STABILITY OF A GENERALIZED MIXED TYPE ADDITIVE, QUADRATIC, CUBIC AND QUARTIC FUNCTIONAL EQUATION

Size: px
Start display at page:

Download "STABILITY OF A GENERALIZED MIXED TYPE ADDITIVE, QUADRATIC, CUBIC AND QUARTIC FUNCTIONAL EQUATION"

Transcription

1 Volume 0 009), Issue 4, Article 4, 9 pp. STABILITY OF A GENERALIZED MIXED TYPE ADDITIVE, QUADRATIC, CUBIC AND QUARTIC FUNCTIONAL EQUATION K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN DEPARTMENT OF MATHEMATICS SACRED HEART COLLEGE TIRUPATTUR TAMILNADU, INDIA. shckravi@yahoo.co.in PEDAGOGICAL DEPARTMENT E.E. SECTION OF MATHEMATICS AND INFORMATICS NATIONAL AND CAPODISTRIAN UNIVERSITY OF ATHENS 4, AGAMEMNONOS STR. AGHIA PARASKEVI ATHENS 534, GREECE. jrassias@primedu.uoa.gr URL: jrassias/ DEPARTMENT OF MATHEMATICS SACRED HEART COLLEGE TIRUPATTUR TAMILNADU, INDIA. annarun00@yahoo.co.in DEPARTMENT OF MATHEMATICS SRINIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES CHITTOOR , ANDHRA PRADESH. Rkodandan979@rediff.co.in Received 0 July, 009; accepted 0 November, 009 Communicated by S.S. Dragomir ABSTRACT. In this paper, we obtain the general solution and the generalized Hyers-Ulam- Rassias stability of the generalized mixed type of functional equation f x + ay) + f x ay) = a [f x + y) + f x y)] + a ) f x) a 4 a ) + [f y) + f y) 4f y) 4f y)]. for fixed integers a with a 0, ±. Key words and phrases: Additive function, Quadratic function, Cubic function, Quartic function, Generalized Hyers-Ulam- Rassias stability, Ulam-Gavruta-Rassias stability, J.M. Rassias stability. 000 Mathematics Subject Classification. 39B5, 39B

2 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN. INTRODUCTION S.M. Ulam [3] is the pioneer of the stability problem in functional equations. In 940, while he was delivering a talk before the Mathematics Club of the University of Wisconsin, he discussed a number of unsolved problems. Among them was the following question concerning the stability of homomorphisms: "Let G be group and H be a metric group with metric d, ). Given ɛ > 0 does there exist a δ > 0 such that if a function f : G H satisfies d fxy), fx)fy)) < δ for all x, y G, then there exists a homomorphism a : G H with d fx), ax)) < ε for all x G." In 94, D.H. Hyers [] gave the first affirmative partial answer to the question of Ulam for Banach spaces. He proved the following celebrated theorem. Theorem. []). Let X, Y be Banach spaces and let f : X Y be a mapping satisfying.) f x + y) f x) f y) ε for all x, y X. Then the limit f n x).) ax) = lim n n exists for all x X and a : X Y is the unique additive mapping satisfying.3) f x) a x) ε for all x X. In 950, Aoki [] generalized the Hyers theorem for additive mappings. In 978, Th.M. Rassias [] provided a generalized version of the Hyers theorem which permitted the Cauchy difference to become unbounded. He proved the following: Theorem. []). Let X be a normed vector space and Y be a Banach space. If a function f : X Y satisfies the inequality.4) f x + y) f x) f y) θ x p + y p ) for all x, y X, where θ and p are constants with θ > 0 and p <, then the limit f n x).5) T x) = lim n n exists for all x X and T : X Y is the unique additive mapping which satisfies.) f x) T x) θ p x p for all x X. If p < 0, then inequality.4) holds for x, y 0 and.) for x 0. Also if for each x X the function ftx) is continuous in t R, then T is linear. It was shown by Z. Gajda [9], as well as Th.M. Rassias and P. Semrl [7] that one cannot prove a Th.M. Rassias type theorem when p =. The counter examples of Z. Gajda, as well as of Th.M. Rassias and P. Semrl [7] have stimulated several mathematicians to invent new definitions of approximately additive or approximately linear mappings; P. Gavruta [0] and S.M. Jung [7] among others have studied the Hyers-Ulam-Rassias stability of functional equations. The inequality.4) that was introduced by Th.M. Rassias [] provided much J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

3 STABILITY OF GENERALIZED MIXED TYPE 3 influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as the Hyers-Ulam-Rassias stability of functions. In 98, J.M. Rassias [4] following the spirit of the approach of Th.M. Rassias [] for the unbounded Cauchy difference proved a similar stability theorem in which he replaced the factor x p + y p by x p y q for p, q R with p + q. Theorem.3 [4]). Let X be a real normed linear space and Y be a real completed normed linear space. Assume that f : X Y is an approximately additive mapping for which there exists constants θ > 0 and p, q R such that r = p + q and f satisfies the inequality.7) f x + y) f x) f y) θ x p y q for all x, y X. Then the limit f n x).8) Lx) = lim n n exists for all x X and L : X Y is the unique additive mapping which satisfies θ.9) fx) Lx) r x r for all x X. If, in addition f : X Y is a mapping such that the transformation t ftx) is continuous in t R for each fixed x X, then L is an R linear mapping. However, the case r = in inequality.9) is singular. A counter example has been given by P. Gavruta []. The above-mentioned stability involving a product of different powers of norms was called Ulam-Gavruta-Rassias stability by M.A. Sibaha et al., [30], as well as by K. Ravi and M. Arunkumar [8]. This stability result was also called the Hyers-Ulam-Rassias stability involving a product of different powers of norms by Park [3]. In 994, a generalization of Th.M. Rassias theorem and J.M. Rassias theorem was obtained by P. Gavruta [0], who replaced the factors θ x p + y p ) and θ x p y p ) by a general control function ϕx, y). In the past few years several mathematicians have published various generalizations and applications of Hyers- Ulam- Rassias stability to a number of functional equations and mappings see [4, 5, 3, 8, 9]). Very recently, J.M. Rassias [9] in the inequality.7) replaced the bound by a mixed one involving the product and sum of powers of norms, that is, θ x p y p + x p + y p )}. The functional equation.0) f x + y) + f x y) = f x) + f y) is said to be a quadratic functional equation because the quadratic function fx) = ax is a solution of the functional equation.0). A quadratic functional equation was used to characterize inner product spaces [, 0]. It is well known that a function f is a solution of.0) if and only if there exists a unique symmetric biadditive function B such that fx) = Bx, x) for all x see [0]). The biadditive function B is given by.) B x, y) = [f x + y) + f x y)]. 4 The functional equation.) f x + y) + f x y) = f x + y) + f x y) + f x) is called a cubic functional equation, because the cubic function fx) = cx 3 is a solution of the equation.). The general solution and the generalized Hyers-Ulam-Rassias stability for the functional equation.) was discussed by K.W. Jun and H.M. Kim [4]. They proved that a function f between real vector spaces X and Y is a solution of.) if and only if there exists J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

4 4 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN a unique function C : X X X Y such that fx) = Cx, x, x) for all x X and C is symmetric for each fixed one variable and is additive for fixed two variables. The quartic functional equation.3) f x + y) + f x y) f x) = 4 [f x + y) + f x y)] + 4f y) was introduced by J.M. Rassias [5]. Later S.H. Lee et al., [] remodified J.M. Rassias s equation and obtained a new quartic functional equation of the form.4) f x + y) + f x y) = 4 [f x + y) + f x y)] + 4f x) f y) and discussed its general solution. In fact S.H. Lee et al., [] proved that a function f between vector spaces X and Y is a solution of.4) if and only if there exists a unique symmetric multi - additive function Q : X X X X Y such that fx) = Qx, x, x, x) for all x X. It is easy to show that the function fx) = kx 4 is the solution of.3) and.4). A function.5) fx) = Qx, x, x 3, x 4 ) is called symmetric multi additive if Q is additive with respect to each variable x i, i =,, 3, 4 in.5). A function f is defined as fx) = βx) αx) where αx) = fx) fx), βx) = fx) 4fx), further, f satisfies fx) = 4fx) and fx) = fx) is said to be a quadratic - quartic function. K.W. Jun and H.M. Kim [] introduced the following generalized quadratic and additive type functional equation n ).) f x i + n ) i= n f x i ) = i= i<j n f x i + x j ) in the class of functions between real vector spaces. For n = 3, Pl. Kannappan proved that a function f satisfies the functional equation.) if and only if there exists a symmetric biadditive function A and an additive function B such that fx) = Bx, x) + Ax) for all x see [0]). The Hyers-Ulam stability for the equation.) when n = 3 was proved by S.M. Jung [8]. The Hyers-Ulam-Rassias stability for the equation.) when n = 4 was also investigated by I.S. Chang et al., [3]. The general solution and the generalized Hyers-Ulam stability for the quadratic and additive type functional equation.7) f x + ay) + af x y) = f x ay) + af x + y) for any positive integer a with a, 0, was discussed by K.W. Jun and H.M. Kim [5]. Recently A. Najati and M.B. Moghimi [] investigated the generalized Hyers-Ulam-Rassias stability for a quadratic and additive type functional equation of the form.8) f x + y) + f x y) = f x + y) + f x y) + f x) 4f x) Very recently, the authors [, 7] investigated a mixed type functional equation of cubic and quartic type and obtained its general solution. The stability of generalized mixed type functional equations of the form.9) f x + ky) + f x ky) = k [f x + y) + f x y)] + k ) f x) J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

5 STABILITY OF GENERALIZED MIXED TYPE 5 for fixed integers k with k 0, ± in quasi -Banach spaces was investigated by M. Eshaghi Gordji and H. Khodaie [8]. The mixed type functional equation.9) is additive, quadratic and cubic. In this paper, the authors introduce a mixed type functional equation of the form.0) f x + ay) + f x ay) = a [f x + y) + f x y)] + a ) f x) + a4 a [f y) + f y) 4f y) 4f y)] which is additive, quadratic, cubic and quartic and obtain its general solution and generalized Hyers-Ulam-Rassias stability for fixed integers a with a 0, ±.. GENERAL SOLUTION In this section, we present the general solution of the functional equation.0). Throughout this section let E and E be real vector spaces. Theorem.. Let f : E E be a function satisfying.0) for all x, y E. If f is even then f is quadratic - quartic. Proof. Let f be an even function, i.e., f x) = fx). Then equation.0) becomes.) f x + ay) + f x ay) = a [f x + y) + f x y)] + a ) f x) + a4 a for all x, y E. Interchanging x and y in.) and using the evenness of f, we get.) f ax + y) + f ax y) = a [f x + y) + f x y)] + a ) f y) + a4 a [f y) 4f y)] [f x) 4f x)] for all x, y E. Setting x, y) as 0, 0) in.), we obtain f0) = 0. Replacing y by x + y in.) and using the evenness of f, we have.3) f a + ) x + y) + f a ) x y) = a [f x + y) + f y)] + a ) f x + y) + a4 a [f x) 4f x)] for all x, y E. Replacing y by x y in.), we obtain.4) f a + ) x y) + f a ) x + y) = a [f x y) + f y)] + a ) f x y) + a4 a [f x) 4f x)] for all x, y E. Adding.3) and.4), we get.5) f a + ) x + y) + f a ) x y) + f a + ) x y) + f a ) x + y) = a [f x + y) + f x y) + f y)] + a ) [f x + y) + f x y)] + a4 a [f x) 8f x)] J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

6 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN for all x, y E. Replacing y by ax + y in.), we obtain.) f ax + y) + f y) = a [f a + ) x + y) + f a) x y)] + a ) f ax + y) + a4 a [f x) 4f x)] for all x, y E. Replacing y by ax y in.3), we get.7) f ax y) + f y) = a [f a + ) x y) + f a) x + y)] + a ) f ax y) + a4 a [f x) 4f x)] for all x, y E. Adding.) and.7), we obtain.8) f ax + y) + f ax y) + f y) = a [f a + ) x + y) + f a + ) x y) + f a ) x + y) + f a ) x y)] + a ) [f ax + y) + f ax y)] + a4 a [f x) 4f x)] 3 for all x, y E. Using.5) in.8), we arrive at.9) f ax + y) + f ax y) + f y) = a 4 [f x + y) + f x y)] + a 4 f y) + a a ) [f x + y) + f x y)] + a a 4 a ) 3 for all x, y E. Replacing x by x in.), we get [f x) 4f x)] + a ) [f ax + y) + f ax y)] + a4 a 3 [f x) f x)].0) f ax + y) + f ax y) = a [f x + y) + f x y)] + a ) f y) + a4 a [f 4x) 4f x)] for all x, y E. Using.0) in.9), we obtain.) a [f x+y)+f x y)]+ a ) f y)+ a4 a [f 4x) 4f x)]+f y) = a 4 [f x + y) + f x y)] + a a ) [f x + y) + f x y)] + a a 4 a ) 3 [f x) 4f x)] + a ) [f ax + y) + f ax y)] + a4 a 3 [f x) 4f x)] + a 4 f y) J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

7 STABILITY OF GENERALIZED MIXED TYPE 7 for all x, y E. Using.) in.), we get.) a [f x + y) + f x y)] + a ) f y) + a4 a [f 4x) 4f x)] + f y) = a 4 [f x + y) + f x y)] + a a ) [f x + y) + f x y)] + a a 4 a ) [f x) 4f x)] + a4 a [f x) 4f x)] + a 4 f y) a ) [ a f x + y) + f x y)) + a ) ] f y) + a4 a [f x) 4f x)] for all x, y E. Letting y = 0 in.), we obtain.3) f ax) = a f x) + a4 a [f x) 4f x)] for all x, y E. Replacing y by x in.), we get.4) f a + ) x)+f a ) x) = a f x)+ a ) f x)+ a4 a [f x) 4f x)] for all x E. Replacing y by ax in.), we obtain.5) f ax) = a [f + a) x) + f a) x)] + a ) f ax) + a4 a [f x) 4f x)] for all x E. Letting y = 0 in.0), we get.) f ax) = a f x) + a4 a [f 4x) 4f x)] for all x E. From.5) and.), we arrive at.7) a f x) + a4 a [f 4x) 4f x)] = a [f + a) x) + f a) x)] + a ) f ax) + a4 a [f x) 4f x)] for all x E. Using.3) and.4) in.7), we obtain.8) a f x) + a4 a [f 4x) 4f x)] = a [ a f x) + a ) f x) + a4 a ] [f x) 4f x)] ] + a ) [ a f x) + a4 a [f x) 4f x)] for all x E. Comparing.) and.8), we arrive at + a4 a [f x) 4f x)].9) f x + y) + f x y) = 4 [f x + y) + f x y)] 8f x) + f x) f y) for all x, y E. Replacing y by y in.9), we get.0) f x + y)+f x y) = 4 [f x + y) + f x y)] 8f x)+f x) f y) J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

8 8 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN for all x, y E. Interchanging x and y in.9) and using the evenness of f, we obtain.) f x + y) + f x y) = 4 [f x + y) + f x y)] 8f y) + f y) f x) for all x, y E. Using.) in.0), we get.) f x + y) + f x y) = [f x + y) + f x y)] + f y) 3f y) + f x) 3f x) for all x, y E. Rearranging.), we have.3) f x + y) f x + y)} + f x y) f x y)} for all x, y E. Let α : E E defined by.4) α x) = f x) f x), x E. Applying.4) in.3), we arrive at = f x) f x)} + f y) f y)}.5) α x + y) + α x y) = α x) + α y) x E. Hence α : E E is quadratic mapping. Since α is quadratic, we have α x) = 4α x) for all x E. Then.) f 4x) = 0f x) 4f x) for all x E. Replacing x, y) by x, y) in.9), we get.7) f x + y)) + f x y)) for all x, y E. Using.) in.7), we obtain.8) f x + y)) + f x y)) = 4 [f x + y)) + f x y))] 8f x) + f 4x) f y) = 4 [f x + y)) + f x y))] + 3 f x) 4f x)} f y) for all x, y E. Multiplying.9) by 4, we arrive at.9) 4f x + y) + 4f x y) for all x, y E. Subtracting.9) from.8), we get = [f x + y) + f x y)] + 8 f x) 4f x)} 4f y).30) f x + y)) 4f x + y)} + f x y)) 4f x y)} = 4 f x + y)) 4f x + y)} + 4 f x y)) 4f x y)} for all x, y E. Let β : E E be defined by.3) β x) = f x) 4f x), x E. Applying.30) in.3), we arrive at + 4 f x) 4f x)} f y) 4f y)}.3) β x + y) + β x y) = 4 [β x + y) + β x y)] + 4β x) β y) for all x, y E. Hence β : E E is quartic mapping. On the other hand, we have β x) α x).33) f x) = x E. J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

9 STABILITY OF GENERALIZED MIXED TYPE 9 This means that f is quadratic-quartic function. This completes the proof of the theorem. Theorem.. Let f : E E be a function satisfying.0) for all x, y E. If f is odd then f is additive - cubic. Proof. Let f be an odd function i.e., f x) = f x)). Then equation.0) becomes.34) f x + ay) + f x ay) = a [f x + y) + f x y)] + a ) f x) for all x, y E. By Lemma. of [3], f is additive-cubic. Theorem.3. Let f : E E be a function satisfying.0) for all x, y E if and only if there exists functions A : E E, B : E E E, C : E E E E and D : E E E E E such that.35) f x) = A x) + B x, x) + C x, x, x) + D x, x, x, x) for all x E, where A is additive, B is symmetric bi-additive, C is symmetric for each fixed one variable and is additive for fixed two variables and D is symmetric multi-additive. Proof. Let f : E E be a function satisfying.0). We decompose f into even and odd parts by setting f e x) = f x) + f x)}, f o x) = f x) f x)} for all x E. It is clear that f x) = f e x) + f o x) for all x E. It is easy to show that the functions f e and f o satisfy.0). Hence by Theorem. and., we see that the function f e is quadratic-quartic and f o is additive-cubic, respectively. Thus there exist a symmetric bi-additive function B : E E E and a symmetric multi-additive function D : E E E E E such that f e x) = B x, x) + D x, x, x, x) for all x E, and the function A : E E is additive and C : E E E E such that f o x) = A x) + C x, x, x), where C is symmetric for each fixed one variable and is additive for fixed two variables. Hence we get.35) for all x E. Conversely let f x) = A x) + B x, x) + C x, x, x) + D x, x, x, x) for all x E, where A is additive, B is symmetric bi-additive, C is symmetric for each fixed one variable and is additive for fixed two variables and D is symmetric multi-additive. Then it is easy to show that f satisfies.0). 3. STABILITY OF THE FUNCTIONAL EQUATION.0) In this section, we investigate the generalized Hyers-Ulam-Rassias stability problem for the functional equation.0). Throughout this section, let E be a real normed space and E be a Banach space. Define a difference operator Df : E E E by Df x, y) = f x + ay) + f x ay) a [f x + y) + f x y)] a ) f x) for all x, y E. a4 a [f y) + f y) 4f y) 4f y)] Theorem 3.. Let φ b : E E [0, ) be a function such that φ b n x, n y) φ b n x, n y) 3.) converges and lim = 0 4 n n 4 n n=0 for all x, y E and let f : E E be an even function which satisfies the inequality 3.) Df x, y) φ b x, y) J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

10 0 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN for all x, y E. Then there exists a unique quadratic function B : E E such that 3.3) f x) f x) B x) Φ b k x ) 4 4 k for all x E, where the mapping Bx) and Φ b k x) are defined by 3.4) B x) = lim f n+ x ) f n x) } n 4 n 3.5) Φ b k x ) = for all x E. [ a ) φ a 4 a b 0, k x ) + a φ b k x, k x ) + φ b 0, k+ x ) + φ b k ax, k x ) ] Proof. Using the evenness of f, from 3.) we get 3.) f x + ay) + f x ay) a [f x + y) + f x y)] a ) f x) a4 a ) [f y) 8f y)] φ b x, y) for all x, y E. Interchanging x and y in 3.), we obtain 3.7) f ax + y) + f ax y) a [f x + y) + f x y)] a ) f y) a4 a ) [f x) 8f x)] φ b y, x) for all x, y E. Letting y = 0 in 3.7), we get 3.8) f ax) a f x) a4 a ) [f x) 8f x)] φ b 0, x) for all x E. Putting y = x in 3.7), we obtain 3.9) f a + ) x) + f a ) x) a f x) a ) f x) a4 a ) [f x) 8f x)] φ b x, x) for all x E. Replacing x by x in 3.8), we get 3.0) f ax) a f x) a4 a ) [f 4x) 8f x)] φ b 0, x) for all x E. Setting y by ax in 3.7), we obtain 3.) f ax) a [f + a) x) + f a) x)] a ) f ax) a4 a ) [f x) 8f x)] φ b ax, x) J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

11 STABILITY OF GENERALIZED MIXED TYPE for all x E. Multiplying 3.8), 3.9), 3.0) and 3.) by a ), a, and respectively, we have a 4 a ) f 4x) 0f x) + 4f x) = 4 a ) f ax) 4a a ) f x) } a ) a 4 a ) [f x) 8f x)] + a f a + ) x) + a f a ) x) a 4 f x) 4a a ) } f x) a a 4 a ) [f x) 8f x)] + f ax) +a f x) + } a4 a ) [f 4x) 8f x)] + f ax) a [f + a) x) + f a) x)] 4 a ) f ax) a4 a ) [f x) 8f x)]} a ) φ b 0, x) + a φ b x, x) + φ b 0, x) + φ b ax, x) for all x E. Hence from the above inequality, we get 3.) f 4x) 0f x) + 4f x) [ ) a φ a 4 a b 0, x) + a φ b x, x) + φ b 0, x) + φ b ax, x) ] ) for all x E. From 3.), we arrive at 3.3) f 4x) 0f x) + 4f x) Φ b x), where Φ b x) = [ ) a φ a 4 a b 0, x) + a φ b x, x) + φ b 0, x) + φ b ax, x) ] for all x E. It is easy to see from 3.3) that 3.4) f 4x) f x) 4 f x) f x)} Φ b x) for all x E. Using.4) in 3.4), we obtain 3.5) α x) 4α x) Φ b x) for all x E. From 3.5), we have 3.) α x) α x) 4 Φ b x) 4 for all x E. Now replacing x by x and dividing by 4 in 3.), we obtain 3.7) α x) α x) 4 4 Φ b x) 4 J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

12 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN for all x E. From 3.) and 3.7), we arrive at α x) α x) 4 α x) α x) α x) 3.8) α x) 4 [ Φ b x) + Φ ] b x) 4 4 for all x E. In general for any positive integer n, we get α n x) α x) 4 n n Φ b k x ) 3.9) 4 4 k Φ b k x ) 4 4 k for all x E. In order to prove the convergence of the sequence α n x) }, replace x by m x 4 n and divide by 4 m in 3.9). For any m, n > 0, we have α n+m x) α m x) 4 n+m 4 m = α n m x) 4 m α m x) 4 n n Φ b k+m x ) 4 4 k+m Φ b k+m x ) 4 4 k+m } α n x) 4 n 0 as m for all x E. Hence the sequence is a Cauchy sequence. Since E is complete, there exists a quadratic mapping B : E E such that B x) = lim n α n x) 4 n x E. Letting n in 3.9) and using.4), we see that 3.3) holds for all x E. To prove that B satisfies.0), replace x, y) by n x, n y) and divide by 4 n in 3.). We obtain 4 n f n x + ay)) + f n x ay)) a [f n x + y)) + f n x y))] a ) f n x) a4 a ) [f n y)) + f n y))] a4 a ) [ 4f n y) 4f n y))] φ n x, n y) 4 n for all x, y E. Letting n in the above inequality, we see that B x + ay) + B x ay) a [B x + y) + B x y)] a ) B x) a4 a ) [B y) + B y) 4B y) 4Bf y)] 0, J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

13 STABILITY OF GENERALIZED MIXED TYPE 3 which gives B x + ay) + B x ay) = a [B x + y) + B x y)] + a ) B x) + a4 a ) [B y) + B y) 4B y) 4Bf y)] for all x, y E. Hence B satisfies.0). To prove that B is unique, let B be another quadratic function satisfying.0) and 3.3). We have B x) B x) = 4 n B n x) B n x) 4 B n n x) α n x) + α n x) B n x) } Φ b k x ) 4 n 4 k 0 as n for all x E. Hence B is unique. This completes the proof of the theorem. The following corollary is an immediate consequence of Theorem 3. concerning the stability of.0). Corollary 3.. Let ε, p be nonnegative real numbers. Suppose that an even function f : E E satisfies the inequality ε x p + y p ), 0 p < ; ε, 0 p < ; 3.0) Df x, y) ε x p y p, 0 p < ; ε x p y p + x p + y p}), for all x, y E. Then there exists a unique quadratic function B : E E such that λ x p, 4 p 0λ, 3.) f x) f x) B x) where λ = ε 4 + a + a p ) + p )} a 4 a, λ = λ 3 x p 4 p, λ 4 x p 4 p, ε a 4 a, λ 3 = ε a + a p } and λ a 4 a 4 = ε 4 + 4a + a p ) + a p ) + p )} a 4 a for all x E. Theorem 3.3. Let φ d : E E [0, ) be a function such that φ d n x, n y) φ d n x, n y) 3.) converges and lim = 0 n n n n=0 for all x, y E and let f : E E be an even function which satisfies the inequality 3.3) Df x, y) φ d x, y) J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

14 4 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN for all x, y E. Then there exists a unique quartic function D : E E such that 3.4) f x) 4f x) D x) Φ d k x ) k for all x E, where the mapping Dx) and Φ d k x) are defined by 3.5) D x) = lim f n+ x ) 4f n x) }, n n 3.) Φ d k x ) = for all x E. [ a ) φ a 4 a d 0, k x ) + a φ d k x, k x ) Proof. Along similar lines to those in the proof of Theorem 3., we have 3.7) f 4x) 0f x) + 4f x) Φ d x), where Φ d x) = + φ d 0, k+ x ) + φ d k ax, k x ) ] [ ) a φ a 4 a d 0, x) + a φ d x, x) + φ d 0, x) + φ d ax, x) ] for all x E. It is easy to see from 3.7) that 3.8) f 4x) 4f x) f x) 4f x)} Φ d x) for all x E. Using.3) in 3.8), we obtain 3.9) β x) β x) Φ d x) for all x E. From 3.9), we have 3.30) β x) β x) Φ d x) for all x E. Now replacing x by x and dividing by in 3.30), we obtain 3.3) β x) β x) Φ d x) for all x E. From 3.30) and 3.3), we arrive at β x) β x) β x) β x) + β x) 3.3) β x) [ Φ d x) + Φ ] d x) for all x E. In general for any positive integer n, we get β n x) β x) n n Φ d k x ) 3.33) k Φ d k x ) k J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

15 STABILITY OF GENERALIZED MIXED TYPE 5 for all x E. In order to prove the convergence of the sequence β n x) }, replace x by m x n and divide by m in 3.33). For any m, n > 0, we then have β n+m x) β m x) n+m m = β n m x) m β m x) n n Φ d k+m x ) k+m Φ d k+m x ) k+m } β n x) n 0 as m for all x E. Hence the sequence is a Cauchy sequence. Since E is complete, there exists a quartic mapping D : E E such that β n x) D x) = lim x E n n. Letting n in 3.33) and using.3) we see that 3.4) holds for all x E. The proof that D satisfies.0) and is unique is similar to that for Theorem 3.. The following corollary is an immediate consequence of Theorem 3.3 concerning the stability of.0). Corollary 3.4. Let ε, p be nonnegative real numbers. Suppose that an even function f : E E satisfies the inequality ε x p + y p ), 0 p < 4; ε, 3.34) Df x, y) ε x p y p, 0 p < ; ε x p y p + x p + y p}), 0 p < for all x, y E. Then there exists a unique quartic function D : E E such that λ x p p, λ, 3.35) f x) 4f x) D x) λ 3 x p p, λ 4 x p p, for all x E, where λ i i =,, 3, 4) are given in Corollary 3.. Theorem 3.5. Let φ : E E [0, ) be a function such that φ b n x, n y) φ d n x, n y) 3.3), converges 4 n n and n=0 φ b n x, n y) φ d n x, n y) 3.37) lim = 0 = lim n 4 n n n n=0 J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

16 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN for all x, y E. Suppose that an even function f : E E satisfies the inequalities 3.) and 3.3) for all x, y E. Then there exists a unique quadratic function B : E E and a unique quartic function D : E E such that 3.38) f x) B x) D x) Φ b k x ) + Φ d k x ) } 4 4 k k for all x E, where Φ b k x ) and Φ d k x ) are defined in 3.5) and 3.), respectively for all x E. Proof. By Theorems 3. and 3.3, there exists a unique quadratic function B : E E and a unique quartic function D : E E such that 3.39) f x) f x) B x) 4 Φ b k x ) 4 k and 3.40) f x) 4f x) D x) Φ d k x ) k for all x E. Now from 3.39) and 3.40), one can see that f x) + B x) D x) = f x) f x) + + B } x) f x) 4f x) + D } x) f x) f x) B x) + f x) 4f x) D x) } Φ b k x ) + Φ d k x ) } 4 4 k k for all x E. Thus we obtain 3.38) by defining B x) = B x) and D x) = D x), where Φ b k x ) and Φ d k x ) are defined in 3.5) and 3.), respectively for all X E. The following corollary is the immediate consequence of Theorem 3.5 concerning the stability of.0). Corollary 3.. Let ɛ, p be nonnegative real numbers. Suppose an even function f : E E satisfies the inequality ε x p + y p ), 0 p < ; 3.4) Df x, y) ε, ε x p y p, 0 p < ; ε x p y p + x p + y p}), 0 p < J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

17 STABILITY OF GENERALIZED MIXED TYPE 7 for all x, y E. Then there exists a unique quadratic function B : E E and a unique quartic function D : E E such that λ x p } + 4 p, p 3.4) f x) B x) D x) λ λ 3 x p λ 4 x p 4 p + p }, 4 p + p }, for all x E, where λ i i =,, 3, 4) are given in Corollary 3.. Theorem 3.7. Let φ a : E E [0, ) be a function such that φ a n x, n y) φ a n x, n y) 3.43) converges and lim = 0 n n n n=0 for all x, y E and let f : E E be an odd function with f0) = 0 which satisfies the inequality 3.44) Df x, y) φ a x, y) for all x, y E. Then there exists a unique additive function A : E E such that 3.45) f x) 8f x) A x) Φ a k x ) k for all x E, where the mapping Ax) and Φ a k x) are defined by 3.4) A x) = lim f n+ x ) 8f n x) } n n 3.47) Φ a k x ) = for all x E. [ ) 5 4a φ a 4 a a k x, k x ) + a φ a k+ x, k+ x ) + a φ a k+ x, k x ) + 4 a ) φ a k x, k+ x ) + φ a k x, k 3x ) + φ a k + a) x, k x ) +φ a k a) x, k x ) + φ a k + a) x, k x ) + φ a k a) x, k x )] Proof. Using the oddness of f and from 3.44), we get 3.48) f x + ay) + f x ay) a [f x + y) + f x y)] a ) f x) φ a x, y) for all x E. Replacing y by x in 3.48), we obtain 3.49) f + a) x) + f a) x) a f x) a ) f x) φa x, x) for all x E. Replacing x by x in 3.49), we get 3.50) f + a) x) + f a) x) a f 4x) a ) f x) φa x, x) for all x E. Again replacing x, y) by x, x) in 3.48), we obtain 3.5) f + a) x) + f a) x) a f 3x) a f x) a ) f x) φ a x, x) J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

18 8 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN for all x E. Replacing y by x in 3.48), we get 3.5) f + a) x) + f a) x) a f 3x) + a f x) a ) f x) φ a x, x) for all x E. Replacing y by 3x in 3.48), we obtain 3.53) f + 3a) x) + f 3a) x) a f 4x) + a f x) a ) f x) φ a x, 3x) for all x E. Replacing x, y) by + a)x, x) in 3.48), we get 3.54) f + a) x) + f x) a f + a) x) a f ax) a ) f + a) x) φ a + a) x, x) for all x E. Again replacing x, y) by a)x, x) in 3.48), we obtain 3.55) f a) x) + f x) a f a) x) + a f ax) a ) f a) x) φ a a) x, x) for all x E. Adding 3.54) and 3.55), we arrive at 3.5) f + a) x) + f a) x) + f x) a f + a) x) a f a) x) a ) f + a) x) a ) f a) x) for all x E. Replacing x, y) by + a)x, x) in 3.48), we get φ a + a) x, x) + φ a a) x, x) 3.57) f + 3a) x) + f + a) x) a f + a) x) a f ax) a ) f + a) x) φa + a) x, x) for all x E. Again replacing x, y) by a)x, x) in 3.48), we obtain 3.58) f 3a) x) + f a) x) a f a) x) + a f ax) a ) f a) x) φa a) x, x) for all x E. Adding 3.57) and 3.58), we arrive at 3.59) f + 3a) x) + f 3a) x) + f + a) x) + f a) x) a f + a) x) a f a) x) a ) f + a) x) a ) f a) x) φ a + a) x, x) + φ a a) x, x) J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

19 STABILITY OF GENERALIZED MIXED TYPE 9 for all x E. Now multiplying 3.49) by a ), 3.5) by a and adding 3.5) and 3.5), we have a 4 a ) f 3x) 4f x) + 5f x) = a ) f + a) x) + a ) f a) x) a a ) f x) 4 a ) f x) } + a f + a) x) + a f a) x) a 4 f 3x) a 4 f x) a a ) f x) } + f + a) x) f a) x) + a f 3x) a f x) + a ) f x) } + f + a) x) + f a) x) + f x) a f + a) x) a f a) x) a ) f + a) x) a ) f a) x)} a ) φ a x, x) + a φ a x, x) + φ a x, x) + φ a + a) x, x) + φ a a) x, x) for all x E. Hence from the above inequality, we get 3.0) f 3x) 4f x) + 5f x) [ ) a φ a 4 a a x, x) + a φ a x, x) ) +φ a x, x) + φ a + a) x, x) + φ a a) x, x)] for all x E. Now multiplying 3.50) by a, 3.5) by a ) and adding 3.49), 3.53) and 3.59), we have a 4 a ) f 4x) f 3x) f x) + f x) = f + a) x) f a) x) + a f x) + a ) f x)} + a f + a) x) + a f a) x) a 4 f 4x) a a ) f x) } + a ) f + a) x) + a ) f a) x) a a ) f 3x) + a a ) f x) 4 a ) f x) } + f + 3a) x) f 3a) x) + a f 4x) a f x) + a ) f x) } + f + 3a) x) + f 3a) x) + f + a) x) + f a) x) a f + a) x) a f a) x) a ) f + a) x) a ) f a) x) } φ a x, x) + a φ a x, x) + a ) φ a x, x) + φ a x, 3x) + φ a + a) x, x) + φ a a) x, x) for all x E. Hence from the above inequality, we get 3.) f 4x) f 3x) f x) + f x) [ φa x, x) + a φ a 4 a a x, x) + a ) φ a x, x) + φ a x, 3x) ) +φ a + a) x, x) + φ a a) x, x)] J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

20 0 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN for all x E. From 3.0) and 3.), we arrive at 3.) f 4x) 0f x) + f x) = f 3x) 8f x) + 0f x) + f 4x) f 3x) f x) + f x) f 3x) 4f x) + 5f x) + f 4x) f 3x) f x) + f x) [ ) 5 4a φ a 4 a a x, x) + a φ a x, x) + a φ a x, x) ) for all x E. From 3.), we have + 4 a ) φ a x, x) + φ a x, 3x) + φ a + a) x, x) +φ a a) x, x) +φ a + a) x, x) + φ a a) x, x)] 3.3) f 4x) 0f x) + f x) Φ a x), where Φ a x) = [ ) 5 4a φ a 4 a a x, x) + a φ a x, x) + a φ a x, x) ) + 4 a ) φ a x, x) + φ a x, 3x) + φ a + a) x, x) for all x E. It is easy to see from 3.3) +φ a a) x, x) +φ a + a) x, x) + φ a a) x, x)] 3.4) f 4x) 8f x) f x) 8f x)} Φ a x) for all x E. Define a mapping γ : E E by 3.5) γ x) = f x) 8f x) for all x E. Using 3.5) in 3.4), we obtain 3.) γ x) γ x) Φ a x) for all x E. From 3.), we have 3.7) γ x) γ x) Φ a x) for all x E. Now replacing x by x and dividing by in 3.7), we obtain 3.8) γ x) γ x) Φ a x) for all x E. From 3.7) and 3.8), we arrive at γ x) γ x) γ x) γ x) + γ x) 3.9) γ x) [ Φ a x) + Φ ] a x) for all x E. In general for any positive integer n, we get γ n x) γ x) n n Φ a k x ) 3.70) k Φ a k x ) k J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

21 STABILITY OF GENERALIZED MIXED TYPE for all x E. In order to prove the convergence of the sequence γ n x) }, replace x by m x n and divide by m in 3.70). Then for any m, n > 0, we have γ n+m x) γ m x) n+m m = γ n m x) m γ m x) n n Φ a k+m x ) k+m Φ a k+m x ) k+m } γ n x) n 0 as m for all x E. Hence the sequence is a Cauchy sequence. Since E is complete, there exists a additive mapping A : E E such that γ n x) A x) = lim x E n n. Letting n in 3.70) and using 3.5) we see that 3.45) holds for all x E. The proof that A satisfies.0) and is unique is similar to that of Theorem 3.. The following corollary is the immediate consequence of Theorem 3.7 concerning the stability of.0). Corollary 3.8. Let ε, p be nonnegative real numbers. Suppose that an odd function f : E E with f0) = 0 satisfies the inequality ε x p + y p ), 0 p < ; ε, 3.7) Df x, y) ε x p y p, 0 p < ; ε x p y p + x p + y p}), 0 p < for all x, y E. Then there exists a unique additive function A : E E such that λ, 3.7) f x) 8f x) A x) where λ 5 = λ 5 x p p, λ 7 x p p, λ 8 x p p, ε a 4 a 8a + p a + 4 ) + 3 p + + a) p + a) p + + a) p + a) p }, λ = ε 3a ), a 4 a ε λ 7 = 5 4a + p a + 4 p ) + 3 p + + a) p a 4 a + a) p + + a) p + a) p } J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

22 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN and λ 8 = for all x E. ε a 4 a a + p 3a + 4 ) + 3 p + + a) p + a) p + + a) p + a) p + 4 p ) +3 p + + a) p + a) p + + a) p + a) p } Theorem 3.9. Let φ c : E E [0, ) be a function such that φ c n x, n y) φ c n x, n y) 3.73) converges and lim = 0 8 n n 8 n n=0 for all x, y E and let f : E E be an odd function with f0) = 0 that satisfies the inequality 3.74) Df x, y) φ c x, y) for all x, y E. Then there exists a unique cubic function C : E E such that 3.75) f x) f x) C x) Φ c k x ) 8 8 k for all x E, where the mapping Cx) and Φ c k x) are defined by 3.7) C x) = lim f n+ x ) f n x) } n 8 n 3.77) Φ c k x ) [ = ) 5 4a φ a 4 a c k x, k x ) + a φ c k+ x, k+ x ) +a φ c k+ x, k x ) + 4 a ) φ c k x, k+ x ) + φ c k x, k 3x ) for all x E. + φ c k + a) x, k x ) +φ c k a) x, k x ) +φ c k + a) x, k x ) + φ c k a) x, k x )] Proof. Following along similar lines to those in the proof of Theorem 3.7, we have 3.78) f 4x) 0f x) + f x) Φ c x), where Φ c x) = [ ) 5 4a φ a 4 a c x, x) + a φ c x, x) + a φ c x, x) ) + 4 a ) φ c x, x) + φ c x, 3x) + φ c + a) x, x) for all x E. It is easy to see from 3.78) that + φ c a) x, x) +φ c + a) x, x) + φ c a) x, x)] 3.79) f 4x) f x) 8 f x) f x)} Φ c x) for all x E. Define a mapping δ : E E by 3.80) δ x) = f x) f x) for all x E. Using 3.80) in 3.79), we obtain 3.8) δ x) 8δ x) Φ c x) J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

23 STABILITY OF GENERALIZED MIXED TYPE 3 for all x E. From 3.8), we have 3.8) δ x) δ x) 8 Φ c x) 8 for all x E. Now replacing x by x and dividing by 8 in 3.8), we obtain 3.83) δ x) δ x) 8 8 Φ c x) 8 for all x E. From 3.8) and 3.83), we arrive at δ x) δ x) 8 δ x) δ x) δ x) 3.84) δ x) 8 [ Φ c x) + Φ ] c x) 8 8 for all x E. In general for any positive integer n, we get 3.85) δ n x) δ x) 8 n 8 8 n Φ c k x ) 8 k Φ c k x ) for all x E. In order to prove the convergence of the sequence δ n x) }, replace x by m x 8 n and divide by 8 m in 3.85). Then for any m, n > 0, we have δ n+m x) δ m x) 8 n+m 8 m = δ n m x) 8 m δ m x) 8 n n Φ c k+m x ) 8 8 k+m Φ c k+m x ) 8 8 k+m } δ n x) 8 n 8 k 0 as m for all x E. Hence the sequence is a Cauchy sequence. Since E is complete, there exists a cubic mapping C : E E such that C x) = lim n δ n x) 8 n x E. Letting n in 3.84) and using 3.80) we see that 3.75) holds for all x E. The rest of the proof, which proves that C satisfies.0) and is unique, is similar to that of Theorem 3.. The following corollary is an immediate consequence of Theorem 3.9 concerning the stability of.0). J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

24 4 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN Corollary 3.0. Let ε, p be nonnegative real numbers. Suppose that an odd function f : E E with f0) = 0 satisfies the inequality ε x p + y p ), 0 p < 3; 3.8) Df x, y) ε, ε x p y p, 0 p < 3 ; ε x p y p + x p + y p}), 0 p < 3 for all x, y E. Then there exists a unique cubic function C : E E such that 3.87) f x) 8f x) A x) λ 5 x p 8 p, λ 7, λ 7 x p 8 p, λ 8 x p 8 p, for all x E, where λ i i = 5,, 7, 8) are given in Corollary 3.8. Theorem 3.. Let φ : E E [0, ) be a function such that 3.88) and n=0 φ a n x, n y) n, n=0 φ c n x, n y) 8 n converges φ a n x, n y) φ c n x, n y) 3.89) lim = 0 = lim n n n 8 n for all x, y E. Suppose that an odd function f : E E with f0) = 0 satisfies the inequalities 3.44) and 3.74) for all x, y E. Then there exists a unique additive function A : E E and a unique cubic function C : E E such that 3.90) f x) A x) C x) Φ a k x ) + Φ c k x ) } k 8 8 k for all x E, where Φ a k x ) and Φ c k x ) are defined by 3.47) and 3.77), respectively for all x E. Proof. By Theorems 3.7 and 3.9, there exists a unique additive function A : E E and a unique cubic function C : E E such that 3.9) f x) 8f x) A x) Φ a k x ) k and 3.9) f x) f x) C x) 8 Φ c k x ) 8 k J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

25 STABILITY OF GENERALIZED MIXED TYPE 5 for all x E. Now from 3.9) and 3.9), one can see that f x) + A x) C x) = f x) 8f x) + + A } x) f x) f x) + C } x) f x) 8f x) A x) + f x) f x) C x) } Φ a k x ) + Φ c k x ) } k 8 8 k for all x E. Thus we obtain 3.90) by defining A x) = A x) and C x) = C x), where Φ a k x ) and Φ c k x ) are defined in 3.47) and 3.77), respectively for all x E. The following corollary is an immediate consequence of Theorem 3. concerning the stability of.0). Corollary 3.. Let ε, p be nonnegative real numbers. Suppose that an odd function f : E E with f0) = 0 satisfies the inequality ε x p + y p ), 0 p < ; ε, 3.93) Df x, y) ε x p y p, 0 p < ; ε x p y p + x p + y p}), 0 p < for all x, y E. Then there exists a unique additive function A : E E and a unique cubic function C : E E such that λ 5 x p } + p 8, p 3.94) f x) A x) C x) 4λ, λ 7 x p λ 8 x p p + 8 p }, p + 8 p }, for all x E, where λ i i = 5,, 7, 8) are given in Corollary 3.8. Theorem 3.3. Let φ : E E [0, ) be a function that satisfies 3.3), 3.37), 3.88) and 3.89) for all x, y E. Suppose that a function f : E E with f0) = 0 satisfies the inequalities 3.), 3.3), 3.44) and 3.74) for all x, y E. Then there exists a unique additive function A : E E, a unique quadratic function B : E E, a unique cubic function C : E E and a unique quartic function D : E E such that 3.95) f x) A x) B x) C x) D x) Φa x) + Φ b x) + Φ c x) + Φ } d x) for all x E, where Φ a x), Φ b x), Φ c x) and Φ d x) are defined by 3.9) Φa x) = Φ a k x ) + Φ a k x ) }, k k J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

26 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN 3.97) Φb x) = 3.98) Φc x) = 4 8 Φ b k x ) 4 k + 4 Φ c k x ) 8 k + 8 Φ b k x ) }, 4 k Φ c k x ) }, 8 k 3.99) Φd x) = Φ d k x ) + k Φ d k x ) }, k respectively for all x E. Proof. Let f e x) = f x) + f x)} for all x E. Then f e 0) = 0, f e x) = f e x). Hence Df e x, y) = Df x, y) + Df x, y) } Df x, y) + Df x, y) } φ x, y) + φ x, y)} for all x E. Hence from Theorem 3.5, there exists a unique quadratic function B : E E and a unique quartic function D : E E such that 3.00) f x) B x) D x) [ Φ b k x ) + Φ d k x ) ] 4 4 k k [ + Φ b k x ) + Φ d k x ) ]} 4 4 k k Φb x) + Φ } d x), where Φ b x) and Φ d x) are given in 3.97) and 3.99) for all x E. Again f o x) = f x) f x)} for all x E. Then f o 0) = 0, f o x) = f o x). Hence Df o x, y) = Df x, y) Df x, y) } Df x, y) + Df x, y) } φ x, y) + φ x, y)} J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

27 STABILITY OF GENERALIZED MIXED TYPE 7 for all x E. Hence from Theorem 3., there exists a unique additive function A : E E and a unique cubic function C : E E such that 3.0) f x) A x) C x) [ Φ a k x ) + Φ c k x ) ] k 8 8 k [ + Φ a k x ) + Φ c k x ) ]} k 8 8 k Φa x) + Φ } c x), where Φ a x) and Φ c x) are given in 3.9) and 3.98) for all x E. Since f x) = f e x) + f o x), then it follows from 3.00) and 3.0) that f x) A x) B x) C x) D x) = f e x) B x) D x)} + f o x) C x) D x)} f e x) B x) D x) + f o x) C x) D x) Φa x) + Φ b x) + Φ c x) + Φ } d x) for all x E. Hence the proof of the theorem is complete. The following corollary is an immediate consequence of Theorem 3.3 concerning the stability of.0). Corollary 3.4. Let ε, p be nonnegative real numbers. Suppose a function f : E E with f0) = 0 satisfies the inequality ε x p + y p ), 0 p < ; ε, 3.0) D f x, y) ε x p y p, 0 p < ; ε x p y p + x p + y p}), 0 p < for all x, y E. Then there exists a unique additive function A : E E, a unique quadratic function B : E E, a unique cubic function C : E E and a unique quartic function D : E E such that 3.03) f x) A x) B x) C x) D x) λ } + 4 p + λ 5 p 3 + p } ; λ + 4λ λ3 4 p + p } + λ 7 3 p + 8 p }} x p ; 8 p }} x p ; λ4 4 p + p } + λ 8 3 p + 8 p }} x p for all x E, where λ i i =,..., 8) are respectively, given in Corollaries 3. and 3.. J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

28 8 K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN REFERENCES [] J. ACZEL AND J. DHOMBRES, Functional Equations in Several Variables, Cambridge University, Press, Cambridge, 989. [] T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 95), 4. [3] I.S. CHANG, E.H. LEE AND H.M. KIM, On the Hyers-Ulam-Rassias stability of a quadratic functional equations, Math. Ineq. Appl., ) 003), [4] S. CZERWIK, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, 00. [5] S. CZERWIK, Stability of Functional Equations of Ulam-Hyers Rassias Type, Hadronic Press, Plam Harbor, Florida, 003. [] M. ESHAGHI GORDJI, A. EBADIAN AND S. ZOLFAGHRI, Stability of a functional equation deriving from cubic and quartic functions, Abstract and Applied Analysis, submitted). [7] M. ESHAGHI GORDJI, S. KABOLI AND S. ZOLFAGHRI, Stability of a mixed type quadratic, cubic and quartic functional equations, arxiv: v Math FA, 5 Dec 008. [8] M. ESHAGHI GORDJI AND H. KHODAIE, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-banach spaces, arxiv: v Math FA, 5 Dec 008. [9] Z. GAJDA, On the stability of additive mappings, Inter. J. Math. Math. Sci., 4 99), [0] P. GAVURUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., ), [] P. GAVURUTA, An answer to a question of J.M.Rassias concerning the stability of Cauchy functional equation, Advances in Equations and Inequalities, Hadronic Math. Ser., 999), 7 7. [] D.H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 7 94), 4. [3] D.H. HYERS, G. ISAC AND Th.M. RASSIAS, Stability of Functional Equations in Several Variables, Birkhauser Basel, 998. [4] K.W. JUN AND H.M. KIM, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 74 00), [5] K.W. JUN AND H.M. KIM, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive type functional equation, Bull. Korean Math. Soc., 4) 005), [] K.W. JUN AND H.M. KIM, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. Appl., 9) 00), [7] S.M. JUNG, On the Hyers Ulam Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 04 99),. [8] S.M. JUNG, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 998), 37. [9] S.M. JUNG, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl., 3 999), [0] Pl. KANNAPPAN, Quadratic functional equation inner product spaces, Results Math., 73-4) 995), J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

29 STABILITY OF GENERALIZED MIXED TYPE 9 [] S.H. LEE, S.M. IM AND I.S. HWANG, Quartic functional equations, J. Math. Anal. Appl., ), [] A. NAJATI AND M.B. MOGHIMI, On the stability of a quadratic and additive functional equation, J. Math. Anal. Appl., ), [3] C. PARK, Homomorphisms and derivations in C algebras, Hindawi Publ. Co., Abstract and Applied Analysis, Volume 007, Article ID 8030, doi:0.55/007/8030,. [4] J.M. RASSIAS, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 4 98), 30. [5] J.M. RASSIAS, Solution of the Ulam stability problem for the quartic mapping, Glasnik Mathematica, 3454) 999), [] Th.M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 7 978), [7] Th.M. RASSIAS AND P. SEMRL, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., ), [8] K. RAVI AND M. ARUNKUMAR, On the Ulam-Gavruta-Rassias stability of the orthogonally Euler-Lagrange type functional equation, Internat. J. Appl. Math. Stat., 7 007), [9] K. RAVI, M. ARUNKUMAR AND J.M. RASSIAS, Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Stat., 3 008), A08, 3 4. [30] M.A. SIBAHA, B. BOUIKHALENE AND E. ELQORACHI, Ulam-Gavruta-Rassias stability for a linear functional equation, Internat. J. Appl. Math. Stat., 7 007), [3] S.M. ULAM, Problems in Modern Mathematics, Rend. Chap.VI, Wiley, New York, 90. J. Inequal. Pure and Appl. Math., 04) 009), Art. 4, 9 pp.

The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications The Australian Journal of Mathematical Analysis and Applications http://ajmaa.org Volume 8, Issue, Article 3, pp. -8, 0 ULAM STABILITY OF RECIPROCAL DIFFERENCE AND ADJOINT FUNCTIONAL EQUATIONS K. RAVI,

More information

GENERALIZED STABILITIES OF EULER-LAGRANGE-JENSEN (a, b)-sextic FUNCTIONAL EQUATIONS IN QUASI-β-NORMED SPACES

GENERALIZED STABILITIES OF EULER-LAGRANGE-JENSEN (a, b)-sextic FUNCTIONAL EQUATIONS IN QUASI-β-NORMED SPACES International Journal of Analysis and Applications ISSN 9-8639 Volume 4, Number 07, 67-74 http://www.etamaths.com GENERALIZED STABILITIES OF EULER-LAGRANGE-JENSEN a, b-sextic FUNCTIONAL EQUATIONS IN QUASI-β-NORMED

More information

ABBAS NAJATI AND CHOONKIL PARK

ABBAS NAJATI AND CHOONKIL PARK ON A CAUCH-JENSEN FUNCTIONAL INEQUALIT ABBAS NAJATI AND CHOONKIL PARK Abstract. In this paper, we investigate the following functional inequality f(x) + f(y) + f ( x + y + z ) f(x + y + z) in Banach modules

More information

MIXED TYPE OF ADDITIVE AND QUINTIC FUNCTIONAL EQUATIONS. Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz Shojaee

MIXED TYPE OF ADDITIVE AND QUINTIC FUNCTIONAL EQUATIONS. Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz Shojaee Annales Mathematicae Silesianae 29 (205, 35 50 Prace Naukowe Uniwersytetu Śląskiego nr 3332, Katowice DOI: 0.55/amsil-205-0004 MIXED TYPE OF ADDITIVE AND QUINTIC FUNCTIONAL EQUATIONS Abasalt Bodaghi, Pasupathi

More information

First online - August 13, Draft version - August 13, 2016

First online - August 13, Draft version - August 13, 2016 Novi Sad J. Math. Vol. XX, No., 20ZZ,??-?? ULAM STABILIT OF A BI-RECIPROCAL FUNCTIONAL EQUATION IN QUASI-β-NORMED SPACES B.V. Senthil Kumar 1, J.M. Rassias 2, and K. Ravi 3 Abstract. In this paper, we

More information

GENERAL QUARTIC-CUBIC-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES

GENERAL QUARTIC-CUBIC-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES U.P.B. Sci. Bull., Series A, Vol. 72, Iss. 3, 200 ISSN 223-7027 GENERAL QUARTIC-CUBIC-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES M. Eshaghi Gordji, H. Khodaei 2, R. Khodabakhsh 3 The

More information

Fixed Point Approach to the Estimation of Approximate General Quadratic Mappings

Fixed Point Approach to the Estimation of Approximate General Quadratic Mappings Int. Journal of Math. Analysis, Vol. 7, 013, no. 6, 75-89 Fixed Point Approach to the Estimation of Approximate General Quadratic Mappings Kil-Woung Jun Department of Mathematics, Chungnam National University

More information

On the Ulam stability of mixed type mappings on restricted domains

On the Ulam stability of mixed type mappings on restricted domains J. Math. Anal. Appl. 276 (2002 747 762 www.elsevier.com/locate/jmaa On the Ulam stability of mixed type mappings on restricted domains John Michael Rassias Pedagogical Department, E.E., National and Capodistrian

More information

A fixed point approach to orthogonal stability of an Additive - Cubic functional equation

A fixed point approach to orthogonal stability of an Additive - Cubic functional equation Int. J. Adv. Appl. Math. and Mech. 3(4 (06 8 (ISSN: 347-59 Journal homepage: www.ijaamm.com IJAAMM International Journal of Advances in Applied Mathematics and Mechanics A fixed point approach to orthogonal

More information

ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION

ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION Bull. Korean Math. Soc. 45 (2008), No. 2, pp. 397 403 ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION Yang-Hi Lee Reprinted from the Bulletin of the Korean Mathematical Society Vol. 45, No. 2, May

More information

Hyers-Ulam Rassias stability of Pexiderized Cauchy functional equation in 2-Banach spaces

Hyers-Ulam Rassias stability of Pexiderized Cauchy functional equation in 2-Banach spaces Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 5 (202), 459 465 Research Article Hyers-Ulam Rassias stability of Pexiderized Cauchy functional equation in 2-Banach spaces G. Zamani Eskandani

More information

Applied Mathematics Letters. Functional inequalities in non-archimedean Banach spaces

Applied Mathematics Letters. Functional inequalities in non-archimedean Banach spaces Applied Mathematics Letters 23 (2010) 1238 1242 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Functional inequalities in non-archimedean

More information

A general theorem on the stability of a class of functional equations including quadratic additive functional equations

A general theorem on the stability of a class of functional equations including quadratic additive functional equations Lee and Jung SpringerPlus 20165:159 DOI 10.1186/s40064-016-1771-y RESEARCH A general theorem on the stability of a class of functional equations including quadratic additive functional equations Yang Hi

More information

Generalization of Ulam stability problem for Euler Lagrange quadratic mappings

Generalization of Ulam stability problem for Euler Lagrange quadratic mappings J. Math. Anal. Appl. 336 2007) 277 296 www.elsevier.com/locate/jmaa Generalization of Ulam stability problem for Euler Lagrange quadratic mappings Hark-Mahn Kim a,,1, John Michael Rassias b a Department

More information

A QUADRATIC TYPE FUNCTIONAL EQUATION (DEDICATED IN OCCASION OF THE 70-YEARS OF PROFESSOR HARI M. SRIVASTAVA)

A QUADRATIC TYPE FUNCTIONAL EQUATION (DEDICATED IN OCCASION OF THE 70-YEARS OF PROFESSOR HARI M. SRIVASTAVA) Bulletin of Mathematical Analysis and Applications ISSN: 181-191, URL: http://www.bmathaa.org Volume Issue 4(010, Pages 130-136. A QUADRATIC TYPE FUNCTIONAL EQUATION (DEDICATED IN OCCASION OF THE 70-YEARS

More information

FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES. Choonkil Park

FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES. Choonkil Park Korean J. Math. 20 (2012), No. 1, pp. 77 89 FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES Choonkil Park Abstract. Using fixed point method, we prove the Hyers-Ulam stability of the orthogonally additive

More information

SUPERSTABILITY FOR GENERALIZED MODULE LEFT DERIVATIONS AND GENERALIZED MODULE DERIVATIONS ON A BANACH MODULE (II)

SUPERSTABILITY FOR GENERALIZED MODULE LEFT DERIVATIONS AND GENERALIZED MODULE DERIVATIONS ON A BANACH MODULE (II) Volume 0 (2009), Issue 2, Article 85, 8 pp. SUPERSTABILITY FOR GENERALIZED MODULE LEFT DERIVATIONS AND GENERALIZED MODULE DERIVATIONS ON A BANACH MODULE (II) HUAI-XIN CAO, JI-RONG LV, AND J. M. RASSIAS

More information

Stability and nonstability of octadecic functional equation in multi-normed spaces

Stability and nonstability of octadecic functional equation in multi-normed spaces Arab. J. Math. 208 7:29 228 https://doi.org/0.007/s40065-07-086-0 Arabian Journal of Mathematics M. Nazarianpoor J. M. Rassias Gh. Sadeghi Stability and nonstability of octadecic functional equation in

More information

Approximate additive and quadratic mappings in 2-Banach spaces and related topics

Approximate additive and quadratic mappings in 2-Banach spaces and related topics Int. J. Nonlinear Anal. Appl. 3 (0) No., 75-8 ISSN: 008-68 (electronic) http://www.ijnaa.semnan.ac.ir Approximate additive and quadratic mappings in -Banach spaces and related topics Y. J. Cho a, C. Park

More information

Refined Hyers Ulam approximation of approximately Jensen type mappings

Refined Hyers Ulam approximation of approximately Jensen type mappings Bull. Sci. math. 131 (007) 89 98 www.elsevier.com/locate/bulsci Refined Hyers Ulam approximation of approximately Jensen type mappings John Michael Rassias Pedagogical Department E.E., National and Capodistrian

More information

Young Whan Lee. 1. Introduction

Young Whan Lee. 1. Introduction J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657 http://dx.doi.org/10.7468/jksmeb.2012.19.2.193 Volume 19, Number 2 (May 2012), Pages 193 198 APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE

More information

Stability of an additive-quadratic functional equation in non-archimedean orthogonality spaces via fixed point method

Stability of an additive-quadratic functional equation in non-archimedean orthogonality spaces via fixed point method Advances in Applied Mathematical Analysis (AAMA). ISSN 0973-5313 Volume 11, Number 1 (2016), pp. 15 27 Research India Publications http://www.ripublication.com/gjpam.htm Stability of an additive-quadratic

More information

Stability of Adjointable Mappings in Hilbert

Stability of Adjointable Mappings in Hilbert Stability of Adjointable Mappings in Hilbert arxiv:math/0501139v2 [math.fa] 1 Aug 2005 C -Modules M. S. Moslehian Abstract The generalized Hyers Ulam Rassias stability of adjointable mappings on Hilbert

More information

ON PEXIDER DIFFERENCE FOR A PEXIDER CUBIC FUNCTIONAL EQUATION

ON PEXIDER DIFFERENCE FOR A PEXIDER CUBIC FUNCTIONAL EQUATION ON PEXIDER DIFFERENCE FOR A PEXIDER CUBIC FUNCTIONAL EQUATION S. OSTADBASHI and M. SOLEIMANINIA Communicated by Mihai Putinar Let G be an abelian group and let X be a sequentially complete Hausdorff topological

More information

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain Int. Journal of Math. Analysis, Vol. 7, 013, no. 55, 745-75 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.013.394 Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation

More information

Homomorphisms in C -ternary algebras and JB -triples

Homomorphisms in C -ternary algebras and JB -triples J. Math. Anal. Appl. 337 (2008 13 20 www.elsevier.com/locate/jmaa Homomorphisms in C -ternary algebras and J -triples Choonkil Park a,1, Themistocles M. Rassias b, a Department of Mathematics, Hanyang

More information

Research Article A Fixed Point Approach to the Stability of Quintic and Sextic Functional Equations in Quasi-β-Normed Spaces

Research Article A Fixed Point Approach to the Stability of Quintic and Sextic Functional Equations in Quasi-β-Normed Spaces Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 423231, 23 pages doi:10.1155/2010/423231 Research Article A Fixed Point Approach to the Stability of Quintic

More information

Quintic Functional Equations in Non-Archimedean Normed Spaces

Quintic Functional Equations in Non-Archimedean Normed Spaces Journal of Mathematical Extension Vol. 9, No., (205), 5-63 ISSN: 735-8299 URL: http://www.ijmex.com Quintic Functional Equations in Non-Archimedean Normed Spaces A. Bodaghi Garmsar Branch, Islamic Azad

More information

Jordan derivations on C -ternary algebras for a Cauchy-Jensen functional equation

Jordan derivations on C -ternary algebras for a Cauchy-Jensen functional equation c 2010 International Press Adv. Theor. Math. Phys. 14 (2010 1 19 arxiv:1101.021v1 [math-ph] 1 Dec 2010 Jordan derivations on C -ternary algebras for a Cauchy-Jensen functional equation Choonkil Park 1,

More information

Research Article The Stability of a Quadratic Functional Equation with the Fixed Point Alternative

Research Article The Stability of a Quadratic Functional Equation with the Fixed Point Alternative Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2009, Article ID 907167, 11 pages doi:10.1155/2009/907167 Research Article The Stability of a Quadratic Functional Equation with the

More information

The general solution of a quadratic functional equation and Ulam stability

The general solution of a quadratic functional equation and Ulam stability Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 8 (05), 60 69 Research Article The general solution of a quadratic functional equation and Ulam stability Yaoyao Lan a,b,, Yonghong Shen c a College

More information

On the stability of the functional equation f(x+ y + xy) = f(x)+ f(y)+ xf (y) + yf (x)

On the stability of the functional equation f(x+ y + xy) = f(x)+ f(y)+ xf (y) + yf (x) J. Math. Anal. Appl. 274 (2002) 659 666 www.academicpress.com On the stability of the functional equation f(x+ y + xy) = f(x)+ f(y)+ xf (y) + yf (x) Yong-Soo Jung a, and Kyoo-Hong Park b a Department of

More information

Research Article Nearly Quadratic Mappings over p-adic Fields

Research Article Nearly Quadratic Mappings over p-adic Fields Abstract and Applied Analysis Volume 202, Article ID 285807, 2 pages doi:0.55/202/285807 Research Article Nearly Quadratic Mappings over p-adic Fields M. Eshaghi Gordji, H. Khodaei, and Gwang Hui Kim 2

More information

arxiv:math/ v1 [math.ca] 21 Apr 2006

arxiv:math/ v1 [math.ca] 21 Apr 2006 arxiv:math/0604463v1 [math.ca] 21 Apr 2006 ORTHOGONAL CONSTANT MAPPINGS IN ISOSCELES ORTHOGONAL SPACES MADJID MIRZAVAZIRI AND MOHAMMAD SAL MOSLEHIAN Abstract. In this paper we introduce the notion of orthogonally

More information

arxiv:math/ v1 [math.fa] 31 Dec 2005

arxiv:math/ v1 [math.fa] 31 Dec 2005 arxiv:math/0600v [math.fa] 3 Dec 005 ON THE STABILITY OF θ-derivations ON JB -TRIPLES Choonkil Baak, and Mohammad Sal Moslehian Abstract. We introduce the concept of θ-derivations on JB -triples, and prove

More information

Research Article Stabilities of Cubic Mappings in Fuzzy Normed Spaces

Research Article Stabilities of Cubic Mappings in Fuzzy Normed Spaces Hindawi Publishing Corporation Advances in Difference Equations Volume 2010, Article ID 15087, 15 pages doi:10.1155/2010/15087 Research Article Stabilities of Cubic Mappings in Fuzzy ormed Spaces Ali Ghaffari

More information

SOLUTION OF THE ULAM STABILITY PROBLEM FOR CUBIC MAPPINGS. John Michael Rassias National and Capodistrian University of Athens, Greece

SOLUTION OF THE ULAM STABILITY PROBLEM FOR CUBIC MAPPINGS. John Michael Rassias National and Capodistrian University of Athens, Greece GLASNIK MATEMATIČKI Vol. 36(56)(2001), 63 72 SOLUTION OF THE ULAM STABILITY PROBLEM FOR CUBIC MAPPINGS John Michael Rassias National and Capodistrian University of Athens, Greece Abstract. In 1968 S. M.

More information

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces International Journal of Mathematical Analysis Vol. 9, 015, no. 30, 1477-1487 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.1988/ijma.015.53100 A Fied Point Approach to the Stability of a Quadratic-Additive

More information

THE NEARLY ADDITIVE MAPS

THE NEARLY ADDITIVE MAPS Bull. Korean Math. Soc. 46 (009), No., pp. 199 07 DOI 10.4134/BKMS.009.46..199 THE NEARLY ADDITIVE MAPS Esmaeeil Ansari-Piri and Nasrin Eghbali Abstract. This note is a verification on the relations between

More information

UNIQUENESS THEOREMS ON FUNCTIONAL INEQUALITIES CONCERNING CUBIC QUADRATIC ADDITIVE EQUATION

UNIQUENESS THEOREMS ON FUNCTIONAL INEQUALITIES CONCERNING CUBIC QUADRATIC ADDITIVE EQUATION Journal of Mathematical Inequalities Volume, Number 08, 43 6 doi:0.753/jmi-08--04 UNIQUENESS THEOREMS ON FUNCTIONAL INEQUALITIES CONCERNING CUBIC QUADRATIC ADDITIVE EQUATION YANG-HI LEE, SOON-MO JUNG AND

More information

Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Tel.: ; Fax:

Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Tel.: ; Fax: mathematics Article C -Ternary Biderivations and C -Ternary Bihomomorphisms Choonkil Park ID Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; baak@hanyang.ac.kr; Tel.: +8--0-089;

More information

Sang-baek Lee*, Jae-hyeong Bae**, and Won-gil Park***

Sang-baek Lee*, Jae-hyeong Bae**, and Won-gil Park*** JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 6, No. 4, November 013 http://d.doi.org/10.14403/jcms.013.6.4.671 ON THE HYERS-ULAM STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY Sang-baek Lee*,

More information

HYERS-ULAM-RASSIAS STABILITY OF JENSEN S EQUATION AND ITS APPLICATION

HYERS-ULAM-RASSIAS STABILITY OF JENSEN S EQUATION AND ITS APPLICATION PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 16, Number 11, November 1998, Pages 3137 3143 S 000-9939(9804680- HYERS-ULAM-RASSIAS STABILITY OF JENSEN S EQUATION AND ITS APPLICATION SOON-MO JUNG

More information

On a functional equation connected with bi-linear mappings and its Hyers-Ulam stability

On a functional equation connected with bi-linear mappings and its Hyers-Ulam stability Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 10 017, 5914 591 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa On a functional equation connected

More information

arxiv:math/ v1 [math.fa] 12 Nov 2005

arxiv:math/ v1 [math.fa] 12 Nov 2005 arxiv:math/051130v1 [math.fa] 1 Nov 005 STABILITY OF GENERALIZED JENSEN EQUATION ON RESTRICTED DOMAINS S.-M. JUNG, M. S. MOSLEHIAN, AND P. K. SAHOO Abstract. In this paper, we establish the conditional

More information

Research Article On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces

Research Article On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2008, Article ID 902187, 11 pages doi:101155/2008/902187 Research Article On the Stability of Cubic Mappings and Quadratic

More information

Stability of a Functional Equation Related to Quadratic Mappings

Stability of a Functional Equation Related to Quadratic Mappings International Journal of Mathematical Analysis Vol. 11, 017, no., 55-68 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijma.017.610116 Stability of a Functional Equation Related to Quadratic Mappings

More information

Additive functional inequalities in Banach spaces

Additive functional inequalities in Banach spaces Lu and Park Journal o Inequalities and Applications 01, 01:94 http://www.journaloinequalitiesandapplications.com/content/01/1/94 R E S E A R C H Open Access Additive unctional inequalities in Banach spaces

More information

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016 µ45 µx ½ Ù Vol.45, No.x 206 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 206 doi: 0.845/sxjz.2050b ²Â» µ ¼ Ulam È ( Ų¼ Ò¼ Ã,,, 747000) : ÉÐ Ì Õ ÎÏÓ, ÊÔ Í - Í Ë 6f(x+y) 6f(x y)+4f(3y) = 3f(x+2y) 3f(x 2y)+9f(2y)

More information

GENERALIZED POPOVICIU FUNCTIONAL EQUATIONS IN BANACH MODULES OVER A C ALGEBRA AND APPROXIMATE ALGEBRA HOMOMORPHISMS. Chun Gil Park

GENERALIZED POPOVICIU FUNCTIONAL EQUATIONS IN BANACH MODULES OVER A C ALGEBRA AND APPROXIMATE ALGEBRA HOMOMORPHISMS. Chun Gil Park NEW ZEALAND JOURNAL OF MATHEMATICS Volume 3 (003), 183 193 GENERALIZED POPOVICIU FUNCTIONAL EQUATIONS IN BANACH MODULES OVER A C ALGEBRA AND APPROXIMATE ALGEBRA HOMOMORPHISMS Chun Gil Park (Received March

More information

Research Article A Functional Inequality in Restricted Domains of Banach Modules

Research Article A Functional Inequality in Restricted Domains of Banach Modules Hindawi Publishing Corporation Advances in Difference Equations Volume 2009, Article ID 973709, 14 pages doi:10.1155/2009/973709 Research Article A Functional Inequality in Restricted Domains of Banach

More information

Research Article Functional Inequalities Associated with Additive Mappings

Research Article Functional Inequalities Associated with Additive Mappings Abstract and Applied Analysis Volume 008, Article ID 3659, pages doi:0.55/008/3659 Research Article Functional Inequalities Associated with Additive Mappings Jaiok Roh and Ick-Soon Chang Department of

More information

Stability of Quintic Functional Equation in 2-Banach Space

Stability of Quintic Functional Equation in 2-Banach Space International Journal of Mathematics And its Applications Volume 4, Issue 1 D 2016, 41 46. ISSN: 2347-1557 Available Online: http://ijmaa.in/ International Journal 2347-1557 of Mathematics Applications

More information

PERTURBATIONS OF HIGHER JORDAN DERIVATIONS IN BANACH TERNARY ALGEBRAS :AN ALTERNATIVE FIXED POINT APPROACH

PERTURBATIONS OF HIGHER JORDAN DERIVATIONS IN BANACH TERNARY ALGEBRAS :AN ALTERNATIVE FIXED POINT APPROACH Int. J. Nonlinear Anal. Appl. 1 (2010),No.1, 42 53 ISSN: XXXXXX (electronic) http://www.ijnaa.com PERTURBATIONS OF HIGHER JORDAN DERIVATIONS IN BANACH TERNARY ALGEBRAS :AN ALTERNATIVE FIXED POINT APPROACH

More information

Ann. Funct. Anal. 1 (2010), no. 1, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 1 (2010), no. 1, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Funct. Anal. (00), no., 44 50 A nnals of F unctional A nalysis ISSN: 008-875 (electronic) URL: www.emis.de/journals/afa/ A FIXED POINT APPROACH TO THE STABILITY OF ϕ-morphisms ON HILBERT C -MODULES

More information

NON-ARCHIMEDEAN BANACH SPACE. ( ( x + y

NON-ARCHIMEDEAN BANACH SPACE. ( ( x + y J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print 6-0657 https://doi.org/0.7468/jksmeb.08.5.3.9 ISSN(Online 87-608 Volume 5, Number 3 (August 08, Pages 9 7 ADDITIVE ρ-functional EQUATIONS

More information

THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE. Chang Il Kim and Se Won Park

THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE. Chang Il Kim and Se Won Park Korean J. Math. 22 (2014), No. 2, pp. 339 348 http://d.doi.org/10.11568/kjm.2014.22.2.339 THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE Chang

More information

Research Article Approximately Quintic and Sextic Mappings Form r-divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method

Research Article Approximately Quintic and Sextic Mappings Form r-divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method Discrete Dynamics in Nature and Society Volume 2011, Article ID 572062, 16 pages doi:10.1155/2011/572062 Research Article Approximately Quintic and Sextic Mappings Form r-divisible Groups into Ŝerstnev

More information

Solution and stability of a reciprocal type functional equation in several variables

Solution and stability of a reciprocal type functional equation in several variables Available online at www.tjnsa.co J. Nonlinear Sci. Appl. 7 04, 8 7 Research Article Solution and stability of a reciprocal type functional equation in several variables K. Ravi a,, E. Thandapani b, B.V.

More information

Research Article A Fixed Point Approach to the Stability of Quadratic Functional Equation with Involution

Research Article A Fixed Point Approach to the Stability of Quadratic Functional Equation with Involution Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 008, Article ID 73086, 11 pages doi:10.1155/008/73086 Research Article A Fixed Point Approach to the Stability of Quadratic Functional

More information

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED. Sungsik Yun

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED. Sungsik Yun Korean J. Math. 3 05, No. 3, pp. 393 399 http://dx.doi.org/0.568/kjm.05.3.3.393 APPROXIMATE ADDITIVE MAPPINGS IN -BANACH SPACES AND RELATED TOPICS: REVISITED Sungsik Yun Abstract. W. Park [J. Math. Anal.

More information

A fixed point method for proving the stability of ring (α, β, γ)-derivations in 2-Banach algebras

A fixed point method for proving the stability of ring (α, β, γ)-derivations in 2-Banach algebras Journal of Linear and Topological Algebra Vol. 06, No. 04, 07, 69-76 A fixed point method for proving the stability of ring (α, β, γ)-derivations in -Banach algebras M. Eshaghi Gordji a, S. Abbaszadeh

More information

Approximate ternary quadratic derivations on ternary Banach algebras and C*-ternary rings

Approximate ternary quadratic derivations on ternary Banach algebras and C*-ternary rings Bodaghi and Alias Advances in Difference Equations 01, 01:11 http://www.advancesindifferenceequations.com/content/01/1/11 RESEARCH Open Access Approximate ternary quadratic derivations on ternary Banach

More information

On the Stability of J -Homomorphisms

On the Stability of J -Homomorphisms On the Stability of J -Homomorphisms arxiv:math/0501158v2 [math.fa] 2 Sep 2005 Choonkil Baak and Mohammad Sal Moslehian Abstract The main purpose of this paper is to prove the generalized Hyers-Ulam-Rassias

More information

On the Stability of J -Homomorphisms

On the Stability of J -Homomorphisms On the Stability of J -Homomorphisms arxiv:math/0501158v1 [math.fa] 11 Jan 2005 Chun-Gil Park Mohammad Sal Moslehian Abstract The main purpose of this paper is to prove the generalized Hyers Ulam Rassias

More information

arxiv:math/ v1 [math.fa] 1 Dec 2005

arxiv:math/ v1 [math.fa] 1 Dec 2005 arxiv:math/051007v1 [math.fa] 1 Dec 005 A FIXED POINT APPROACH TO STABILITY OF A QUADRATIC EQUATION M. MIRZAVAZIRI AND M. S. MOSLEHIAN Abstract. Using the fixed point alternative theorem we establish the

More information

Generalized Hyers-Ulam Stability of General Cubic Functional Equation in Random Normed Spaces

Generalized Hyers-Ulam Stability of General Cubic Functional Equation in Random Normed Spaces Filomat 30:1 (2016), 89 98 DOI 10.2298/FIL1601089K Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Generalized Hyers-Ulam Stability

More information

The Jensen functional equation in non-archimedean normed spaces

The Jensen functional equation in non-archimedean normed spaces JOURNAL OF FUNCTION SPACES AND APPLICATIONS Volume 7, Number 1 (009), 1 4 c 009, Scientific Horizon http://www.jfsa.net The Jensen functional equation in non-archimedean normed spaces Mohammad Sal Moslehian

More information

Research Article Fixed Points and Random Stability of a Generalized Apollonius Type Quadratic Functional Equation

Research Article Fixed Points and Random Stability of a Generalized Apollonius Type Quadratic Functional Equation Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 2011, Article ID 671514, 11 pages doi:10.1155/2011/671514 Research Article Fixed Points and Random Stability of a Generalized Apollonius

More information

Non-Archimedean Stability of the Monomial Functional Equations

Non-Archimedean Stability of the Monomial Functional Equations Tamsui Oxford Journal of Mathematical Sciences 26(2) (2010) 221-235 Aletheia University Non-Archimedean Stability of the Monomial Functional Equations A. K. Mirmostafaee Department of Mathematics, School

More information

HYERS-ULAM STABILITY FOR SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

HYERS-ULAM STABILITY FOR SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 011 (011), No. 80, pp. 1 5. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu HYERS-ULAM STABILITY

More information

AUTOMORPHISMS ON A C -ALGEBRA AND ISOMORPHISMS BETWEEN LIE JC -ALGEBRAS ASSOCIATED WITH A GENERALIZED ADDITIVE MAPPING

AUTOMORPHISMS ON A C -ALGEBRA AND ISOMORPHISMS BETWEEN LIE JC -ALGEBRAS ASSOCIATED WITH A GENERALIZED ADDITIVE MAPPING Houston Journal of Mathematics c 2007 University of Houston Volume, No., 2007 AUTOMORPHISMS ON A C -ALGEBRA AND ISOMORPHISMS BETWEEN LIE JC -ALGEBRAS ASSOCIATED WITH A GENERALIZED ADDITIVE MAPPING CHOONKIL

More information

REMARKS ON THE STABILITY OF MONOMIAL FUNCTIONAL EQUATIONS

REMARKS ON THE STABILITY OF MONOMIAL FUNCTIONAL EQUATIONS Fixed Point Theory, Volume 8, o., 007, 01-18 http://www.math.ubbclu.ro/ nodeac/sfptc.html REMARKS O THE STABILITY OF MOOMIAL FUCTIOAL EQUATIOS LIVIU CĂDARIU AD VIOREL RADU Politehnica University of Timişoara,

More information

ON STABILITY OF SOME TYPES OF FUNCTIONAL EQUATIONS

ON STABILITY OF SOME TYPES OF FUNCTIONAL EQUATIONS THE ISLAMIC UNIVERSITY OF GAZA DEANERY OF HIGHER STUDIES FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS ON STABILITY OF SOME TYPES OF FUNCTIONAL EQUATIONS MASTER THESIS PRESENTED BY REHAB SALEEM AL-MOSADDER

More information

Alireza Kamel Mirmostafaee

Alireza Kamel Mirmostafaee Bull. Korean Math. Soc. 47 (2010), No. 4, pp. 777 785 DOI 10.4134/BKMS.2010.47.4.777 STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION IN QUASI NORMED SPACES Alireza Kael Mirostafaee Abstract. Let X be a linear

More information

Zygfryd Kominek REMARKS ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL EQUATIONS

Zygfryd Kominek REMARKS ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL EQUATIONS Opuscula Mathematica Vol. 8 No. 4 008 To the memory of Professor Andrzej Lasota Zygfryd Kominek REMARKS ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL EQUATIONS Abstract. Stability problems concerning the

More information

Research Article Stability of Approximate Quadratic Mappings

Research Article Stability of Approximate Quadratic Mappings Hindawi Publishing Cororation Journal of Inequalities and Alications Volume 2010, Article ID 184542, 13 ages doi:10.1155/2010/184542 Research Article Stability of Aroximate Quadratic Maings Hark-Mahn Kim,

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics ISOMETRIES ON LINEAR n-normed SPACES CHUN-GIL PARK AND THEMISTOCLES M. RASSIAS Department of Mathematics Hanyang University Seoul 133-791 Republic

More information

arxiv: v1 [math.ca] 31 Jan 2016

arxiv: v1 [math.ca] 31 Jan 2016 ASYMPTOTIC STABILITY OF THE CAUCHY AND JENSEN FUNCTIONAL EQUATIONS ANNA BAHYRYCZ, ZSOLT PÁLES, AND MAGDALENA PISZCZEK arxiv:160.00300v1 [math.ca] 31 Jan 016 Abstract. The aim of this note is to investigate

More information

Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order

Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order Abstract and Applied Analysis Volume 20, Article ID 923269, 3 pages doi:0.55/20/923269 Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order Soon-Mo Jung Mathematics

More information

ON THE GENERAL QUADRATIC FUNCTIONAL EQUATION

ON THE GENERAL QUADRATIC FUNCTIONAL EQUATION Bol. So. Mat. Mexiana (3) Vol. 11, 2005 ON THE GENERAL QUADRATIC FUNCTIONAL EQUATION JOHN MICHAEL RASSIAS Abstrat. In 1940 and in 1964 S. M. Ulam proposed the general problem: When is it true that by hanging

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics ON SOME APPROXIMATE FUNCTIONAL RELATIONS STEMMING FROM ORTHOGONALITY PRESERVING PROPERTY JACEK CHMIELIŃSKI Instytut Matematyki, Akademia Pedagogiczna

More information

Research Article Fixed Points and Generalized Hyers-Ulam Stability

Research Article Fixed Points and Generalized Hyers-Ulam Stability Abstract and Applied Analysis Volume 2012, Article ID 712743, 10 pages doi:10.1155/2012/712743 Research Article Fixed Points and Generalized Hyers-Ulam Stability L. Cădariu, L. Găvruţa, and P. Găvruţa

More information

NON-ARCHIMEDIAN STABILITY OF GENERALIZED JENSEN S AND QUADRATIC EQUATIONS. A. Charifi, S. Kabbaj and D. Zeglami

NON-ARCHIMEDIAN STABILITY OF GENERALIZED JENSEN S AND QUADRATIC EQUATIONS. A. Charifi, S. Kabbaj and D. Zeglami Acta Universitatis Apulensis ISSN: 1582-5329 http://www.uab.ro/auaournal/ No. 45/2016 pp. 11-29 doi: 10.17114/.aua.2016.45.02 NON-ARCHIMEDIAN STABILITY OF GENERALIZED JENSEN S AND QUADRATIC EQUATIONS A.

More information

ULAM-HYERS-RASSIAS STABILITY OF SEMILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

ULAM-HYERS-RASSIAS STABILITY OF SEMILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES Electronic Journal of Differential Equations, Vol. 213 (213), No. 172, pp. 1 8. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu ULAM-HYERS-RASSIAS

More information

On the Hyers-Ulam Stability Problem for Quadratic Multi-dimensional Mappings on the Gaussian Plane

On the Hyers-Ulam Stability Problem for Quadratic Multi-dimensional Mappings on the Gaussian Plane Southeast Asian Bulletin of Mathematics (00) 6: 483 50 Southeast Asian Bulletin of Mathematics : Springer-Verlag 00 On the Hyers-Ulam Stability Problem f Quadratic Multi-dimensional Mappings on the Gaussian

More information

Fixed points and quadratic equations connected with homomorphisms and derivations on non-archimedean algebras

Fixed points and quadratic equations connected with homomorphisms and derivations on non-archimedean algebras Eshaghi Gordji et al. Advances in Difference Equations 202, 202:28 http://www.advancesindifferenceequations.com/content/202//28 R E S E A R C H Open Access Fixed points and quadratic equations connected

More information

On the Hyers-Ulam Stability of a System of Euler Differential Equations of First Order

On the Hyers-Ulam Stability of a System of Euler Differential Equations of First Order Tamsui Oxford Journal of Mathematical Sciences 24(4) (2008) 381-388 Aletheia University On the Hyers-Ulam Stability of a System of Euler Differential Equations of First Order Soon-Mo Jung, Byungbae Kim

More information

STABILITY OF n-th ORDER FLETT S POINTS AND LAGRANGE S POINTS

STABILITY OF n-th ORDER FLETT S POINTS AND LAGRANGE S POINTS SARAJEVO JOURNAL OF MATHEMATICS Vol.2 (4) (2006), 4 48 STABILITY OF n-th ORDER FLETT S POINTS AND LAGRANGE S POINTS IWONA PAWLIKOWSKA Abstract. In this article we show the stability of Flett s points and

More information

Research Article Solution and Stability of a General Mixed Type Cubic and Quartic Functional Equation

Research Article Solution and Stability of a General Mixed Type Cubic and Quartic Functional Equation Function Spaces and Applications Volume 203, Article ID 67380, 8 pages http://dx.doi.org/0.55/203/67380 Research Article Solution and Stability of a General Mixed Type Cubic and Quartic Functional Equation

More information

On an equation characterizing multi-jensen-quadratic mappings and its Hyers Ulam stability via a fixed point method

On an equation characterizing multi-jensen-quadratic mappings and its Hyers Ulam stability via a fixed point method J. Fixed Point Theory Appl. 8 (06) 737 75 DOI 0.007/s784-06-098-8 Published online July 5, 06 Journal of Fixed Point Theory 06 The Author(s) and Applications This article is published with open access

More information

STABILITY OF THE COSINE-SINE FUNCTIONAL EQUATION WITH INVOLUTION

STABILITY OF THE COSINE-SINE FUNCTIONAL EQUATION WITH INVOLUTION Adv. Oper. Theory (017), no. 4, 531 546 http://doi.org/10.034/aot.1706-1190 ISSN: 538-5X (electronic) http://aot-math.org STABILITY OF THE COSINE-SINE FUNCTIONAL EQUATION WITH INVOLUTION JEONGWOOK CHANG,

More information

ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS

ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS Bull. Korean Math. Soc. 52 2015), No. 2, pp. 685 697 http://dx.doi.org/10.4134/bkms.2015.52.2.685 ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS Jinghao Huang, Soon-Mo Jung, and Yongjin Li

More information

General solution and Ulam-Hyers Stability of Duodeviginti Functional Equations in Multi-Banach Spaces

General solution and Ulam-Hyers Stability of Duodeviginti Functional Equations in Multi-Banach Spaces Global Jornal of Pre and Applied Mathematics. ISSN 0973-768 Volme 3, Nmber 7 (07), pp. 3049-3065 Research India Pblications http://www.ripblication.com General soltion and Ulam-Hyers Stability of Dodeviginti

More information

On stability of the general linear equation

On stability of the general linear equation Aequat. Math. 89 (2015), 1461 1474 c The Author(s) 2014. This article is pulished with open access at Springerlink.com 0001-9054/15/061461-14 pulished online Novemer 14, 2014 DOI 10.1007/s00010-014-0317-z

More information

Normed spaces equivalent to inner product spaces and stability of functional equations

Normed spaces equivalent to inner product spaces and stability of functional equations Aequat. Math. 87 (204), 47 57 c The Author(s) 203. This article is published with open access at Springerlink.com 000-9054/4/0047- published online March 23, 203 DOI 0.007/s0000-03-093-y Aequationes Mathematicae

More information

Banach Journal of Mathematical Analysis ISSN: (electronic)

Banach Journal of Mathematical Analysis ISSN: (electronic) Banach J. Math. Anal. 1 (2007), no. 2, 252 260 Banach Journal of Mathematical Analysis ISSN: 1735-8787 (electronic) http://www.math-analysis.org AN INTERVIEW WITH THEMISTOCLES M. RASSIAS PER ENFLO 1 AND

More information

Correspondence should be addressed to Abasalt Bodaghi;

Correspondence should be addressed to Abasalt Bodaghi; Function Spaces, Article ID 532463, 5 pages http://dx.doi.org/0.55/204/532463 Research Article Approximation on the Quadratic Reciprocal Functional Equation Abasalt Bodaghi and Sang Og Kim 2 Department

More information

HYPERSTABILITY OF THE GENERAL LINEAR FUNCTIONAL EQUATION

HYPERSTABILITY OF THE GENERAL LINEAR FUNCTIONAL EQUATION Bull. Korean Math. So. 52 (2015, No. 6, pp. 1827 1838 http://dx.doi.org/10.4134/bkms.2015.52.6.1827 HYPERSTABILITY OF THE GENERAL LINEAR FUNCTIONAL EQUATION Magdalena Piszzek Abstrat. We give some results

More information

Research Article On the Stability of Quadratic Functional Equations in F-Spaces

Research Article On the Stability of Quadratic Functional Equations in F-Spaces Function Spaces Volume 2016, Article ID 5636101, 7 pages http://dx.doi.org/10.1155/2016/5636101 Research Article On the Stability of Quadratic Functional Equations in F-Spaces Xiuzhong Yang College of

More information