Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field

Size: px
Start display at page:

Download "Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field"

Transcription

1 Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field Wei Cao, Peixiang Lu, Pengfei Lan, Xinlin Wang, and Guang Yang Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 4374, P. R. China lupeixiang@mail.hust.edu.cn Abstract: We present a new scheme to generate efficient isolated attosecond pulse by using the combination of a fundamental and a weak second harmonic (SH) field in the multi-cycle regime. Because of the symmetry breaking of the electric field, the ionization dynamics of the electron can be controlled by adjusting the relative phase of the two fields. Then attosecond (as) pulses will be generated each full optical cycle of the fundamental field. Our simulation shows that the intensity of the single attosecond pulse can be enhanced by an order of magnitude in our scheme compared with the scheme in [Opt. Lett. 3, 975 (6)]. 7 Optical Society of America OCIS codes: (9.46) Multiharmonic generation; (9.7) Ultrafast nonlinear optics; (3.656) Spectroscope, x-ray References and links. T. Pfeifer, L. Gallmann, M. J. Abel, D. M. Neumark, and S. R. Leone, Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field, Opt. Lett. 3, (6).. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Atomic transient recorder, Nature (London) 47, 87 8 (4). 3. P. B. Corkum, Plasma Perspective on Strong-Field Multiphoton Ionization, Phys. Rev. Lett. 7, (993). 4. P. Antoine, A. L Huillier, and M. Lewenstein, Attosecond Pulse Trains Using High-Order Harmonics, Phys. Rev. Lett. 77, (996). 5. P. Tzallas, D. Charalambidis, N. A. Papadogiannis, K. Witte, and G. D. Tsakiris, Direct observation of attosecond light bunching, Nature (London) 46, 67 7 (3). 6. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, High-Harmonic Generation of Attosecond Pulses in the Single-Cycle Regime, Phys. Rev. Lett. 78, 5 54 (997). 7. M. Hentschel, R. Kienerger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Attosecond metrology, Nature (London) 44, (). 8. P. B. Corcum, N. H. Burnett, and M. Y. Ivanov, Subfemtosecond pulses, Opt. Lett. 9, (994). 9. V. T. Platonenko and V. V. Strelkov, Single attosecond soft-x-ray pulse generated with a limited laser beam, J. Opt. Soc. Am. B 6, (999).. V. Strelkov, A. Zair, O. Tcherbakoff, R. L. Martens, E. Cormier, E. Mevel and E. Constant, Single attosecond pulse production with an ellipticity-modulated driving IR pulse, J. Phys. B 38, L6 L67 (5).. G. Sansone, E. Benedetti, F. Calegari, C.Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, Isolated Single-Cycle Attosecond Pulses, Science 34, (6).. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L Huillier, and P. B. Corkum, Theory of high-harmonic generation by low-frequency laser fields, Phys. Rev. A 49, 7 3 (994). 3. M. V. Ammesov, N. B. Delone, and V. P. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field, Sov. Phys. JETP 64, 9 94 (986). # $5. USD Received 4 November 6; revised 3 December 6; accepted 6 December 6 (C) 7 OSA January 7 / Vol. 5, No. / OPTICS EXPRESS 53

2 4. S. Zamith, Y. Ni, A. Gurtler, L. D. Noordam, H. G. Muller, and M. J. J. Vrakking, Control of atomic ionization by two-color few-cycle pulses, Opt. Lett. 9, (4).. Introduction The appearance and development of attosecond-science have opened new fields of timeresolved studies with unprecedented resolution. Attosecond pulses can be used to temporally probe several fundamental atomic processes, such as inner-shell electronic relaxation or ionization by optical tunneling []. A typical attosecond pulse with a duration of several hundred attosecond covers a bandwidth of about ev. The most well-known resource with the potential to produce ultrashort radiation over such bandwidths is High Harmonic Generation (HHG). The mechanism of HHG can be well explained by the rescattering model [3]. The electron is tunneling ionized by the driving laser, then combines with the core after acceleration in the laser field to emit a harmonic photon. It has been investigated theoretically [4] and experimentally [5] that attosecond pulse train with a periodicity of half optical cycle is generated from HHG. However, an isolated attosecond pulse is needed to operate a pump-probe experiment. Single attosecond pulse generation based on HHG has been realized by using a state-of-the-art 5-fs laser pulse with the wavelength of 8 nm [6, 7], which is a rather stringent requirement. Single attosecond pulse production using long driving field can be carried out with a time dependent polarization pulse [8, 9, ]. Based on the use of phase-stabilized few-cycle driving pulse in combination with the polarization gating technique, isolated single-cycle attosecond pulse is generated in experiment [], which opens the way to a new regime in ultrafast physics. Very recently the requirement for single attosecond production with single-cycle driving pulse has been released by using a multicycle-driver regime by adding a weak second-harmonic field []. It is shown that a minor addition of phase-locked second harmonic field to the fundamental driver pulse leads to a major difference in the maximum kinetic energies of the recombining electrons in adjacent half-cycles during HHG. Then attosecond pulses with a periodicity of one optical cycle can be produced. Therefore, the duration required for single attosecond pulse generation can be doubled and extended to the multi-cycle regime. However, the attosecond pulse is generated from the cut-off region with a rather low yield. The low intensity of the attosecond pulse will limit its further application. In this paper, we propose a new scheme for relatively intense isolated attosecond pulse generation in the multi-cycle regime. The combination of a multi-cycle fundamental and a weak second-harmonic field is adopted. By adjusting the relative phase of the two fields, the electron ionization dynamics can be controlled to induce the change of harmonic efficiency in two successive half cycles. Then attosecond pulses can be generated each full optical cycle more efficiently from lower order harmonics compared to the scheme in reference []. An isolated attosecond pulse can be extracted with the intensity about an order of magnitude higher than that from the method in reference [].. Results and discussion We calculated the single atom-response to the driving laser field using Lewenstein s analytic formula of atomic dipoles for HHG []. The neon atom is chosen in our calculation. The A- D-K tunnelling ionization model [3] is used to obtain the ionization rate. The driving pulse can be expressed in the form E(t) = f(t)[e cos(ω t)+e cos(ω t + φ)],where f(t) presents the profile of the laser field, ω is the fundamental laser frequency, φ is the relative phase between the fundamental and the SH field, E and E denote the amplitudes of the fundamental (8 nm) and the SH field (4 nm), respectively. In our simulation, the sin pulse profile is adopted, E =. and E =.68 in atomic units, which correspond to laser intensities of # $5. USD Received 4 November 6; revised 3 December 6; accepted 6 December 6 (C) 7 OSA January 7 / Vol. 5, No. / OPTICS EXPRESS 53

3 5 4 W/cm and 3 W/cm, respectively. Then the intensity of the SH field is % of the fundamental one. Figure shows harmonic spectra and the corresponding spectrotemporal plot driven by a fs bichromatic field at φ =.5π. Fig.. Harmonic spectrum (a) and the spectrogram (b) of harmonic radiation from Neon exposed to a fs, 8 nm, two-color field. It can be seen from Fig. (b) that there are two types of bows generated due to the breaking of the symmetry of the electric field in successive half cycles of the fundamental field. An intense bow with a relatively low peak is generated in the first half cycle of the fundamental field. While a relatively weak bow with a high peak is generated in the next half cycle. This leads to the occurrence of two separated cut-off regions in harmonic spectrum, which correspond to 68 78ω and 8 9ω, respectively [see Fig. (a)]. Then a small amount of the SH field (% of the fundamental intensity) results in the significant changes of both the maximum photon-energies and the harmonic intensities between two half fundamental cycles. The time dependence of the superpositions of harmonics in the two separated cut-off regions are shown in Fig.. Attosecond pulses with a periodicity of one optical cycle of the fundamental field are obtained in both regions. The intensity of the pulse train from the low frequency cut-off region is about an order of magnitude higher than that from the higher frequency cut-off region. Intensity(arb. units).5.5 x 5 (a) Intensity(arb. units) ω ~78ω 8ω ~9ω.5 3 x 6 (b) Fig.. Time profiles of the harmonic attosecond pulse trains from the first cut-off region (a) and the second cut-off region (b) in Fig. (a). In order to obtain a better comprehension and an intuitive picture of the process, the classical dynamics and the ionization rate of the electron in a continuous-wave (cw) bichromatic field are considered as shown in Fig. 3. Bows with low and high peaks are generated alternately due to the asymmetric laser field [see Fig. 3(a)]. An electron ionized when the electric field is positive will obtain more kinetic energy than the electron ionized when the electric field is negative. Then the recombination of the electron and the parent core will generate harmonics # $5. USD Received 4 November 6; revised 3 December 6; accepted 6 December 6 (C) 7 OSA January 7 / Vol. 5, No. / OPTICS EXPRESS 53

4 with different maximum frequencies between two adjacent half fundamental cycles. The intensity change of the successive bows can be explained by the ionization rate of the electron. It has been confirmed that the atomic ionization dynamics can be control by using a two-color field [4]. In our calculation, the depletion of the ground state is negligible because of the slight ionization possibility of the neutral atoms. Therefore, the harmonic efficiency is determined by the ionization rate of the electron based on the three-step model [3]. As shown in Fig. 3(b), the bows with low peaks are generated by electrons which are ionized near the peak of the laser field where the ionization rate is high. However, the bows with high peaks come from electrons which are ionized when the laser intensity is relatively low. Then there is a distinct contrast between the harmonic intensities in two successive half fundamental cycles. As a result, the addition of a SH field with a minor intensity can influence the electron evolution process as well as the ionization step of HHG seriously, which can ultimately lead to the two separated cut-off regions in the harmonic spectrum. Consequently, there are two mechanisms for attosecond pulse generation each full optical cycle of the fundamental field. The first one is due to the difference between the maximum kinetic energies of electrons from the successive half cycles of the laser field [Fig. (b)]. The second one is caused by the change of harmonic emission efficiency in two successive half cycles [Fig. (a)]. 4 3 (a) E kin (U p ) Normalized Amplitude.5.5 (b) Time(Oprical Cycle) Fig. 3. (a) Classical ionization (black stars) and recombination times (red diamonds) as a function of the return kinetic energy in unit of the ponderomotive potential Up. The arrows demonstrate the evolution process of the electron. (b) Time-dependence of the cw field (blue solid line) amplitude and the ionization rate (black dashed line). Figure 4 demonstrates the relationships of the relative phase versus the maximum kinetic energy and the corresponding ionization rate of the electron in the cw case. The optimal phase for attosecond pulses generation based on the first mechanism is.6π, and the optimal phase for the second mechanism is φ =.9π. Then a direct application of the pulse trains is that isolated attosecond pulse can be extracted from such pulse trains driven by a bichromatic field with a duration twice as long as the traditional monochromatic case [6], i.e. a multi-cycle pulse can be used for single attosecond pulse production. Single as pulse based on the first mechanism, # $5. USD Received 4 November 6; revised 3 December 6; accepted 6 December 6 (C) 7 OSA January 7 / Vol. 5, No. / OPTICS EXPRESS 533

5 Relative Ekin (a) Log (Relative Ionization rate) Relative Phase(π rad) (b) Relative Phase(π rad) Fig. 4. (a) Ratio of the maximum kinetic energies in the first versus the second half-cycle as a function of the relative phase between the fundamental and the SH fields. (b) Radio of the ionization rates of electrons with maximum kinetic energies in the first versus the second half-cycle as a function of the relative phase between the fundamental and the SH field. which is called the first scheme, has been investigated by T. Pfeifer et al []. Here, we present another scheme for single as pulse generation based on the second mechanism. It is more fascinating because of its potential to obtain more efficient isolated as pulse compared with the first scheme. With the help of the Lewenstein model and the fast fourier transforming technique, we calculated the harmonic attosecond pulse driven by a multi-cycle laser field with a duration of.5 fs. By applying the filtering method in the low frequency cut-off region of the harmonic spectrum, single attosecond pulse can be produced. Because of the use of a nonadiabatic short pulse instead of an adiabatic cw laser, the optimal phase for the second scheme is.8π. Figure 5 shows the comparison of single attosecond pulses generated from both schemes. It can be seen that the intensity of single as pulse from our scheme is about an order of magnitude higher than that from the scheme mentioned in reference []. This can be explained by the fact that in our scheme single attosecond pulse is produced from the electron ionized near the peak of the driving field corresponding to a higher ionization rate. Furthermore, the single as pulse is extracted from lower-order harmonics which are more efficiently produced. Our simulation also shows that the variation of φ as much as ±.π in the second scheme will maintain the isolated attosecond pulse production with the side peaks less than % of the main peak intensity. The fluctuation of 3% of the SH intensity will seldom influence the results in our scheme, the peak intensity of the single as pulse varies less than 3%. Furthermore, the sensitivity of single attosecond pulse generation on the carrier-envelope phase (CEP) of the fundamental field is also considered. It is shown that the value of the CEP can be varied as much as ±.π to keep the satellites below 5% of the main pulse intensity. These indicate that it is experimentally feasible to obtain efficient isolated attosecond pulse with our scheme. A fact must be addressed is that we choose the SH field with the intensity % rather than # $5. USD Received 4 November 6; revised 3 December 6; accepted 6 December 6 (C) 7 OSA January 7 / Vol. 5, No. / OPTICS EXPRESS 534

6 x 5 Intensity(arb. units).5.5 The second scheme at φ=.8π The first scheme at φ=.5π 35as Fig. 5. Temporal profiles of the isolated attosecond pulses generated with the first scheme (dashed line) at φ =.5π and the second scheme (solid line) at φ =.8π. % of the fundamental intensity as is mentioned in reference []. This is because that a slightly more intense SH field is needed to induce a remarkable difference between the ionization rates in two half cycles. Then single attosecond pulse will be generated with satellites less than % of the main peak intensity. However it is rather valuable to obtain a much more intense attosecond pulse by increasing the SH field from % to % intensity of the fundamental field. 3. Conclusion In conclusion, we present a method for efficient isolated attosecond pulse generation using the combination of a fundamental and a weak second harmonic field in the multi-cycle regime. It is achieved via controlling the ionization dynamics of the electron. This leads to more efficient attosecond pulses generation each full optical cycle of the fundamental field. In contrast to the method mentioned in reference [], our scheme can enhance the intensity of attosecond pulse by about an order of magnitude. Furthermore, the reduced sensitivity of single attosecond pulse generation on the carrier-envelope phase of the fundamental field is also preserved in our scheme. Acknowledgement This work was supported by the National Natural Science Foundation of China under grant No. 5745, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No and the National Basic Research Program of China under grant No. 6CB866. Author to whom correspondence should be addressed. # $5. USD Received 4 November 6; revised 3 December 6; accepted 6 December 6 (C) 7 OSA January 7 / Vol. 5, No. / OPTICS EXPRESS 535

Chapter 13. High Harmonic Generation

Chapter 13. High Harmonic Generation Chapter 13 High Harmonic Generation High harmonic generation (HHG) is a technique for producing spatially and temporally coherent extreme-ultraviolet (EUV) light, as well as light pulses as short as hundred

More information

Effects of driving laser jitter on the attosecond streaking measurement

Effects of driving laser jitter on the attosecond streaking measurement Effects of driving laser jitter on the attosecond streaking measurement Shiyang Zhong, 1 Xinkui He, 1, Peng Ye, 1 Minjie Zhan, 1 Hao Teng 1 and Zhiyi Wei 1,* 1 Beijing National Laboratory for Condensed

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements

Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements Z. X. Zhao, Zenghu Chang, X. M. Tong and C. D. Lin Physics Department, Kansas State University, Manhattan,

More information

Optimization of three-color laser field for the generation of single ultrashort attosecond pulse

Optimization of three-color laser field for the generation of single ultrashort attosecond pulse Optimization of three-color laser field for the generation of single ultrashort attosecond pulse Peng-Cheng Li 1,2, I-Lin Liu 1, Shih-I Chu 1,3 1 Center for Quantum Science and Engineering, Department

More information

Looking into the ultrafast dynamics of electrons

Looking into the ultrafast dynamics of electrons Looking into the ultrafast dynamics of electrons G. Sansone 1,2,3 1) Dipartimento di Fisica Politecnico Milano, Italy 2) Institute of Photonics and Nanotechnology, CNR Politecnico Milano Italy 3) Extreme

More information

Extension of Harmonic Cutoff and Generation of Isolated Sub-30 as Pulse in a Two-Color Chirped Laser Field

Extension of Harmonic Cutoff and Generation of Isolated Sub-30 as Pulse in a Two-Color Chirped Laser Field Commun. Theor. Phys. 58 (2012) 557 564 Vol. 58, No. 4, October 15, 2012 Extension of Harmonic Cutoff and Generation of Isolated Sub-30 as Pulse in a Two-Color Chirped Laser Field ZHANG Gang-Tai ( ), 1,

More information

Ideal laser waveform construction for the generation of super-bright attosecond pulses

Ideal laser waveform construction for the generation of super-bright attosecond pulses Home Search Collections Journals About Contact us My IOPscience Ideal laser waveform construction for the generation of super-bright attosecond pulses This content has been downloaded from IOPscience.

More information

stabilized 10-fs lasers and their application to laser-based electron acceleration

stabilized 10-fs lasers and their application to laser-based electron acceleration Carrier-envelope envelope-phase-stabilized stabilized sub-10 10-fs lasers and their application to laser-based electron acceleration L. Veisz, E. Goulielmakis, A. Baltuška, and F. Krausz Vienna University

More information

Optimization of few cycle laser pulse pumped high order harmonic generation at ev by changing the gas pressure

Optimization of few cycle laser pulse pumped high order harmonic generation at ev by changing the gas pressure Appl. Phys. B (2015) 121:81 85 DOI 10.1007/s00340-015-6203-0 Optimization of few cycle laser pulse pumped high order harmonic generation at 60 70 ev by changing the gas pressure Li Feng Wang 1 Xin Kui

More information

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom J. Chen 1, 3, Ya Cheng 2,, and Zhizhan Xu 2, 1 Institute of Applied Physics and Computational Mathematics,

More information

High Harmonic Generation of Coherent EUV/SXR Radiation. David Attwood University of California, Berkeley

High Harmonic Generation of Coherent EUV/SXR Radiation. David Attwood University of California, Berkeley High Harmonic Generation of Coherent EUV/SXR Radiation David Attwood University of California, Berkeley Prof. David Attwood / UC Berkeley EE213 & AST21 / Spring 29 14_HHG_29.ppt HHG: Extreme nonlinear

More information

Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization

Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization Luo Mu-Hua( ) and Zhang Qiu-Ju( ) College of Physics and Electronics, Shandong

More information

Extreme Ultraviolet Sources Generation by Using the Two-Color Multi-Cycle Weak Inhomogeneous Field

Extreme Ultraviolet Sources Generation by Using the Two-Color Multi-Cycle Weak Inhomogeneous Field Commun. Theor. Phys. 63 (2015) 86 90 Vol. 63, No. 1, January 1, 2015 Extreme Ultraviolet Sources Generation by Using the Two-Color Multi-Cycle Weak Inhomogeneous Field FENG Li-Qiang ( ) 1,2,3, and LI Wen-Liang

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Gas jet structure influence on high harmonic generation

Gas jet structure influence on high harmonic generation Gas jet structure influence on high harmonic generation James Grant-Jacob, 1,* Benjamin Mills, 1 Thomas J Butcher, 1 Richard T Chapman, 2 William S Brocklesby, 1 and Jeremy G Frey 2 1 Optoelectronics Research

More information

Chemical Physics 366 (2009) Contents lists available at ScienceDirect. Chemical Physics. journal homepage:

Chemical Physics 366 (2009) Contents lists available at ScienceDirect. Chemical Physics. journal homepage: Chemical Physics 366 (2009) 9 14 Contents lists available at ScienceDirect Chemical Physics journal homepage: www.elsevier.com/locate/chemphys Isolated attosecond pulses from ionization gating of high-harmonic

More information

Molecular photoelectron holography by an attosecond XUV pulse in a strong infrared laser field

Molecular photoelectron holography by an attosecond XUV pulse in a strong infrared laser field Molecular photoelectron holography by an attosecond XUV pulse in a strong infrared laser field Liangyuan Chen, 1 Cheng Huang, 1 Xiaosong Zhu, 1, Pengfei Lan, 1 and Peixiang Lu 1,2,3 1 Wuhan National Laboratory

More information

Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS. 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay

Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS. 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay Characteristic times Krausz: RevModPhys 81, 163 (2009) Fs light

More information

attosecond laser pulse

attosecond laser pulse Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@atto.t.u-tokyo.ac.jp Advanced Plasma and Laser Science E attosecond laser pulse 1 attosecond pulse train (APT) isolated attosecond

More information

XUV attosecond pulses

XUV attosecond pulses XUV attosecond pulses D. Charalambidis / Univ. of Crete chara@iesl.forth.gr E. Benis E. Goulielmakis E. Hert L. Nikolopoulos N.A. Papadogiannis P. Tallas In collaboration with G. Tsakiris P. Tallas K.

More information

arxiv: v2 [physics.atom-ph] 22 Apr 2016

arxiv: v2 [physics.atom-ph] 22 Apr 2016 Frequency shift in high order harmonic generation from isotopic molecules Lixin He, 1 Pengfei Lan, 1, Chunyang Zhai, 1 Feng Wang, 1 Wenjing Shi, 1 Qingbin Zhang, 1 Xiaosong Zhu, 1 and Peixiang Lu 1,2,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. S1: High-Harmonic Interferometry of a Chemical Reaction A weak femtosecond laser pulse excites a molecule from its ground state (on the bottom) to its excited state (on top) in which it dissociates.

More information

Intensity dependence of laser-assisted attosecond photoionization spectra

Intensity dependence of laser-assisted attosecond photoionization spectra Intensity dependence of laser-assisted attosecond photoionization spectra Swoboda, Marko; Dahlström, Marcus; Ruchon, Thierry; Johnsson, Per; Mauritsson, Johan; Lhuillier, A; Schafer, K. J. Published in:

More information

Time-dependent population imaging for solid high harmonic generation

Time-dependent population imaging for solid high harmonic generation Time-dependent population imaging for solid high harmonic generation Xi Liu, 1 Xiaosong Zhu, 1 Pengfei Lan, 1 Xiaofan Zhang, 1 Dian Wang, 1 Qingbin Zhang, 1 Peixiang Lu 1,2 1 School of Physics and Wuhan

More information

Steering Attosecond Electron Wave Packets with Light

Steering Attosecond Electron Wave Packets with Light Steering Attosecond Electron Wave Packets with Light R. Kienberger, M. Hentschel, M. Uiberacker, Ch. Spielmann,,2 M. Kitzler, A. Scrinzi, M. Wieland, 3 Th. Westerwalbesloh, 4 U. Kleineberg, 4 U. Heinzmann,

More information

Isolated attosecond pulse generation by monocycle pumping: the use of a harmonic region with minimum dispersion

Isolated attosecond pulse generation by monocycle pumping: the use of a harmonic region with minimum dispersion Fang et al. Vol. 28, No. 1 / January 1, 2011 / J. Opt. Soc. Am. B 1 Isolated attosecond pulse generation by monocycle pumping: the use of a harmonic region with minimum dispersion Shaobo Fang, 1,4 Takashi

More information

PIs: Louis DiMauro & Pierre Agostini

PIs: Louis DiMauro & Pierre Agostini Interaction of Clusters with Intense, Long Wavelength Fields PIs: Louis DiMauro & Pierre Agostini project objective: explore intense laser-cluster interactions in the strong-field limit project approach:

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

COHERENT X-ray sources are attractive because of their

COHERENT X-ray sources are attractive because of their 266 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 4, NO. 2, MARCH/APRIL 1998 Generation of Coherent, Femtosecond, X-Ray Pulses in the Water Window Zenghu Chang, Andy Rundquist, Haiwen Wang,

More information

Modulational instability of few cycle pulses in optical fibers

Modulational instability of few cycle pulses in optical fibers Modulational instability of few cycle pulses in optical fibers Amarendra K. Sarma* Department of Physics, Indian Institute of Technology Guwahati,Guwahati-78139,Assam,India. *Electronic address: aksarma@iitg.ernet.in

More information

High Harmonic Generation in ZnO with a High-Power Mid-IR OPA

High Harmonic Generation in ZnO with a High-Power Mid-IR OPA High Harmonic Generation in ZnO with a High-Power Mid-IR OPA Shima Gholam-Mirzaei 1, John Beetar 1 1, a), and Michael Chini 1 Department of Physics, University of Central Florida, Orlando FL 32816, USA

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

High-Harmonic Generation

High-Harmonic Generation High-Harmonic Generation Kenichi L. Ishikawa Photon Science Center, Graduate School of Engineering, University of Tokyo Japan 1. Introduction We present theoretical aspects of high-harmonic generation

More information

High order harmonic generation and applications

High order harmonic generation and applications High order harmonic generation and applications E. CONSTANT Centre Laser Intenses et Applications H39 H69 ELI & Hilase Summer School 2016 1 21 26 August 2016 Introduction Laser are unique light sources:

More information

Structural dynamics of complex systems with many atoms,

Structural dynamics of complex systems with many atoms, Attosecond electron pulses for 4D diffraction and microscopy Peter Baum and Ahmed H. Zewail* Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics,

More information

Attosecond dispersion control by extreme ultraviolet multilayer mirrors

Attosecond dispersion control by extreme ultraviolet multilayer mirrors Attosecond dispersion control by extreme ultraviolet multilayer mirrors Michael Hofstetter, 1,2,* Martin Schultze, 1,2 Markus Fieß, 2 Benjamin Dennhardt, 2,3 Alexander Guggenmos, 1,2 Justin Gagnon, 1,2

More information

Attosecond laser systems and applications

Attosecond laser systems and applications Attosecond laser systems and applications Adrian N. Pfeiffer Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 8th Annual Laser Safety Officer Workshop September

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

Theoretical and experimental analysis of quantum path interferences in high-order harmonic generation

Theoretical and experimental analysis of quantum path interferences in high-order harmonic generation PHYSICAL REVIEW A 80, 033817 009 Theoretical and experimental analysis of quantum path interferences in high-order harmonic generation T. Auguste* and P. Salières CEA Saclay, IRAMIS, Service des Photons,

More information

Generation and Applications of High Harmonics

Generation and Applications of High Harmonics First Asian Summer School on Aug. 9, 2006 Generation and Applications of High Harmonics Chang Hee NAM Dept. of Physics & Coherent X-ray Research Center Korea Advanced Institute of Science and Technology

More information

arxiv: v1 [physics.atom-ph] 3 Jan 2014

arxiv: v1 [physics.atom-ph] 3 Jan 2014 Revisiting the tunnelling site of electrons in strong field enhanced ionization of molecules Cheng Huang, Pengfei Lan, Yueming Zhou, Qingbin Zhang, Kunlong Liu, and Peixiang Lu School of Physics and Key

More information

HHG Sub-cycle dynamics

HHG Sub-cycle dynamics Quantum Optics and Laser Science Group Blackett Laboratory, Imperial College London HHG Sub-cycle dynamics 1. Chirp of electron recollision 2. Measuring ultra-fast intramolecular proton motion 3. Controlling

More information

Carrier-envelope phase dependent photoelectron energy spectra in low intensity regime

Carrier-envelope phase dependent photoelectron energy spectra in low intensity regime Vol. 5, No. 10 15 May 017 OPTICS EXPRESS 1133 Carrier-envelope phase dependent photoelectron energy spectra in low intensity regime YANG LI,1 MIN LI,1,* YUEMING ZHOU,1 XIAOMENG MA,1 HUI XIE,1 PENGFEI LAN,1

More information

Title. Author(s)Igarashi, Hironori; Makida, Ayumu; Ito, Motohiko; Se. CitationOptics Express, 20(4): Issue Date Doc URL.

Title. Author(s)Igarashi, Hironori; Makida, Ayumu; Ito, Motohiko; Se. CitationOptics Express, 20(4): Issue Date Doc URL. Title Pulse compression of phase-matched high harmonic pul Author(s)Igarashi, Hironori; Makida, Ayumu; Ito, Motohiko; Se CitationOptics Express, 20(4): 3725-3732 Issue Date 2012-02-13 Doc URL http://hdl.handle.net/2115/49089

More information

Ultrafast XUV Sources and Applications

Ultrafast XUV Sources and Applications Ultrafast XUV Sources and Applications Marc Vrakking Workshop Emerging Sources Lund, June 12th 2007 Overview: Attosecond Science from a user perspective What do we want? What do we use as our starting

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

Overview: Attosecond optical technology based on recollision and gating

Overview: Attosecond optical technology based on recollision and gating Overview: Attosecond optical technology based on recollision and gating Zenghu Chang Kansas State University Team members Kansas State University Zenghu Chang (Dept. of Phys.) Lew Cocke (Dept. of Phys.)

More information

Theory of high-order harmonic generation from molecules by intense laser pulses

Theory of high-order harmonic generation from molecules by intense laser pulses Theory of high-order harmonic generation from molecules by intense laser pulses Anh-Thu Le 1, R. Della Picca 2, P. D. Fainstein 2, D. A. Telnov 3, M. Lein 4 and C. D. Lin 1 1 J. R. Macdonald Laboratory,

More information

Recollision processes in strong-field QED

Recollision processes in strong-field QED Recollision processes in strong-field QED Antonino Di Piazza Program on Frontiers of Intense Laser Physics Santa Barbara, California, August 21st 2014 Outline Introduction to recollision processes in atomic

More information

Lecture on: Multiphoton Physics. Carsten Müller

Lecture on: Multiphoton Physics. Carsten Müller Lecture on: Multiphoton Physics Carsten Müller Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf Max-Planck-Institut für Kernphysik, Heidelberg IMPRS-QD Annual Event, MPIK, Heidelberg,

More information

Electron dynamics in a strong laser field

Electron dynamics in a strong laser field Available online at www.worldscientificnews.com WSN 35 (2016) 1-16 EISSN 2392-2192 Electron dynamics in a strong laser field C. C. Gunatilaka, K. A. I. L. Wijewardena Gamalath* Department of Physics, University

More information

Time-resolved atomic inner-shell spectroscopy

Time-resolved atomic inner-shell spectroscopy Time-resolved atomic inner-shell spectroscopy M. Drescher*, M. Hentschel*, R. Kienberger*, M. Uiberacker*, V. Yakovlev*, A. Scrinzi*, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann & F. Krausz* * Institut

More information

Time-resolved optical pump/x-ray probe spectroscopy

Time-resolved optical pump/x-ray probe spectroscopy 4.3 Project part P03 Time-resolved optical pump/x-ray probe spectroscopy Principal investigators: Christian Spielmann Physikalisches Institut EP1 Universität Würzburg Am Hubland D 97074 Würzburg Phone:

More information

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation Journal of the Korean Physical Society, Vol. 49, No. 1, July 2006, pp. 337 341 Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation G.

More information

Polarization of high-order harmonics

Polarization of high-order harmonics Polarization of high-order harmonics Antoine, P; Carre, B; Lhuillier, A; Lewenstein, M Published in: Physical Review A (Atomic, Molecular and Optical Physics) DOI: 10.1103/PhysRevA.55.1314 Published: 1997-01-01

More information

arxiv: v1 [physics.atom-ph] 14 Jan 2019

arxiv: v1 [physics.atom-ph] 14 Jan 2019 arxiv:191.441v1 [physics.atom-ph] 14 Jan 219 Phase Control of Attosecond Pulses in a Train Chen Guo 1, Anne Harth 1, Stefanos Carlström 1, Yu-Chen Cheng 1, Sara Mikaelsson 1, Erik Mårsell 1, Christoph

More information

arxiv: v1 [physics.optics] 15 Dec 2011

arxiv: v1 [physics.optics] 15 Dec 2011 Order-dependent structure of High Harmonic arxiv:1112.3547v1 [physics.optics] 15 Dec 211 Wavefronts E. Frumker, 1,2,3 G. G. Paulus, 3,4 H. Niikura, 1,5 A. Naumov, 1 D. M. Villeneuve, 1 and P. B. Corkum

More information

Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope

Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope 1 Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope J. Mauritsson 1, P. Johnsson 1, E. Gustafsson 1, M. Swoboda 1, T. Ruchon 1, A. L Huillier 1 & K. J. Schafer 2 1 Department of

More information

The Pulse Intensity Duration Conjecture: Evidence from free-electron lasers

The Pulse Intensity Duration Conjecture: Evidence from free-electron lasers Prog. Theor. Exp. Phys. 2014, 013A02 (10 pages) DOI: 10.1093/ptep/ptt120 The Pulse Intensity Duration Conjecture: Evidence from free-electron lasers Thorben Seggebrock 1,, Irene Dornmair 2, Toshiki Tajima

More information

arxiv: v1 [physics.optics] 8 Apr 2013

arxiv: v1 [physics.optics] 8 Apr 2013 Spectral characterization of third-order harmonic generation assisted by two-dimensional plasma grating in air P.J. Ding, Z.Y. Liu, Y.C. Shi, S.H. Sun, X.L. Liu, X.SH. Wang, Z.Q. Guo, Q.C. Liu, Y.H. Li,

More information

An extreme ultraviolet interferometer using high order harmonic generation

An extreme ultraviolet interferometer using high order harmonic generation An extreme ultraviolet interferometer using high order harmonic generation Author Laban, Dane, Palmer, Adam, Wallace, William, Gaffney, Naylyn, Notermans, Remy, Clevis, Thijs, Pullen, Michael, Jiang, D.,

More information

Sawtooth grating-assisted phase-matching

Sawtooth grating-assisted phase-matching Sawtooth grating-assisted phase-matching Pavel Sidorenko, 1,* Maxim Kozlov, 1 Alon Bahabad, 2 Tenio Popmintchev, 2 Margaret Murnane, 2 Henry Kapteyn, 2 and Oren Cohen 1 1 Solid State Institute and Physics

More information

Connecting Attosecond Science and XUV FEL Research

Connecting Attosecond Science and XUV FEL Research Connecting Attosecond Science and XUV FEL Research Marc Vrakking Attosecond Workshop Imperial College, May 13th 2008 Overview Present status of attosecond science - recent example: electron localization

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

time is defined by physical processes

time is defined by physical processes frontiers in attosecond science Louis F. DiMauro as 100 as as as n as 10-18 s 25 as 1 as 10-18 s 1 as n as modified from LCLS/SLAC website time is defined by physical processes a history of ultra-fast:

More information

Analysis of recombination in high-order harmonic generation in molecules

Analysis of recombination in high-order harmonic generation in molecules Analysis of recombination in high-order harmonic generation in molecules B. Zimmermann, M. Lein,* and J. M. Rost Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden,

More information

Attosecond angular streaking

Attosecond angular streaking Attosecond angular streaking ARTICLES PETRISSA ECKLE *, MATHIAS SMOLARSKI 2, PHILIP SCHLUP, JENS BIEGERT, ANDRÉ STAUDTE 2, MARKUS SCHÖFFLER 2, HARM G. MULLER 3, REINHARD DÖRNER 2 AND URSULA KELLER Department

More information

Comparison and real-time monitoring of high-order harmonic generation in different sources

Comparison and real-time monitoring of high-order harmonic generation in different sources Comparison and real-time monitoring of high-order harmonic generation in different sources J.-P. Brichta, 1 M. C. H. Wong, 1 J. B. Bertrand, 1,2 H.-C. Bandulet, 3 D. M. Rayner, 2 and V. R. Bhardwaj 1,

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Rikagaku Kenkyusho MZ] On: 18 September 2008 Access details: Access Details: [subscription number 791272761] Publisher Taylor & Francis Informa Ltd Registered in England

More information

WP-3: HHG and ultrafast electron imaging

WP-3: HHG and ultrafast electron imaging WORKPACKAGE WP-3: HHG and ultrafast electron imaging Coordinators: P. Salières (CEA), A. Assion (FEMTO, Spectra Physics Vienna) Period: Start Month 4 End Month 48 Leading Participants (Orange in the picture):

More information

Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams. Abstract

Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams. Abstract Febrary 2009 SLAC-PUB-13533 Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams D. Xiang, Z. Huang and G. Stupakov SLAC National Accelerator Laboratory,

More information

Influence of generalized focusing of few-cycle Gaussian pulses in attosecond pulse generation

Influence of generalized focusing of few-cycle Gaussian pulses in attosecond pulse generation Influence of generalized focusing of few-cycle Gaussian pulses in attosecond pulse generation Ebrahim Karimi 1,5,*, Carlo Altucci 1,,, Valer Tosa 3, Raffaele Velotta 1,, and Lorenzo Marrucci 1,4 1 Dipartimento

More information

Phase matching techniques for coherent soft-x-ray generation

Phase matching techniques for coherent soft-x-ray generation Phase matching techniques for coherent soft-x-ray generation A. Paul, E.A. Gibson, X. Zhang, A. Lytle, T. Popmintchev, X. Zhou, M.M. Murnane, I.P. Christov, and H.C. Kapteyn Department of Physics and JILA,

More information

Pure Even Harmonic Generation from Oriented CO in Linearly Polarized Laser. Fine Mechanics, Chinese Academy of Sciences, Shanghai , China

Pure Even Harmonic Generation from Oriented CO in Linearly Polarized Laser. Fine Mechanics, Chinese Academy of Sciences, Shanghai , China Pure Even Harmonic Generation from Oriented CO in Linearly Polarized Laser Fields Hongtao Hu, 1,2 Na Li, 1 Peng Liu, 1, 3, * Ruxin Li, 1,3, and Zhizhan Xu 1, 1 State Key Laboratory of High Field Laser

More information

Order-dependent structure of high harmonic wavefronts

Order-dependent structure of high harmonic wavefronts Order-dependent structure of high harmonic wavefronts E. Frumker, 1,2,3, G. G. Paulus, 3,4 H. Niikura, 1,5 A. Naumov, 1 D. M. Villeneuve, 1 and P. B. Corkum 1 1 Joint Attosecond Science Laboratory, University

More information

LIST OF PUBLICATIONS

LIST OF PUBLICATIONS LIST OF PUBLICATIONS 1. F. Ehlotzky,Klein-Winkel Delbrück-Streuung, Acta Physica Austriaca 16, 374 (1963). 2. F. Ehlotzky,Small-Angle Delbrück Scattering, Nuovo Cimento 31, 1037 (1964). 3. F. Ehlotzky,

More information

10-mJ Optically Synchronized CEP-Stable Chirped Parametric Amplifier at 1.5 µm 1

10-mJ Optically Synchronized CEP-Stable Chirped Parametric Amplifier at 1.5 µm 1 ISSN 3-4X, Optics and Spectroscopy, 2, Vol. 8, No. 3, pp. 456 462. Pleiades Publishing, Ltd., 2. MATERIALS AND SYSTEMS FOR QUANTUM OPTICS -mj Optically Synchronized CEP-Stable Chirped Parametric Amplifier

More information

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions,, Ofer Kfir, Zvi Diskin, Pavel Sidorenko and Oren Cohen Department of Physics and Optical Engineering,

More information

PHYSICAL REVIEW A 79,

PHYSICAL REVIEW A 79, Ab initio time-dependent density-functional-theory study of the frequency comb structure, coherence, and dephasing of multielectron systems in the vuv-xuv regimes via high-order harmonic generation Juan

More information

Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension

Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension Commun. Theor. Phys. 65 (2016) 601 605 Vol. 65, No. 5, May 1, 2016 Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension Guo-Li Wang ( Á ), Li-Hua Zhou ( ÛÙ), Song-Feng Zhao ( Øô), and

More information

Strongly Dispersive Transient Bragg Grating for High Harmonics

Strongly Dispersive Transient Bragg Grating for High Harmonics SLAC-PUB-14092 Strongly Dispersive Transient Bragg Grating for High Harmonics J. P. Farrell, 1,2 L. S. Spector, 1,2 M. B. Gaarde, 1,3 B. K. McFarland 1,2, P. H. Bucksbaum, 1,2 and Markus Gühr 1,2 1 Stanford

More information

Author(s): Niikura, Hiromichi; Wörner, Hans Jakob; Villeneuve, David M.; Corkum, Paul B.

Author(s): Niikura, Hiromichi; Wörner, Hans Jakob; Villeneuve, David M.; Corkum, Paul B. Research Collection Journal Article Probing the Spatial Structure of a Molecular Attosecond Electron Wave Packet Using Shaped Recollision Trajectories Author(s): Niikura, Hiromichi; Wörner, Hans Jakob;

More information

Attosecond science PROGRESS ARTICLE P. B. CORKUM 1 AND FERENC KRAUSZ 2,3 1

Attosecond science PROGRESS ARTICLE P. B. CORKUM 1 AND FERENC KRAUSZ 2,3 1 Attosecond science PROGRESS ARTICLE The motion of electrons on the atomic scale has been hidden from direct experimental access until recently. We review the revolution in technology that opened the door

More information

4. High-harmonic generation

4. High-harmonic generation Advanced Laser and Photn Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Kenichi Ishikawa () http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp Advanced Laser and Photon

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2029 Generalized Molecular Orbital Tomography Supplementary Information C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira

More information

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv: v1 [physics.atom-ph] 12 Jun 2014

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv: v1 [physics.atom-ph] 12 Jun 2014 Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv:1406.3137v1 [physics.atom-ph] 1 Jun 014 J Herrmann 1, M Lucchini 1, S Chen, M Wu, A Ludwig 1, L Kasmi 1, K J Schafer,

More information

Wavelength Effects on Strong-Field Single Electron Ionization

Wavelength Effects on Strong-Field Single Electron Ionization Adv. Studies Theor. Phys., Vol. 2, 2008, no. 6, 271-279 Wavelength Effects on Strong-Field Single Electron Ionization J. Wu and Chunlei Guo The Institute of Optics, University of Rochester Rochester, NY

More information

Measurement and control of the frequency chirp rate of high-order harmonic pulses

Measurement and control of the frequency chirp rate of high-order harmonic pulses Measurement and control of the frequency chirp rate of high-order harmonic pulses Mauritsson, Johan; Johnsson, Per; Lopez, Rodrigo; Varju, Katalin; Kornelis, W; Biegert, J; Keller, U; Gaarde, MB; Schafer,

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

Lecture Notes: March C.D. Lin Attosecond X-ray pulses issues:

Lecture Notes: March C.D. Lin Attosecond X-ray pulses issues: Lecture Notes: March 2003-- C.D. Lin Attosecon X-ray pulses issues: 1. Generation: Nee short pulses (less than 7 fs) to generate HHG HHG in the frequency omain HHG in the time omain Issues of attosecon

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

arxiv: v1 [physics.atom-ph] 15 Jun 2017

arxiv: v1 [physics.atom-ph] 15 Jun 2017 Ionization of Xe in intense, two-cycle laser fields: Dependence on carrier-envelope phase Parinda Vasa, 1 Aditya K. Dharmadhikari, 2 Jayashree arxiv:1706.04805v1 [physics.atom-ph] 15 Jun 2017 A. Dharmadhikari,

More information

A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M.

A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M. A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology E.E. Serebryannikov, A.M. Zheltikov Physics Department, International Laser Center, M.V. Lomonosov

More information

Polarization-sensitive pulse reconstruction by momentum-resolved photoelectron streaking

Polarization-sensitive pulse reconstruction by momentum-resolved photoelectron streaking Vol., No. 7 Apr 18 OPTICS EXPRESS 83 Polarization-sensitive pulse reconstruction by momentum-resolved photoelectron streaking KAY WALTAR,1,* JOHANNES HAASE, MATTEO LUCCHINI,3 JEROEN A. VAN BOKHOVEN,, MATTHIAS

More information

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 The Lund Attosecond Science Centre in the MEDEA network PER JOHNSSON @ THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 Lund University Founded in 1666 47 700 students (individuals) 7 500 employees - 840

More information

Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via timegated phase matching.

Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via timegated phase matching. University of Colorado, Boulder CU Scholar Physics Faculty Contributions Physics 5-15-2017 Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via timegated phase matching.

More information

Intense few-cycle light pulses in the deep ultraviolet

Intense few-cycle light pulses in the deep ultraviolet Intense few-cycle light pulses in the deep ultraviolet U. Graf 1, M. Fieß 1, M. Schultze 1, R. Kienberger 1, F. Krausz 1,2 and E. Goulielmakis 1,* 1 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße

More information