A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M.

Size: px
Start display at page:

Download "A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M."

Transcription

1 A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology E.E. Serebryannikov, A.M. Zheltikov Physics Department, International Laser Center, M.V. Lomonosov Moscow State University Julien Lumeau, Leonid B. Glebov University of Central Florida, College of Optics and Photonics/CREOL, Orlando FL, USA Our goal: Use an all optical technique to investigate tunneling dynamics; map attosecond dynamics onto a femtosecond time scale Move away from photoelectron spectroscopy enable experiments on bulk

2 Outline How to read out tunneling ionization with an optical pulse? Observation of recollision-free (Brunel) harmonics: from noble gas from bulk transparent solids Brunel mixing with two-color fields Future: use 1.6 µm IR CEP OPA for bulk

3 Ionization Regimes Multi-photon (MPI) plasma-induced spectral blue-shift Tunnel (TI) harmonics generation γ>1 tunneling rate slower than laser period Multiphoton ionization γ<1 tunneling rate faster than laser period Tunnel ionization ωl γ = 2mW ee b - Keldysh parameter Keldysh (1965)

4 Motivation Real-time observation of tunneling ionization dynamics Uiberacker et al., Nature 446, 627 (27) Attosecond angular streaking using circular polarized light and COLTRIMS P. Eckle et al., Nature Physics 4, 565 (28) We set out to develop an optical read-out technique that can work with bulk solids!

5 log(i q ) Mechanisms of Higher-Order Harmonic Generation χ <3> E 3 χ <5> E 5 χ <7> E 7 Re-collision HHG ω/ω L Plasma wave oscillations High orders (Corkum): Tunnel ionization Acceleration Recollision P.B. Corkum, PRL 71, 1994 (1993) Lowest orders: χ <3> χ <5> χ <7> Time [fs],, dn e /dt [arb. units] hω q Brunel: twice-per-cycle tunnel ionization step-wise plasma concentration increase transverse plasma current J = en e v F. Brunel, JOSA B 7, 521 (199) Origin of new frequency components due to the Brunel mechanism: rapid time-domain phase modulation! Harmonics signal is independent of the final state of electrons! Instantaneous intensity [W/cm 2 ] 6-fs pulse 8 nm γ=1 N e, Δn [arb. units]

6 Previous Work Theory: Classical models for harmonic generation based on high-frequency variation of the tunnel ionization current: F. Brunel, JOSA B 7, 521 (199) S. Rae and K. Burnett, J. Phys. B 26, 159 (1993) These models predict the right magnitude of 3rd and 5th harmonics, but no plateau: N. Burnett, C. Kan, P.B. Corkum, PRA 51, R3418 (1995) Experiment: ω ω 1 2 2ω 1 +ω 2 ω 2ω 1 ω 2 Brunel mixing in gas. C.W. Siders et al., PRL 87, 262 (21) Driven by laser ω 1, n e oscillates at 2ω 1 ω 3 =2ω 1 ±ω 2 for ω 1 =ω 2 predicts THG and THz emission on the leading pulse edge. (Similar to THz emission via 4 wave mixing 2ω ω ω (D. Cook, et al. Opt. Lett. 95, 121 (2), M. Kress, et al. Nat. Phys. 2, 327, (26))

7 Time Dependent Refractive Index Modulation Instantaneous intensity [W/cm 2 ] dn e /dt [arb. units] 1x fs pulse 8 nm γ= Time [fs],16,14,12,1,8,6,4,2, N e, Δn [arb. units] Analytical expression for nonadiabatic tunnel ionization: G. L. Yudin and M. Yu. Ivanov, PRA 64, 1349 (21) 3-D TDSE in good agreement with the Yudin- Ivanov formalism: Uiberacker et al., Nature 446, 627 (27), Suppl. Information Refractive index change: Δn p ω 2 p n e 2 ω p 2 2ω () t Time-dependent phase shift: Δϕ p 1 ω () t 2 Not accessible in the XUV! Can be read out only by an optical field

8 Tunneling Dynamics in Bulk Solids Proof of principle experiment in gas phase Strategic goal: To develop a technique for investigation of TI dynamics in bulk solids Ionization is the starting point for all strong field phenomena It is also starting point for optical breakdown C MPI impurity level Tunneling Photo-electrons cannot be observed from bulk material! V

9 Instantaneous intensity [W/cm 2 ] dn e /dt [arb. units] 1x1 14 Stepwise vs.. Smooth Refractive Index Modulation? 6-fs pulse 8 nm γ= Time [fs],16,14,12,1,8,6,4,2, N e, Δn [arb. units] ωl γ = Instantaneous intensity [W/cm 2 ] dn e /dt [arb. units] 5.x1 12 2mW ee b 6-fs pulse 8 nm - Keldysh parameter γ= Time [fs] 1.x1-11. N e, Δn [arb. units] Attosecond time structure due to strong dependence of ionization probability on the field strength TI γ MPI Smooth ramp due to MPI (follows intensity envelope)

10 Quasi-Linear MPI Ramp Normalized intensity [arb. units] 1 pump 5-fs pulse Time [fs] i(onization)-spider Plasma-Blue-Shift spectral shear interferometry for characterization of ultimately short optical pulses 3x1 16 2x1 16 1x1 16 N e [cm -3 ] Replica 1 Base harmonic frequency shift Replica 2 SPIDER Interferogram ω Ω ω + Ω 2π/τ A. Verhoef et al., Opt. Lett. 34, 82 (29) ω

11 Attosecond Phase Mask Tunnel ionization case! Advantage: Brunel harmonics do not depend on the final state of electrons Harmonic frequencies N 2ω pump +ω probe, N=1,2,3 Time domain: Attosecond phase mask Showing tunnel ionization dynamics Frequency domain: Harmonic spectra Question: How badly is the attosecond time-domain phase mask distorted by pulse propagation?

12 Spectral Response to Temporal Phase Modulation Formation of time-dependent attosecond phase mask Formation of harmonic spectrum Spectral scattering Ionization loss, mm I(t) Time, fs n e /n Spectral intensity, arb. units I pump = 1.5*1 14 W/cm 2 I pump = 5*1 13 W/cm 2 I pump = 3*1 13 W/cm 2 Input ω/ω

13 Interpreting Spectral Signatures Model: Phase mask Φ(t) with different finite rise time θ This work: A. Zheltikov and E. Serebryannikov, 3-D propagation code for Brunel and Kerr harmonics based on Yudin-Ivanov formalism Phase mask for T/θ = 9 Spectral intensity, arb. units T/θ= ω/ω T/θ=9 T/θ=3.9 Spectra of the resulting laser field for different phase masks Field intensity, arb. units t/t T laser period Power ratio between adjacent harmonics orders depends on the speed of electron density release (Δn step sharpness) Phase, rad

14 Experimental Setup Pump: 5 fs, 2 μj; Probe: ~2 fs, 2 μj. The harmonics are detected in the direction of the weak, cross polarized chirped probe pulse. The pump beam is blocked before the entrance slit of the spectrometer. ω probe may differ from ω pump to see the effect of the phase mask. λ c =75 nm

15 Results experiment Harmonics H7: Channeltron H5: PMT H3: PMT λ (nm) signal detected in the direction of a weak cross polarized chirped probe pulse

16 Experiment vs. Simulation 155 experiment H3 delay (fs) delay (fs) H5 simulation H wavelength (nm) wavelength (nm) wavelength (nm) mbar Kr delay (fs) delay (fs) delay (fs) 16

17 Cross-Correlations Correlations 1. Temporal marginal: Normalized signal Harmonic Probe H3,H5,H7 maps integrated over spectrum. All harmonics follow the same time structure

18 Linear Dependence on Probe Intensity Experiment 3 rd Harmonic, 1mm Argon target Theory 2 Pump-probe direct THG 2 Signal (arb. un.) , Experiment, Theory Probe Energy (μj) Proof of separation of χ (3) from Brunel-harmonics: Linear intensity dependence of H3 on probe intensity! THG spectra measured with pump on are blue-shifted!

19 Time, fs Time, fs Propagation Effects Spatio-temporal profile of the probe pulse nm 78 nm 5 fs.2 mj f=4 cm 5 krypton jet, P= mbar r, μm Filtered THG part r, μm Field intensity, arb. units z = 1. mm z =.5 mm z =. mm z = -.5 mm z = -1. mm Time, fs 19

20 1, E- 3, 194, 1197, 139, 1432, 1566, 1713, 1874, 25, 2242, 2453, 2683, 2934, 321, 3511, 3841, 421, 4596, 527, 5499, 615, 6579, 7197, 7872, 8611, 9419, 13, 1127, 1233, 1349, 1475, 1614, 1765, 1931, 2112, 231, 2527, 2764, 324, 337, 3618, 3957, 4329, 4735, 5179, 5666, 6197, 6779, 7415, 8111, 8873, 975, 162, 1161, 127, 1389, 152, 1663, 1819, 1989, 2176, 238, 4, 2848, 3115, 348, 3728, 477, 446, 4879, 5337, 5838, 6385, 6985, 764, 8358, , 1,E- 3,194,1197,139,1432,1566,1713,1874,25,2242,2453,2683,2934,321,3511,3841,421,4596,527,5499,615,6579,7197,7872,8611,9419,13,1127,1233,1349,1475,1614,1765,1931,2112,231,2527,2764,324,337,3618,3957,4329,4735,5179,5666,6197,6779,7415,8111,8873,975,162,1161,127,1389,152,1663,1819,1989,2176,238,4,2848,3115,348,3728,477,446,4879,5337,5838,6385,6985,764,8358,9142 1, Distortion by Propagation Ar,.3 bar,6 t n n e o, fs Ar,.3 bar,6 t n n e o, fs ,3 1 14, z, mm, -, z, mm, -, Ionization rate, fs -1 -,6 1,5 1,,5 z =,9,6, n n e o Ionization rate, arb -,6 1,5 1,,5 dz. 1mm n n 1 12 e o, arb,, Time, fs, Time, fs

21 Interaction Length vs.. Pressure z, mm,6,3, -,3 Electron density buildup, fs-1 Ar,.3 bar Time marginal + dt.3 bar Ar Ar density.3 bar Ar arb.units arb.units -, full <-.1mm >-.1 mm Time, fs Time, fs full <-.1 mm >-.1 mm 1 arb.units Interaction length drops with pressure increase

22 Chirp of Probe Pulse 3 rd Harmonic, 1mm Argon target 2 2 short chirped 2 short probe chirped probe Normalized Signal Normalized Signal short chirped The spectral marginal does not depend on the chirp of the probe pulse.

23 Coherent Control with Pump Pulse 3 rd Harmonic, 1mm Argon target 2-2μm FS 2-5μm FS 2 dω Cross-correlation μm FS μm FS μm FS μm FS dτ Spectrum μm FS 2 55μm FS 2 75μm FS

24 Chirp of Pump Pulse 3 rd Harmonic, 1mm Argon target spectral marginal vs. pump chirp Each marginal is normalized to its own maxima cross correlation vs. pump chirp net FS wedge insertion (μm) Pump-probe delay (fs) net FS wedge insertion (μm) the signal Spectrum decreases broadens fast even with for increasing very pump little chirp

25 Investigation of TI in bulk solids 2 Experiment in bulk: Brunel type harmonic in glass ω pump 2 ω pump + ω probe ω probe For measuring several harmonics: Use an OPA system at 1.5 μm

26 Are We There Yet? Linear Polarized Pump Circular Polarized Pump Low Probe Power/Intensity High Probe Power/Intensity direct probe THG (background) Target: fused silica Q: Why is there a signal with circular polarization?

27 Two Color Experiment 23 Linear pump polarization 23 Circular pump polarization Wavelength [nm] ω pu +ω pr 27 ω pu +2ω pr 3ω pr Wavelength [nm] Delay [fs] Delay [fs] ω pump ω probe ω 1 ω ω ω 1 2

28 Looking for Beat Modes THG, probe chirped with 3 mm of FS THG, probe chirped with 6 mm of FS 4ω pu -ω pr Wavelength, nm Wavelength, nm 2ω pu +ω pr Delay, fs Delay, fs

29 Ionization in Quartz Intensity TW/cm ρ c γ min =.6 5 fs 16 fs 1 fs 5 fs 16 fs 1 fs electron density, cm -3 τ/τ p Red curves: with avalanche ionization Dotted blue: without = + ρ σ 2 ρ WPI ( ) ρ t Ui τ r

30 CEP stable 2-Hz IR OPCPA DAZZLER stretcher O.D. Mücke, A. Alisauskas, D. Sidorov A. Pugzlys, A. Verhoef compressor OPA th KTP to filamentation 3 rd KTP Nd:YAG pump 12.5 mj FWHM~1 1.5 µm phase drift (rad) wavelength (nm) frame number CEP drift single frame intensity average

31 2nd OPA Stage (1 khz) non-collinearity angle: walk-off angle of ~2 m M 2 = 1.13±.4 (2nd-stage signal) M 2 < 1.2 (Yb:KGW pump)

32 Pulses after the 4 th stage IR OPCPA (2 Hz)

33 4-Fold Self-Compression of mj IR Pulses Pulses after the 4 th stage Self-compressed 1.5-µm pulses: >1.5 mj, 3 optical cycles Gas: Ar, 5 bar, Cell length: 14 cm Filament length: cm total beam after filament Optimal compression: E in : 2.2 mj, E out =1.5 mj Throughput: 66%

34 Summary First direct experimental observation of Brunel harmonics in gas and bulk. Attosecond ionization dynamics can be mapped onto a spectral response that is free of recollision contribution. Attosecond phase mask is not intuitive but quite robust. It is feasible to develop an optical technique instead of registering photo-ionization fragments attoscience in bulk. Future experiments on bulk: use the CEP 1.5(signal)/3.5(idler) µm OPCPA. Funding: Die Österreichische Forschungsförderungsgesellschaft mbh

35 Skirmantas Alisauskas The Group Audrius Pugzlys Aart Verhoef Daniil Kartashov Oliver MückeM Alex Mitrofanov

36 Thank You! Acknowledgements O. Smirnova M. Ivanov P. Corkum R. Hörlein R. Kienberger

Attosecond laser systems and applications

Attosecond laser systems and applications Attosecond laser systems and applications Adrian N. Pfeiffer Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 8th Annual Laser Safety Officer Workshop September

More information

Generation and Applications of High Harmonics

Generation and Applications of High Harmonics First Asian Summer School on Aug. 9, 2006 Generation and Applications of High Harmonics Chang Hee NAM Dept. of Physics & Coherent X-ray Research Center Korea Advanced Institute of Science and Technology

More information

Looking into the ultrafast dynamics of electrons

Looking into the ultrafast dynamics of electrons Looking into the ultrafast dynamics of electrons G. Sansone 1,2,3 1) Dipartimento di Fisica Politecnico Milano, Italy 2) Institute of Photonics and Nanotechnology, CNR Politecnico Milano Italy 3) Extreme

More information

stabilized 10-fs lasers and their application to laser-based electron acceleration

stabilized 10-fs lasers and their application to laser-based electron acceleration Carrier-envelope envelope-phase-stabilized stabilized sub-10 10-fs lasers and their application to laser-based electron acceleration L. Veisz, E. Goulielmakis, A. Baltuška, and F. Krausz Vienna University

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

High-energy OPCPA at 3.9 microns

High-energy OPCPA at 3.9 microns High-energy OPCPA at 3.9 microns Audrius Pugžlys Photonics Institute, Vienna University of Technology, Austria pugzlys@tuwien.ac.at 100 µm 10 µm Far-IR THz Mid-IR http://atto.photonik.tuwien.ac.at/ Motivation

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

attosecond laser pulse

attosecond laser pulse Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@atto.t.u-tokyo.ac.jp Advanced Plasma and Laser Science E attosecond laser pulse 1 attosecond pulse train (APT) isolated attosecond

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

High order harmonic generation and applications

High order harmonic generation and applications High order harmonic generation and applications E. CONSTANT Centre Laser Intenses et Applications H39 H69 ELI & Hilase Summer School 2016 1 21 26 August 2016 Introduction Laser are unique light sources:

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. S1: High-Harmonic Interferometry of a Chemical Reaction A weak femtosecond laser pulse excites a molecule from its ground state (on the bottom) to its excited state (on top) in which it dissociates.

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Temple University 13th & Norris Street Philadelphia, PA 19122 T: 1-215-204-1052 contact: johanan@temple.edu http://www.temple.edu/capr/

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

WP-3: HHG and ultrafast electron imaging

WP-3: HHG and ultrafast electron imaging WORKPACKAGE WP-3: HHG and ultrafast electron imaging Coordinators: P. Salières (CEA), A. Assion (FEMTO, Spectra Physics Vienna) Period: Start Month 4 End Month 48 Leading Participants (Orange in the picture):

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

XUV attosecond pulses

XUV attosecond pulses XUV attosecond pulses D. Charalambidis / Univ. of Crete chara@iesl.forth.gr E. Benis E. Goulielmakis E. Hert L. Nikolopoulos N.A. Papadogiannis P. Tallas In collaboration with G. Tsakiris P. Tallas K.

More information

C. D. Lin Kansas State U.

C. D. Lin Kansas State U. Dynamic Imaging of molecules using laser-induced Highorder harmonics and High-energy photoelectrons Goal: probing time-dependent structural changes Example: Isomerization of C 2 H 2 C. D. Lin Kansas State

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

Hiromitsu TOMIZAWA XFEL Division /SPring-8

Hiromitsu TOMIZAWA XFEL Division /SPring-8 TUPLB10 (Poster: TUPB080) Non-destructive Real-time Monitor to measure 3D- Bunch Charge Distribution with Arrival Timing to maximize 3D-overlapping for HHG-seeded EUV-FEL Hiromitsu TOMIZAWA XFEL Division

More information

PIs: Louis DiMauro & Pierre Agostini

PIs: Louis DiMauro & Pierre Agostini Interaction of Clusters with Intense, Long Wavelength Fields PIs: Louis DiMauro & Pierre Agostini project objective: explore intense laser-cluster interactions in the strong-field limit project approach:

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

ATTOSECOND AND ANGSTROM SCIENCE

ATTOSECOND AND ANGSTROM SCIENCE ADVANCES IN ATOMIC, MOLECULAR AND OPTICAL PHYSICS, VOL. 54 ATTOSECOND AND ANGSTROM SCIENCE HIROMICHI NIIKURA 1,2 and P.B. CORKUM 1 1 National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario,

More information

HHG Sub-cycle dynamics

HHG Sub-cycle dynamics Quantum Optics and Laser Science Group Blackett Laboratory, Imperial College London HHG Sub-cycle dynamics 1. Chirp of electron recollision 2. Measuring ultra-fast intramolecular proton motion 3. Controlling

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Brief, Incomplete Summary of Some Literature on Ionization

Brief, Incomplete Summary of Some Literature on Ionization Page 1 Brief, Incomplete Summary of Some Literature on Ionization Regimes of Photo Ionization There are two limiting regimes for ionization in strong optical fields. From reference [1]. The ratio γ of

More information

Strongly Dispersive Transient Bragg Grating for High Harmonics

Strongly Dispersive Transient Bragg Grating for High Harmonics SLAC-PUB-14092 Strongly Dispersive Transient Bragg Grating for High Harmonics J. P. Farrell, 1,2 L. S. Spector, 1,2 M. B. Gaarde, 1,3 B. K. McFarland 1,2, P. H. Bucksbaum, 1,2 and Markus Gühr 1,2 1 Stanford

More information

Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS. 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay

Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS. 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay Characteristic times Krausz: RevModPhys 81, 163 (2009) Fs light

More information

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 The Lund Attosecond Science Centre in the MEDEA network PER JOHNSSON @ THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 Lund University Founded in 1666 47 700 students (individuals) 7 500 employees - 840

More information

Molecular alignment, wavepacket interference and Isotope separation

Molecular alignment, wavepacket interference and Isotope separation Molecular alignment, wavepacket interference and Isotope separation Sharly Fleischer, Ilya Averbukh and Yehiam Prior Chemical Physics, Weizmann Institute Yehiam.prior@weizmann.ac.il Frisno-8, Ein Bokek,

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

XUV frequency comb development for precision spectroscopy and ultrafast science

XUV frequency comb development for precision spectroscopy and ultrafast science XUV frequency comb development for precision spectroscopy and ultrafast science R. Jason Jones (PI) College of Optical Sciences, University of Arizona email: rjjones@optics.arizona.edu Collaborators Graduate

More information

ULTRAFAST LASER CONTROL. Of IONIZATION. Fundamentals And Applications. Thomas Baumert. Institut fuer Physik der Universitaet Kassel, GERMANY

ULTRAFAST LASER CONTROL. Of IONIZATION. Fundamentals And Applications. Thomas Baumert. Institut fuer Physik der Universitaet Kassel, GERMANY ULTRAFAST LASER CONTROL Fundamentals And Applications Of IONIZATION Thomas Baumert Institut fuer Physik der Universitaet Kassel, GERMANY H. Baumann: first permanent Laser Sculpture / since Documenta 6

More information

Ultrafast XUV Sources and Applications

Ultrafast XUV Sources and Applications Ultrafast XUV Sources and Applications Marc Vrakking Workshop Emerging Sources Lund, June 12th 2007 Overview: Attosecond Science from a user perspective What do we want? What do we use as our starting

More information

High Harmonic Generation of Coherent EUV/SXR Radiation. David Attwood University of California, Berkeley

High Harmonic Generation of Coherent EUV/SXR Radiation. David Attwood University of California, Berkeley High Harmonic Generation of Coherent EUV/SXR Radiation David Attwood University of California, Berkeley Prof. David Attwood / UC Berkeley EE213 & AST21 / Spring 29 14_HHG_29.ppt HHG: Extreme nonlinear

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements

Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements Z. X. Zhao, Zenghu Chang, X. M. Tong and C. D. Lin Physics Department, Kansas State University, Manhattan,

More information

THz Electron Gun Development. Emilio Nanni 3/30/2016

THz Electron Gun Development. Emilio Nanni 3/30/2016 THz Electron Gun Development Emilio Nanni 3/30/2016 Outline Motivation Experimental Demonstration of THz Acceleration THz Generation Accelerating Structure and Results Moving Forward Parametric THz Amplifiers

More information

plasma optics Amplification of light pulses: non-ionised media

plasma optics Amplification of light pulses: non-ionised media Amplification of light pulses: non-ionised media since invention of laser: constant push towards increasing focused intensity of the light pulses Chirped pulse amplification D. Strickland, G. Mourou, Optics

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

Attosecond spectroscopy on solids

Attosecond spectroscopy on solids Attosecond spectroscopy on solids Reinhard Kienberger Technische Universität München Max-Planck Institut für Quantenoptik, Garching X-Ray Science in the 21 st Century KITP 06/Aug/2010 Overview Needs for

More information

Optimizing the time resolution of supercontinuum spectral interferometry

Optimizing the time resolution of supercontinuum spectral interferometry 1476 Vol. 33, No. 7 / July 2016 / Journal of the Optical Society of America B Research Article Optimizing the time resolution of supercontinuum spectral interferometry J. K. WAHLSTRAND,* S. ZAHEDPOUR,

More information

Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope

Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope 1 Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope J. Mauritsson 1, P. Johnsson 1, E. Gustafsson 1, M. Swoboda 1, T. Ruchon 1, A. L Huillier 1 & K. J. Schafer 2 1 Department of

More information

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom J. Chen 1, 3, Ya Cheng 2,, and Zhizhan Xu 2, 1 Institute of Applied Physics and Computational Mathematics,

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation Journal of the Korean Physical Society, Vol. 49, No. 1, July 2006, pp. 337 341 Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation G.

More information

Nanosecond Broadband Spectroscopy For Laser-Driven Compression Experiments

Nanosecond Broadband Spectroscopy For Laser-Driven Compression Experiments Nanosecond Broadband Spectroscopy For Laser-Driven Compression Experiments Dylan K. Spaulding, R. Jeanloz Department of Earth and Planetary Science, University of California, Berkeley307 McCone Hall, Berkeley,

More information

time is defined by physical processes

time is defined by physical processes frontiers in attosecond science Louis F. DiMauro as 100 as as as n as 10-18 s 25 as 1 as 10-18 s 1 as n as modified from LCLS/SLAC website time is defined by physical processes a history of ultra-fast:

More information

CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 1-II February Intense Few-Cycle Infrared Laser Pulses at the Advanced Laser Light Source

CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 1-II February Intense Few-Cycle Infrared Laser Pulses at the Advanced Laser Light Source CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 1-II February 2014 Review Intense Few-Cycle Infrared Laser Pulses at the Advanced Laser Light Source B. E. Schmidt, 1 A. D. Shiner, 2 M. Giguère, 1 C. Trallero-Herrero,

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

4. High-harmonic generation

4. High-harmonic generation Advanced Laser and Photn Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Kenichi Ishikawa () http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp Advanced Laser and Photon

More information

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv: v1 [physics.atom-ph] 12 Jun 2014

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv: v1 [physics.atom-ph] 12 Jun 2014 Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv:1406.3137v1 [physics.atom-ph] 1 Jun 014 J Herrmann 1, M Lucchini 1, S Chen, M Wu, A Ludwig 1, L Kasmi 1, K J Schafer,

More information

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme Li Hua Yu for DUV-FEL Team National Synchrotron Light Source Brookhaven National Laboratory FEL2004 Outline The DUVFEL

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT LECTURE II Review of ground-state DFT LECTURE

More information

Beam manipulation with high energy laser in accelerator-based light sources

Beam manipulation with high energy laser in accelerator-based light sources Beam manipulation with high energy laser in accelerator-based light sources Ming-Chang Chou High Brightness Injector Group FEL winter school, Jan. 29 ~ Feb. 2, 2018 Outline I. Laser basic II. III. IV.

More information

Overview of high power THz sources from laser-plasma interaction

Overview of high power THz sources from laser-plasma interaction Lecture at the 5th ASS&S SIOM-CAS, Shanghai August 16-20, 2010 Overview of high power THz sources from laser-plasma interaction Z.M. Sheng Department of Physics, Shanghai Jiao Tong University / Institute

More information

Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field

Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field Wei Cao, Peixiang Lu, Pengfei Lan, Xinlin Wang, and Guang Yang Wuhan National Laboratory for Optoelectronics and

More information

Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment arxiv:1512.05235v1 [physics.plasm-ph] 16 Dec 2015 A. Joulaei 1, 3, J.Moody 1, N. Berti 2, J. Kasparian 2, S. Mirzanejhad

More information

Recollision processes in strong-field QED

Recollision processes in strong-field QED Recollision processes in strong-field QED Antonino Di Piazza Program on Frontiers of Intense Laser Physics Santa Barbara, California, August 21st 2014 Outline Introduction to recollision processes in atomic

More information

Overview: Attosecond optical technology based on recollision and gating

Overview: Attosecond optical technology based on recollision and gating Overview: Attosecond optical technology based on recollision and gating Zenghu Chang Kansas State University Team members Kansas State University Zenghu Chang (Dept. of Phys.) Lew Cocke (Dept. of Phys.)

More information

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics Kelsie Betsch University of Virginia Departmentt of Physics AMO/Fourth Year Seminar April 13, 2009 Overarching

More information

Resonant Structures in the Low-Energy Electron Continuum for Single Ionization of Atoms in the Tunneling Regime

Resonant Structures in the Low-Energy Electron Continuum for Single Ionization of Atoms in the Tunneling Regime Resonant Structures in the Low-Energy Electron Continuum for Single Ionization of Atoms in the Tunneling Regime A. Rudenko, K. Zrost, C.D. Schröter, V.L.B. de Jesus, B. Feuerstein, R. Moshammer, J. Ullrich

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 21: Nonlinear Optics in Glass-Applications Denise Krol Department of Applied Science University of California,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2397 Strong-field physics with singular light beams M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and Ch. Spielmann Supplementary Information S.1 Spectrometric

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Lecture on: Multiphoton Physics. Carsten Müller

Lecture on: Multiphoton Physics. Carsten Müller Lecture on: Multiphoton Physics Carsten Müller Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf Max-Planck-Institut für Kernphysik, Heidelberg IMPRS-QD Annual Event, MPIK, Heidelberg,

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

Review Article Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

Review Article Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements Hindawi Publishing Corporation The Scientific World Journal Volume 213, Article ID 12767, 18 pages http://dx.doi.org/1.1155/213/12767 Review Article Strong Field-Induced Frequency Conversion of Laser Radiation

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Rajendran Rajeev, Johannes Hellwagner, Anne Schumacher, Inga Jordan, Martin Huppert, Andres

More information

Second-Harmonic Generation Studies of Silicon Interfaces

Second-Harmonic Generation Studies of Silicon Interfaces Second-Harmonic Generation Studies of Silicon Interfaces Z. Marka 1, Y. D. Glinka 1, Y. Shirokaya 1, M. Barry 1, S. N. Rashkeev 1, W. Wang 1, R. D. Schrimpf 2,D. M. Fleetwood 2 and N. H. Tolk 1 1 Department

More information

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct Vol 12 No 9, September 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(09)/0986-06 Chinese Physics and IOP Publishing Ltd Experimental study on the chirped structure of the white-light continuum generation

More information

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015 MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is

More information

Nonlinear effects and pulse propagation in PCFs

Nonlinear effects and pulse propagation in PCFs Nonlinear effects and pulse propagation in PCFs --Examples of nonlinear effects in small glass core photonic crystal fibers --Physics of nonlinear effects in fibers --Theoretical framework --Solitons and

More information

Probing the Propagation Dynamics in a Femtosecond Laser Filament

Probing the Propagation Dynamics in a Femtosecond Laser Filament Probing the Propagation Dynamics in a Femtosecond Laser Filament Transient Grating XFROG Measurements of Filament Propagation Dynamics On the Mechanism of Negative Birefringence (Nonlinear Polarizability

More information

Attosecond optics and technology: progress to date and future prospects [Invited]

Attosecond optics and technology: progress to date and future prospects [Invited] Review Vol. 33, No. 6 / June 2016 / Journal of the Optical Society of America B 1081 Attosecond optics and technology: progress to date and future prospects [Invited] ZENGHU CHANG, 1, *PAUL B. CORKUM,

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION An effective magnetic field from optically driven phonons T. F. Nova 1 *, A. Cartella 1, A. Cantaluppi 1, M. Först 1, D. Bossini 2 #, R. V. Mikhaylovskiy 2, A.V. Kimel 2, R. Merlin 3 and A. Cavalleri 1,

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Quantum optimal control theory and applications

Quantum optimal control theory and applications Quantum optimal control theory and applications Esa Räsänen Quantum Control and Dynamics Research Group, www.tut.fi/~rasanene/qcad Department of Physics, Tampere University of Technology, Finland Kaj Stenvall,

More information

Ultrafast Laser Physics!

Ultrafast Laser Physics! Ultrafast Laser Physics! Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 10: Ultrafast Measurements Ultrafast Laser Physics ETH Zurich Ultrafast laser

More information

INTENSE FIELD ELECTRON EXCITATION IN TRANSPARENT MATERIALS

INTENSE FIELD ELECTRON EXCITATION IN TRANSPARENT MATERIALS INTENSE FIELD ELECTRON EXCITATION IN TRANSPARENT MATERIALS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State

More information

Part II. Interaction with Single Atoms. Multiphoton Ionization Tunneling Ionization Ionization- Induced Defocusing High Harmonic Generation in Gases

Part II. Interaction with Single Atoms. Multiphoton Ionization Tunneling Ionization Ionization- Induced Defocusing High Harmonic Generation in Gases - Part II 27 / 115 - 2-28 / 115 Bohr model recap. At the Bohr radius - a B = the electric field strength is: 2 me 2 = 5.3 10 9 cm, E a = e ab 2 (cgs) 5.1 10 9 Vm 1. This leads to the atomic intensity:

More information

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece University of Crete Stelios Tzortzakis Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece Introduction o o THz science - Motivation

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Microjoule mode-locked oscillators: issues of stability and noise

Microjoule mode-locked oscillators: issues of stability and noise Microjoule mode-locked oscillators: issues of stability and noise Vladimir L. Kalashnikov Institut für Photonik, TU Wien, Gusshausstr. 7/387, A-14 Vienna, Austria Alexander Apolonski Department für Physik

More information

Chapter 13. High Harmonic Generation

Chapter 13. High Harmonic Generation Chapter 13 High Harmonic Generation High harmonic generation (HHG) is a technique for producing spatially and temporally coherent extreme-ultraviolet (EUV) light, as well as light pulses as short as hundred

More information

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions,, Ofer Kfir, Zvi Diskin, Pavel Sidorenko and Oren Cohen Department of Physics and Optical Engineering,

More information

Ionization of Rydberg atoms in Intense, Single-cycle THz field

Ionization of Rydberg atoms in Intense, Single-cycle THz field Ionization of Rydberg atoms in Intense, Single-cycle THz field 4 th year seminar of Sha Li Advisor: Bob Jones Dept. of Physics, Univ. of Virginia, Charlottesville, VA, 22904 April. 15 th, 2013 Outline

More information

Color Center Production by Femtosecond-Pulse Laser Irradiation in Fluoride Crystals

Color Center Production by Femtosecond-Pulse Laser Irradiation in Fluoride Crystals ISSN 154-66X, Laser Physics, 26, Vol. 16, No. 2, pp. 331 335. MAIK Nauka /Interperiodica (Russia), 26. Original Text Astro, Ltd., 26. NONLINEAR OPTICS AND SPECTROSCOPY Color Center Production by Femtosecond-Pulse

More information

Generation of supercontinuum light in photonic crystal bers

Generation of supercontinuum light in photonic crystal bers Generation of supercontinuum light in photonic crystal bers Koji Masuda Nonlinear Optics, Fall 2008 Abstract. I summarize the recent studies on the supercontinuum generation (SC) in photonic crystal fibers

More information

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1 ecture 4 Dispersion in single-mode fibers Material dispersion Waveguide dispersion imitations from dispersion Propagation equations Gaussian pulse broadening Bit-rate limitations Fiber losses Fiber Optical

More information

Electron dynamics in a strong laser field

Electron dynamics in a strong laser field Available online at www.worldscientificnews.com WSN 35 (2016) 1-16 EISSN 2392-2192 Electron dynamics in a strong laser field C. C. Gunatilaka, K. A. I. L. Wijewardena Gamalath* Department of Physics, University

More information