Three-body Interactions in Cold Polar Molecules

Size: px
Start display at page:

Download "Three-body Interactions in Cold Polar Molecules"

Transcription

1 Three-body Interactions in Cold Polar Molecules H.P. Büchler Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria In collaboration with: A. Micheli, G. Pupillo, P. Zoller

2 Three-body interactions Many-body interaction potential - Hamiltonians in condensed matter are effective Hamiltonains after integrating out high energy excitations V eff ({r i }) = 1 2 V (r i r j ) i j i j k W (r i, r j, r k ) +... two-particle interaction three-body interaction Application - Pfaffian wave function of fractional quantum Hall state (More and Read, 91) - exchange interactions in spin systems: microscopic models exotic phases (Moessner and Sondi, 01, Balents et al., 02, Moutrich and Senthil 02) Route towards exotic and topological phases? - string nets: degenerate Hilbertspace for loop gases (Fidowski, et al, 06)

3 Three-body interactions Extended Bose-Hubbard models - hardcore bosons H = J! b i bj!ij" 1! 1! Uij ni nj + Wijk ni nj nk hopping energy i#=j i#=j#=k two-body interaction Goal - large interaction strengths - independent control of two- and three-body interaction three-body interaction 1D phase diagram µ/w n = 2/3 n = 1/2 Realizable with polar molecules n = 1/3 J/W

4 Polar molecules Hetronuclear Molecules + - electronic excitations 10 Hz 15 - vibrational excitations 1013 Hz - rotational excitations 10 Hz 10 - electron spin - nuclear spin Polar molecules in the electronic, vibrational, and rotational ground state - permanent dipole moment: d 1 9 Debye - polarizable with static electric field, and microwave fields dipole moment ea0 2.5Debye Strong dipole-dipole interactions tunable with external fields d1 d2 (d1 r) (d2 r) V (r) = 3 3 r r5

5 Interaction energies Particles in an optical lattice - lattice spacing a = λ/2 500nm - size of Wannier function ah.o 0.2a 2!2 π 2 - recoil energy Er = mλ2 Pseudo-potential - dominant interaction in atomic gases on-site interaction nearest-neighbor interaction U 0.5Er present but small U 0.5Er U Er Magnetic dipole moment - Chromium atoms with m 6µB Electric dipole moment - LiCs hetronuclear molecule d 6.5Debye increased by factor 1/α (137) U??? (a/ah.o )3 U1 U1 30Er

6 Polar molecules AMO- solid state interface molecular ensembles (quantum memory) - solid state quantum processor - molecular quantum memory (P. Rabl, D. DeMille, J. Doyle, M. Lukin, R. Schoelkopf and P. Zoller, PRL 2006) Cooper Pair Box (superconducting qubit) XX ZZ YY Spin toolbox - polar molecules with spin - realization of Kitaev model (A. Micheli, G. Brennen, P. Zoller, Nature Physics 2006)

7 Polar molecules Experimental status Raman laser / spontaneous emission - Polar molecules in the rotational and vibrational ground state - cooling and trapping techniques beeing developement: - cooling of polar molecules: e.g. stark decelerator D. DeMille, Yale J. Doyle, Harvard G. Rempe, Munich G. Meijer, Berlin J. Ye, JILA - photo association see J. Ye s talk (all cold atom labs) - bosonic molecules with closed electronic shell, e.g., SrO, RbCs, LiCs rotational and vibrational ground state

8 Polar molecules Crystalline phases - long range dipole-dipole interaction - interaction energy exceeds kinetic energy Three-body interaction - extended Hubbard models - tunable three-body interaction

9 Polar molecule Low energy description rotation of the molecule - rigid rotor in an electric field : angular momentum : dipole operator dipole moment N = 2 N = 1 N = 0 } Accessible via microwave - anharmonic spectrum - electric dipole transition - microwave transition frequencies - no spontaneous emission

10 Interaction between polar molecules Hamiltonian kinetic energy trapping potential rigid rotor electric field interaction potential Without external drive - van der Waals attraction Static electric field - internal Hamilton - finite averaged dipole moment

11 Dipole-dipole interaction Dipole-dipole interaction - anisotropic interaction - long-range attraction repulsion - Born-Oppenheimer valid for: attraction Instability in the many-body system Stability: z confining potential - collaps of the system for increasing dipole interaction - roton softening - supersolids? (Goral et. al. 02, L. Santos et al. 03, Shlyapnikov 06) - strong interactions - confining into 2D by an optical lattice a { oscillator wavefunction

12 Stability via transverse confining Effective interaction - interaction potential with transverse trapping potential V (r) = D [ 1 r 3 3z2 r 5 ] + mω2 z 2 z z/ l 0 1 V( R, z) l 3 / D - characteristic length scale potential barrier: larger than kinetic energy { R l / 1 Tunneling rate: - semi-classical rate (instanton techniques) attempt frequency Γ = A exp ( S E / h) kinetic energies ( ) 2/5 - Euclidean action of the Dm S instanton trajectory E = h h 2 C a numerical factor: bound states

13 Crystalline phase Hamiltonian interaction strength: - polar molecules confined into a two-dimensional plane r d = E int = Dm E kin 2 a r d = Kosterlitz-Thouless transition First order melting (Kalida 81) Quantum melting (H.P. Büchler, E. Demler, M. Lukin, A. Micheli, G. Pupillo, P. Zoller, PRL 2007) - indication of a first order transition - critical interaction strength r d 20

14 Three-body interactions 1! 1! V (ri rj ) + W (ri, rj, rk ) +... Veff ({ri }) = 2 6 i!=j i!=j!=k H.P. Büchler, A. Micheli, and P. Zoller cond-mat/ (2007).

15 Single polar molecule Static electric field - along the z-axes - splitting the degeneracy of the first excited states degeneracy - induces finite dipole moments d g = g d z g d e = e, 1 d z e, 1 shifted away by external DC/AC fields e, 1 e, 0 Ω g e, 1 Mircowave field g e, 1 - coupling the state and Ω : detuning : rabi frequency - restrict to two states - ignore influence of e, 1 - rotating wave approximation - anharmonic spectrum - electric dipole transition - microwave transition frequencies - no spontaneous emission

16 Many-body Hamiltonian Many-body Hamiltonian H = i p 2 i 2m + i V trap (r i ) + i H (i) 0 + H stat int + H ex int { { Two-level System - external potentials: - trapping potential - optical lattices - dipole-dipole interaction - restriction to the two internal states: g i e, 1 i - rotating wave approximation H (i) 0 = 1 2 ( Ω Ω ) = hs i - two eigenstates + i = α g i + β e, 1 i i = β g i + α e, 1 i - two-level system in an effective magnetic field and energies E ± = ± Ω /2

17 Dipole-dipole interaction Microwave photon exchange - D = e, 1 d g 2 d 2 /3 H ex int = 1 2 i j D 2 ν(r i r j ) [ S + i S j + S+ j S i ] Induced dipole moments dipole-dipole interaction ν(r) = 1 cos θ r 3 - η d,g = d e,g / D P i = g g i H stat int = 1 2 i j Dν (r i r j ) [η g P i + η e Q i ] [η g P j + η e Q j ] Q i = e, 1 e, 1 i

18 Born-Oppenheimer potentials Effective interaction (i) diagonalizing the internal Hamiltonian for fixed interparticle distance {ri }.! (i) stat ex H0 + Hint + Hint i (ii) The eigenenergies E({ri }) describe the Born-Oppenheimer potential a given state manifold. R0 (iii) Adiabatically connected to the groundstate G! = Πi +!i weak dipole interaction D = R03 " a3 2 + Ω2 interparticle distance ri rj

19 Born-Oppenheimer potential First order perturbation - - E (1) ({r i }) = G H ex int + H stat int G G = (α g i + β e, 1 1 ) i E (1) ({r i }) = 1 2 λ 1 i j Dν(r i r j ) dipole-dipole interaction: V eff (r) = λ cos θ r 3 Dimensionless coupling parameter - λ 1 = ( α 2 η g + β 2 η e ) 2 α 2 β 2 - tunable by the external electric field and the ratio Ω/. de/b - for a magic rabi frequency the dipole-dipole interaction vanishes λ 1 = 0

20 Born-Oppenheimer potential Second order perturbation E (2) ({r i }) = k i j + i j M Ω 2 D2 ν (r i r k ) ν (r j r k ) N Ω 2 [Dν (r i r j )] 2 : three-body interaction : repulsive two-body interaction Matrix elements - M = αβ [( α 2 η g + β 2 ) η e (ηe η g ) + (β 2 α 2 )/2 ] [ ] N = α 2 β 2 (η e η g ) 2 + 1

21 Effective interaction V eff ({r i }) = 1 V (r i r j ) two-body interaction Effective Hamiltonian i j V (r) = λ 1 D ν (r) + λ 2 DR 3 0 [ν (r)] 2 W (r i, r j, r k ) i j k - three-body interaction W (r 1, r 2, r 3 ) = γ 2 R 3 0D [ν(r 12 )ν(r 13 ) + ν(r 12 )ν(r 23 ) + ν(r 13 )ν(r 23 )] - validity is restricted to D 2 + Ω 2 = R3 0 a 3 interparticle distance +1.5 z/ l V( R, z) l 3 / D (i) transverse confining into 2D (ii) vanishing dipole-dipole interaction { R l /

22 Bose-Hubbard model

23 Hubbard model Extended Bose-Hubbard models - hardcore bosons H = J! b i bj!ij" hopping energy - interaction parameters for strong optical lattices 1! 1! Uij ni nj + Wijk ni nj nk i#=j two-body interaction Uij = V (Ri Rj ) i#=j#=k three-body interaction Wijk = W (Ri, Rj, Rk ) Polar molecule: LiCs: - dipole moment d 6Debye - hopping energy J/Er lattice spacing: - nearest neighbor interaction: λ 1000 nm Er 1.4 khz U/Er 30 3 W/Er 30 (R0 /al )

24 Hubbard model Three-body interaction - next-nearest neighbor terms W ijk = W 0 [ a 6 ] R i R j 3 R i R k 3 + perm

25 Supersolids on a triangular lattice H = J ij b i b j i j U ij n i n j U ij 1 i j 3 : static electric field Quantum Monte Carlo simulations Wessel and Troyer, PRL (2005) Melko et al., PRB, (2006) - supersolid close to half filling and strong nearest neighbor interactions n = 1/2 U/J 10 - stable under next-nearest neighbor interactions! PS supersolid PS PS superfluid PS solid!=2/3 solid!=1/ t/v

26 One-dimensional model H = J! b i bi+1 +W i! i ni 1 ni ni+1 µ! ni next-nearest neighbor interactions + Hn.n.n. i Bosonization Critical phase - hard-core bosons - instabilities for densities: n = 2/3 n = 1/2 n = 1/3 - quantum Monte Carlo simulations (in progress) - algebraic correlations - compressible - repulsive fermions µ/w Solid phases n = 2/3 - excitation gap - incompressible - density-density correlations n = 1/2! ni nj " - hopping correlations (1D VBS) n = 1/3 J/W!b i bi+1 b j bj+1 "

27 Conclusion and Outlook Polar molecular crystal - reduced three-body collisions - strong coupling to cavity QED - ideal quantum storage devices Lattice structure - alternative to optical lattices - tunable lattice parameters - strong phonon coupling: polarons Extended Hubbard models - strong nearest neighbor interaction - three-body interaction Novel quantum matter - supersolid phases - string nets?

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Theoretische Physik III, Universität Stuttgart, Germany Outline Introduction to polar molecules - quantum melting transition

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential

Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential The Harvard community has made this article openly available. Please share how this access

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay) Multi-Body Interacting Bosons Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay) Outline Effective multi-body interactions Multi-body interacting systems. Why interesting? How

More information

Magnetism of spinor BEC in an optical lattice

Magnetism of spinor BEC in an optical lattice Magnetism of spinor BEC in an optical lattice Eugene Demler Physics Department, Harvard University Collaborators: Ehud Altman, Ryan Barnett, Luming Duan, Walter Hofstetter, Adilet Imambekov, Mikhail Lukin,

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Quantum correlations and entanglement in far-from-equilibrium spin systems

Quantum correlations and entanglement in far-from-equilibrium spin systems Quantum correlations and entanglement in far-from-equilibrium spin systems Salvatore R. Manmana Institute for Theoretical Physics Georg-August-University Göttingen PRL 110, 075301 (2013), Far from equilibrium

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger PHYS 402, Atomic and Molecular Physics Spring 2017, final exam, solutions 1. Hydrogenic atom energies: Consider a hydrogenic atom or ion with nuclear charge Z and the usual quantum states φ nlm. (a) (2

More information

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline Dipolar Fermi gases Introduction, Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam Outline Experiments with magnetic atoms and polar molecules Topologcal p x +ip y phase in 2D Bilayer systems

More information

Why ultracold molecules?

Why ultracold molecules? Cold & ultracold molecules new frontiers J. Ye, JILA Michigan Quantum Summer School, Ann Arbor, June 18, 2008 Quantum dipolar gas Precision test QED ee- eehco OH H2O H2CO Quantum measurement Chemical reactions

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Strongly correlated systems: from electronic materials to cold atoms

Strongly correlated systems: from electronic materials to cold atoms Strongly correlated systems: from electronic materials to cold atoms Eugene Demler Harvard University Collaborators: E. Altman, R. Barnett, I. Cirac, L. Duan, V. Gritsev, W. Hofstetter, A. Imambekov, M.

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

SU(N) Magnetism with Cold Atoms and Chiral Spin Liquids

SU(N) Magnetism with Cold Atoms and Chiral Spin Liquids 1 SU(N) Magnetism with Cold Atoms and Chiral Spin Liquids Victor Gurarie collaboration with M. Hermele, A.M. Rey UPC, Barcelona, July 5 2010 In this talk 2 Alkaline earth atoms can be though of as having

More information

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Gunnar Möller & Nigel R Cooper Cavendish Laboratory, University of Cambridge Physical Review Letters 108, 043506 (2012) LPTHE / LPTMC

More information

Dimer model implementations of quantum loop gases. C. Herdman, J. DuBois, J. Korsbakken, K. B. Whaley UC Berkeley

Dimer model implementations of quantum loop gases. C. Herdman, J. DuBois, J. Korsbakken, K. B. Whaley UC Berkeley Dimer model implementations of quantum loop gases C. Herdman, J. DuBois, J. Korsbakken, K. B. Whaley UC Berkeley Outline d-isotopic quantum loop gases and dimer model implementations generalized RK points

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

POLAR MOLECULES NEAR QUANTUM DEGENERACY *

POLAR MOLECULES NEAR QUANTUM DEGENERACY * POLAR MOLECULES NEAR QUANTUM DEGENERACY * JUN YE AND DEBORAH S. JIN JILA, National Institute of Standards and Technology and University of Colorado Department of Physics, University of Colorado, Boulder,

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia Collective excitations of ultracold molecules on an optical lattice Roman Krems University of British Columbia Collective excitations of ultracold molecules trapped on an optical lattice Sergey Alyabyshev

More information

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Exploring long-range interacting quantum many-body systems with Rydberg atoms Exploring long-range interacting quantum many-body systems with Rydberg atoms Christian Groß Max-Planck-Institut für Quantenoptik Hannover, November 2015 Motivation: Quantum simulation Idea: Mimicking

More information

Department of Physics, Princeton University. Graduate Preliminary Examination Part II. Friday, May 10, :00 am - 12:00 noon

Department of Physics, Princeton University. Graduate Preliminary Examination Part II. Friday, May 10, :00 am - 12:00 noon Department of Physics, Princeton University Graduate Preliminary Examination Part II Friday, May 10, 2013 9:00 am - 12:00 noon Answer TWO out of the THREE questions in Section A (Quantum Mechanics) and

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Experimental realization of Bose Einstein condensation (BEC) of dilute atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley, et al. (1995, 1997)] has ignited a virtual explosion of research.

More information

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016 Ana Maria Rey Okinawa School in Physics 016: Coherent Quantum Dynamics Okinawa, Japan, Oct 4-5, 016 What can we do with ultra-cold matter? Quantum Computers Lecture II-III Clocks and sensors Synthetic

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Quantum Physics in the Nanoworld

Quantum Physics in the Nanoworld Hans Lüth Quantum Physics in the Nanoworld Schrödinger's Cat and the Dwarfs 4) Springer Contents 1 Introduction 1 1.1 General and Historical Remarks 1 1.2 Importance for Science and Technology 3 1.3 Philosophical

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions Frontiers in Quantum Simulation with Cold Atoms, Seattle, April 1 st 2015 Leonardo Fallani Department of Physics and Astronomy

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Introduction to Recent Developments on p-band Physics in Optical Lattices

Introduction to Recent Developments on p-band Physics in Optical Lattices Introduction to Recent Developments on p-band Physics in Optical Lattices Gaoyong Sun Institut für Theoretische Physik, Leibniz Universität Hannover Supervisors: Prof. Luis Santos Prof. Temo Vekua Lüneburg,

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Controlled collisions of a single atom and an ion guided by movable trapping potentials

Controlled collisions of a single atom and an ion guided by movable trapping potentials Controlled collisions of a single atom and an ion guided by movable trapping potentials Zbigniew Idziaszek CNR-INFM BEC Center, I-38050 Povo (TN), Italy and Center for Theoretical Physics, Polish Academy

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Chapter4: Quantum Optical Control

Chapter4: Quantum Optical Control Chapter4: Quantum Optical Control Laser cooling v A P3/ B P / C S / Figure : Figure A shows how an atom is hit with light with momentum k and slows down. Figure B shows atom will absorb light if frequency

More information

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations?

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Image: Peter Engels group at WSU Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Doerte Blume and Kevin M. Daily Dept. of Physics and Astronomy, Washington State University,

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique "

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique - Master Concepts Fondamentaux de la Physique 2013-2014 Théorie de la Matière Condensée Cours 1-2 09 & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique " - Antoine Georges

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Dipolar quantum gases Barcelona, May 2010

Dipolar quantum gases Barcelona, May 2010 Barcelona, May D DQG Quasi-D DQG Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria May, Outline D DQG Quasi-D DQG : D polarization polarization : Slabs : weakly/unpolarized dipoles

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Introduction to Atomic Physics and Quantum Optics

Introduction to Atomic Physics and Quantum Optics Physics 404 and Physics 690-03 Introduction to Atomic Physics and Quantum Optics [images courtesy of Thywissen group, U of T] Instructor Prof. Seth Aubin Office: room 245, Millington Hall, tel: 1-3545

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physics 607 Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all your

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Introduction to Atomic Physics and Quantum Optics

Introduction to Atomic Physics and Quantum Optics Physics 404 and Physics 690-03 Introduction to Atomic Physics and Quantum Optics [images courtesy of Thywissen group, U of T] Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

Quantum simulation of an extra dimension

Quantum simulation of an extra dimension Quantum simulation of an extra dimension Alessio Celi based on PRL 108, 133001 (2012), with O. Boada, J.I. Latorre, M. Lewenstein, Quantum Technologies Conference III QTC III, Warzsawa, 14/09/2012 p. 1/14

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Interplay of micromotion and interactions

Interplay of micromotion and interactions Interplay of micromotion and interactions in fractional Floquet Chern insulators Egidijus Anisimovas and André Eckardt Vilnius University and Max-Planck Institut Dresden Quantum Technologies VI Warsaw

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Quantum Phase Transitions, Strongly Interacting Systems, and Cold Atoms

Quantum Phase Transitions, Strongly Interacting Systems, and Cold Atoms SMR 1666-2 SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 11-22 July 2005 Quantum Phase Transitions, Strongly Interacting Systems, and Cold Atoms Presented by: Eugene

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014 Dipolar Interactions and Rotons in Ultracold Atomic Quantum Gases Workshop of the RTG 1729 Lüneburg March 13., 2014 Table of contents Realization of dipolar Systems Erbium 1 Realization of dipolar Systems

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information