1-3) Select the letter of the answer that best completes the statement or answers the question. NAME: AP CHEMISTRY CHAPTER 8 PROBLEM SET #2 (Questions 1-3) Select the letter of the answer that best completes the statement or answers the question. 1. 2. 3. According to Raoult s Law, which statement

More information

CHAPTER 9 SOLUTIONS SHORT QUESTIONS WITH ANSWER Q.1 Binary solution can be homogenous or heterogeneous explain? The solutions which contain two components only are called as binary solution. If binary

More information

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA SOLUBILITY AS AN EQUILIBRIUM PHENOMENA Equilibrium in Solution solute (undissolved) solute (dissolved) Solubility A saturated solution contains the maximum amount of solute that will dissolve in a given

More information

Chapter 12. Solutions and Their Behavior. Supersaturated contains more than the saturation limit (very unstable)

Chapter 12. Solutions and Their Behavior. Supersaturated contains more than the saturation limit (very unstable) Chapter 12 Solutions and Their Behavior Unsaturated holds less than maximum capacity at a given T Supersaturated contains more than the saturation limit (very unstable) Saturated maximum amount of solute

More information

Gilbert Kirss Foster. Chapter 11. Properties of Solutions. Their Concentrations and Colligative Properties

Gilbert Kirss Foster. Chapter 11. Properties of Solutions. Their Concentrations and Colligative Properties Gilbert Kirss Foster Chapter 11 Properties of Solutions Their Concentrations and Colligative Properties Chapter Outline 11.1 Energy Changes when Substances Dissolve 11.2 Vapor Pressure 11.3 Mixtures of

More information

OFB Chapter 6 Condensed Phases and Phase Transitions

OFB Chapter 6 Condensed Phases and Phase Transitions OFB Chapter 6 Condensed Phases and Phase Transitions 6-1 Intermolecular Forces: Why Condensed Phases Exist 6- The Kinetic Theory of Liquids and Solids 6-3 Phase Equilibrium 6-4 Phase Transitions 6-5 Phase

More information

Ways of Expressing Concentrations of Solutions. Solutions

Ways of Expressing Concentrations of Solutions. Solutions Ways of Expressing Concentrations of Mole Fraction (X) X A = moles of A total moles in solution In some applications, one needs the mole fraction of solvent, not solute make sure you find the quantity

More information

Regents Chemistry Unit 3C Solutions Text Chapter 13 Reference Tables F, G & T. Chemists have Solutions!

Regents Chemistry Unit 3C Solutions Text Chapter 13 Reference Tables F, G & T. Chemists have Solutions! Regents Chemistry Unit 3C Solutions Text Chapter 13 Reference Tables F, G & T Chemists have Solutions! SOLUTIONS homogeneous mixture (uniform composition throughout) Solute - substance being dissolved

More information

Solutions. University Chemistry II Spring FINAL EXAM: Wednesday, April 26 from 10:15 am - 12:15 pm

Solutions. University Chemistry II Spring FINAL EXAM: Wednesday, April 26 from 10:15 am - 12:15 pm Instructor: Dr. Sarah A. Green Office: Chem Sci. 607 Phone: 487-2048 sgreen@mtu.edu Wednesday 1:00 3:00 pm University Chemistry II Spring 2006 Class time: MWF 11:05-11:55 Place: DOW 641 Lab Supervisor:

More information

(B) Which of the following in each pair will be more soluble in water?

(B) Which of the following in each pair will be more soluble in water? CHM 112 Chapter 11 Solutions: Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Unit 7. Solution Concentrations and Colligative Properties

Unit 7. Solution Concentrations and Colligative Properties Unit 7 Solution Concentrations and Colligative Properties Molarity Most widely used concentration unit [HCl] means concentration of HCl in mol/l Notice volume is total volume of solution Molarity (M)=

More information

Chapter 14. Physical Properties of Solutions. Concentration Units. Example: 1. Show that for dilute solutions, 1ppm is approximately equal to 1mg/L

Chapter 14. Physical Properties of Solutions. Concentration Units. Example: 1. Show that for dilute solutions, 1ppm is approximately equal to 1mg/L Chapter 14 Physical Properties of Solutions alloy Concentration Units Molarity (M) = moles solute / Liters of solution Percent by Mass (weight) 1. Show that for dilute solutions, 1ppm is approximately

More information

Colligative Properties

Colligative Properties Colligative Properties! Consider three beakers: " 50.0 g of ice " 50.0 g of ice + 0.15 moles NaCl " 50.0 g of ice + 0.15 moles sugar (sucrose)! What will the freezing temperature of each beaker be? " Beaker

More information

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1 COLLIGATIVE PROPERTIES Engr. Yvonne Ligaya F. Musico 1 Colligative Properties Properties that depend on the collective effect of the number of solute particles. Engr. Yvonne Ligaya F. Musico 2 COLLEGATIVE

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 13 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The process of solute particles being surrounded by solvent particles is known as. A)

More information

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A 5.4 Liquid Mixtures Key points 1. The Gibbs energy of mixing of two liquids to form an ideal solution is calculated in the same way as for two perfect gases 2. A regular solution is one in which the entropy

More information