(Total 1 mark) IB Questionbank Physics 1

Size: px
Start display at page:

Download "(Total 1 mark) IB Questionbank Physics 1"

Transcription

1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the direction of the velocity of the particle marked P? (Total 1 mark) IB Questionbank Physics 1

2 2. The graph shows how the displacement varies with time for an object undergoing simple harmonic motion. Which graph shows how the object s acceleration a varies with time t? (Total 1 mark) IB Questionbank Physics 2

3 3. Light travels from air into glass as shown below. What is the refractive index of glass? A. sin P sin S B. sin Q sin R C. sin P sin R D. sin Q sin S (Total 1 mark) IB Questionbank Physics 3

4 4. Which of the following electromagnetic waves has a frequency greater than that of visible light? A. Ultraviolet B. Radio C. Microwaves D. Infrared (Total 1 mark) 5. This question is about simple harmonic oscillations. A longitudinal wave travels through a medium from left to right. Graph 1 shows the variation with time t of the displacement x of a particle P in the medium. Graph 1 (a) For particle P, (i) state how graph 1 shows that its oscillations are not damped. IB Questionbank Physics 4

5 (ii) calculate the magnitude of its maximum acceleration. (2) (iii) calculate its speed at t = 0.12 s. (2) (iv) state its direction of motion at t = 0.12 s. IB Questionbank Physics 5

6 (b) Graph 2 shows the variation with position d of the displacement x of particles in the medium at a particular instant of time. Graph 2 Determine for the longitudinal wave, using graph 1 and graph 2, (i) the frequency. (2) (ii) the speed. (2) IB Questionbank Physics 6

7 Graph 2 reproduced to assist with answering (c)(i). (c) The diagram shows the equilibrium positions of six particles in the medium. (i) On the diagram above, draw crosses to indicate the positions of these six particles at the instant of time when the displacement is given by graph 2. (3) IB Questionbank Physics 7

8 (ii) On the diagram above, label with the letter C a particle that is at the centre of a compression. (Total 14 marks) 6. A particle oscillates with simple harmonic motion with period T. At time t = 0, the particle has its maximum displacement. Which graph shows the variation with time t of the kinetic energy E k of the particle? (Total 1 mark) IB Questionbank Physics 8

9 7. An object is undergoing simple harmonic motion with light damping. The natural frequency of oscillation of the object is f 0. A periodic force of frequency f is applied to the object. Which of the following graphs best shows how the amplitude a of oscillation of the object varies with f? (Total 1 mark) IB Questionbank Physics 9

10 8. The graph shows measurements of the height h of sea level at different times t in the Bay of Fundy. Which of the following gives the approximate amplitude and period of the tides? Amplitude Period A. 6.5 m 6 hours B. 13 m 12 hours C. 6.5 m 12 hours D. 13 m 6 hours (Total 1 mark) IB Questionbank Physics 10

11 λ 9. Two waves meet at a point. The waves have a path difference of. The phase difference 4 between the waves is π A. rad. 8 π B. rad. 4 π C. rad. 2 D. π rad. (Total 1 mark) 10. This question is about simple harmonic motion (SHM) and a wave in a string. (a) By reference to simple harmonic motion, state what is meant by amplitude (b) A liquid is contained in a U-tube. Diagram 1 Diagram 2 The pressure on the liquid in one side of the tube is increased so that the liquid is displaced as shown in diagram 2. When the pressure is suddenly released the liquid oscillates. The damping of the oscillations is small. IB Questionbank Physics 11

12 (i) Describe what is meant by damping. (2) (ii) The displacement of the liquid surface from its equilibrium position is x. The acceleration a of the liquid in the tube is given by the expression a = 2g l x where g is the acceleration of free fall and l is the total length of the liquid column. The total length of the liquid column in the tube is 0.32 m. Determine the period of oscillation. (3) IB Questionbank Physics 12

13 (c) A wave is travelling along a string. The string can be modelled as a single line of particles and each particle executes simple harmonic motion. The period of oscillation of the particles is 0.80 s. The graph shows the displacement y of part of the string at time t = 0. The distance along the string is d. (i) On the graph, draw an arrow to show the direction of motion of particle P at the point marked on the string. (ii) Determine the magnitude of the velocity of particle P. (4) IB Questionbank Physics 13

14 (iii) Show that the speed of the wave is 5.0 m s 1. (3) (iv) On the graph above, label with the letter X the position of particle P at t = 0.40 s. (Total 15 marks) 11. A string vibrates with fundamental frequency f. The wavelength of the sound produced in air is λ. Which of the following correctly gives the frequency of vibration of the fourth harmonic of the string and the wavelength of the sound in air? A. Frequency f 2 Wavelength λ 4 B. 4 f 4λ C. f 2 4λ D. 4 f λ 4 (Total 1 mark) 12. This question is about simple harmonic motion (SHM), wave motion and polarization. (a) By reference to simple harmonic motion, state what is meant by amplitude IB Questionbank Physics 14

15 (b) A liquid is contained in a U-tube. Diagram 1 Diagram 2 The pressure on the liquid in one side of the tube is increased so that the liquid is displaced as shown in diagram 2. When the pressure is suddenly released the liquid oscillates. The damping of the oscillations is small. (i) Describe what is meant by damping. (2) (ii) The displacement of the liquid surface from its equilibrium position is x. The acceleration a of the liquid in the tube is given by the expression a = 2g l x where g is the acceleration of free fall and l is the total length of the liquid column. Explain, with reference to the motion of the liquid, the significance of the minus sign. (2) IB Questionbank Physics 15

16 (iii) The total length of the liquid column in the tube is 0.32 m. Determine the period of oscillation. (3) (c) A wave is travelling along a string. The string can be modelled as a single line of particles and each particle executes simple harmonic motion. The period of oscillation of the particles is 0.80 s. The graph shows the displacement y of part of the string at time t = 0. The distance along the string is d. (i) On the graph, draw an arrow to show the direction of motion of particle P at the point marked on the string. IB Questionbank Physics 16

17 (ii) Determine the magnitude of the velocity of particle P. (4) (iii) Show that the speed of the wave is 5.0 m s 1. (3) (iv) On the graph above, label with the letter X the position of particle P at t = 0.40 s. IB Questionbank Physics 17

18 (d) The string in (c) is fixed at both ends and is made to vibrate in a vertical plane in its first harmonic. (i) Describe how the standing wave in the string gives rise to the first harmonic. (3) (ii) Outline how a travelling wave in a string can be used to describe the nature of polarized light. (3) IB Questionbank Physics 18

19 (e) James is wearing polarized sunglasses and views the sunlight reflected from the smooth surface of a lake. The angle θ is the angle between the surface of the lake and James s line of sight. Calculate the value of θ at which the reflected sunlight from the surface is minimized. The refractive index of the water is (2) (Total 25 marks) IB Questionbank Physics 19

20 13. The graph shows how the velocity v of an object undergoing simple harmonic motion varies with time t for one complete period of oscillation. Which of the following sketch graphs best shows how the total energy E of the object varies with t? (Total 1 mark) IB Questionbank Physics 20

21 14. A force that varies sinusoidally is applied to a system that is lightly damped. Which of the following must be true of the force for resonance to occur? A. It must always be in anti-phase with the oscillations of the system. B. Its direction must always be in the direction of motion of the oscillations of the system. C. Its frequency must be equal to the frequency of oscillation of the system. D. Its amplitude must be equal to the amplitude of oscillation of the system. (Total 1 mark) 15. Two waves meet at a point in space. Which of the following properties always add together? A. Displacement B. Amplitude C. Speed D. Frequency (Total 1 mark) 16. This question is about water wave motion. A small sphere, mounted at the end of a vertical rod, dips below the surface of shallow water in a tray. The sphere is driven vertically up and down by a motor attached to the rod. The oscillations of the sphere produce travelling waves on the surface of the water. IB Questionbank Physics 21

22 (a) The diagram shows how the displacement of the water surface at a particular instant in time varies with distance from the sphere. The period of oscillation of the sphere is s. Use the diagram to calculate, for the wave, (i) the amplitude. (ii) the wavelength. (iii) the frequency. IB Questionbank Physics 22

23 (iv) the speed. (b) The wave moves from region A into a region B of shallower water. The waves move more slowly in region B. The diagram (not to scale) shows some of the wavefronts in region A. (i) With reference to a wave, distinguish between a ray and a wavefront. (2) IB Questionbank Physics 23

24 (ii) The angle between the wavefronts and the interface in region A is 60. The refractive index A n B is 1.4. Determine the angle between the wavefronts and the interface in region B. (2) (iii) On the diagram above, construct three lines to show the position of three wavefronts in region B. (2) (c) Another sphere is dipped into the water. The spheres oscillate in phase. The diagram shows some lines in region A along which the disturbance of the water surface is a minimum. IB Questionbank Physics 24

25 (i) Outline how the regions of minimum disturbance occur on the surface. (3) (ii) The frequency of oscillation of the spheres is increased. State and explain how this will affect the positions of minimum disturbance. (2) (Total 15 marks) 17. This question is about water waves. A small sphere, mounted at the end of a vertical rod, dips below the surface of shallow water in a tray. The sphere is driven vertically up and down by a motor attached to the rod. The oscillations of the sphere produce travelling waves on the surface of the water. IB Questionbank Physics 25

26 (a) State what is meant by a travelling (progressive) wave (b) The diagram shows how the displacement of the water surface at a particular instant in time varies with distance from the sphere. The period of oscillation of the sphere is s. Use the diagram to calculate, for the wave, (i) the amplitude. (ii) the wavelength. IB Questionbank Physics 26

27 (iii) the frequency. (iv) the speed. (c) The wave moves from region A into a region B of shallower water. The waves move more slowly in region B. The diagram (not to scale) shows some of the wavefronts in region A. (i) On the diagram, draw three lines to complete the wavefronts in region B. (2) IB Questionbank Physics 27

28 (ii) Theory suggests that the wave speed c is related to the water depth d by c = gd where g is a constant. The refractive index for waves travelling from region A to region B is 1.4. Determine the following ratio. water depth in A water depth in B (3) (d) Another sphere is dipped into the water. The spheres oscillate in phase. The diagram shows some lines in region A along which the disturbance of the water surface is a minimum. IB Questionbank Physics 28

29 (i) Outline how the regions of minimum disturbance occur on the surface. (3) (ii) The frequency of oscillation of the spheres is increased. State and explain how this will affect the positions of minimum disturbance. (2) (Total 15 marks) 18. The shock absorbers of a car, in good working condition, ensure that the vertical oscillations of the car are A. undamped. B. lightly damped. C. moderately damped. D. critically damped. (Total 1 mark) IB Questionbank Physics 29

30 19. The graphs show how the acceleration a of four different particles varies with their displacement x. Which of the particles is executing simple harmonic motion? (Total 1 mark) IB Questionbank Physics 30

31 20. The diagram below is a snapshot of wave fronts of circular waves emitted by a point source S at the surface of water. The source vibrates at a frequency f = 10.0 Hz. The speed of the wave front is A cm s 1. B. 1.5 cm s 1. C. 15 cm s 1. D. 30 cm s 1. (Total 1 mark) IB Questionbank Physics 31

32 21. This question is about oscillations and waves. (a) A rectangular piece of wood of length l floats in water with its axis vertical as shown in diagram 1. The length of wood below the surface is d. The wood is pushed vertically downwards a distance A such that a length of wood is still above the water surface as shown in diagram 2. The wood is then released and oscillates vertically. At the instant shown in diagram 3, the wood is moving downwards and the length of wood beneath the surface is d + x. (i) On diagram 3, draw an arrow to show the direction of the acceleration of the wood. (ii) The acceleration a of the wood (in m s 2 ) is related to x (in m) by the following equation. a = 14 l Explain why this equation shows that the wood is executing simple harmonic motion. x (2) IB Questionbank Physics 32

33 (iii) The period of oscillation of the wood is 1.4 s. Show that the length l of the wood is 0.70 m. (3) (b) The wood in (a), as shown in diagram 2, is released at time t = 0. On the axes below, sketch a graph to show how the velocity v of the wood varies with time over one period of oscillation. (c) The distance A that the wood is initially pushed down is 0.12 m. (i) Calculate the magnitude of the maximum acceleration of the wood. (2) (ii) On your sketch graph in (b) label with the letter P one point where the magnitude of the acceleration is a maximum. IB Questionbank Physics 33

34 (d) The oscillations of the wood generate waves in the water of wavelength 0.45 m. The graph shows how the displacement D, of the water surface at a particular distance from the wood varies with time t. Using the graph, calculate the (i) speed of the waves. (2) (ii) ratio of the displacement at t = 1.75 s to the displacement at t = 0.35 s. (2) IB Questionbank Physics 34

35 (iii) ratio of the energy of the wave at t = 1.75 s to the energy at t = 0.35 s (Total 15 marks) 22. Two coherent point sources S 1 and S 2 emit spherical waves. Which of the following best describes the intensity of the waves at P and Q? P Q A. maximum minimum B. minimum maximum C. maximum maximum D. minimum minimum (Total 1 mark) IB Questionbank Physics 35

36 23. The shock absorbers of a car, in good working condition, ensure that the vertical oscillations of the car are A. undamped. B. lightly damped. C. moderately damped. D. critically damped. (Total 1 mark) IB Questionbank Physics 36

A longitudinal wave travels through a medium from left to right.

A longitudinal wave travels through a medium from left to right. 1. This question is about simple harmonic oscillations. A longitudinal wave travels through a medium from left to right. Graph 1 shows the variation with time t of the displacement x of a particle P in

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion 1. Simple harmonic motion and the greenhouse effect (a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion. 1. 2. (b) In a simple model

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 74 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 4 TEST REVIEW 1. In which of the following regions of the electromagnetic spectrum is radiation

More information

1. Data analysis question.

1. Data analysis question. 1. Data analysis question. The photograph below shows a magnified image of a dark central disc surrounded by concentric dark rings. These rings were produced as a result of interference of monochromatic

More information

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark) Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

More information

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth. Waves_P2 [152 marks] A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth. The beam is incident normally on a double slit. The distance between the slits

More information

17 M00/430/H(2) B3. This question is about an oscillating magnet.

17 M00/430/H(2) B3. This question is about an oscillating magnet. 17 M00/430/H(2) B3. This question is about an oscillating magnet. The diagram below shows a magnet M suspended vertically from a spring. When the magnet is in equilibrium its mid-point P coincides with

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

Topic 4 &11 Review Waves & Oscillations

Topic 4 &11 Review Waves & Oscillations Name: Date: Topic 4 &11 Review Waves & Oscillations 1. A source produces water waves of frequency 10 Hz. The graph shows the variation with horizontal position of the vertical displacement of the surface

More information

Chapter 11. Vibrations and Waves

Chapter 11. Vibrations and Waves Chapter 11 Vibrations and Waves Driven Harmonic Motion and Resonance RESONANCE Resonance is the condition in which a time-dependent force can transmit large amounts of energy to an oscillating object,

More information

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0?

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0? TB [103 marks] 1. A periodic driving force of frequency ƒ acts on a system which undergoes forced oscillations of amplitude A. The graph below shows the variation with ƒ of A. The maximum amplitude A 0

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Oscillation: Wave: Examples of oscillations: 1. mass on spring (eg. bungee jumping) 2. pendulum (eg. swing) 3. object bobbing in water (eg. buoy, boat) 4. vibrating cantilever (eg.

More information

AHL 9.1 Energy transformation

AHL 9.1 Energy transformation AHL 9.1 Energy transformation 17.1.2018 1. [1 mark] A pendulum oscillating near the surface of the Earth swings with a time period T. What is the time period of the same pendulum near the surface of the

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION WAVES SIMPLE HARMONIC MOTION Simple Harmonic Motion (SHM) Vibration about an equilibrium position in which a restoring force is proportional to the displacement from equilibrium TYPES OF SHM THE PENDULUM

More information

spring magnet Fig. 7.1 One end of the magnet hangs inside a coil of wire. The coil is connected in series with a resistor R.

spring magnet Fig. 7.1 One end of the magnet hangs inside a coil of wire. The coil is connected in series with a resistor R. 1 A magnet is suspended vertically from a fixed point by means of a spring, as shown in Fig. 7.1. spring magnet coil R Fig. 7.1 One end of the magnet hangs inside a coil of wire. The coil is connected

More information

0.4 s 0.8 s 1.5 s. 2.5 s. 2. A beam of light from a ray box spreads out as shown in the diagram and strikes a plane mirror.

0.4 s 0.8 s 1.5 s. 2.5 s. 2. A beam of light from a ray box spreads out as shown in the diagram and strikes a plane mirror. 1. ship is fitted with echo-sounding equipment. pulse of sound is sent downwards from the ship at a speed of 1500 m/s. The seabed is 600m below the ship. How long will it take the pulse of sound to return

More information

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string? 1. In the produce section of a supermarket, five pears are placed on a spring scale. The placement of the pears stretches the spring and causes the dial to move from zero to a reading of 2.0 kg. If the

More information

(1) (3)

(1) (3) 1. This question is about momentum, energy and power. (a) In his Principia Mathematica Newton expressed his third law of motion as to every action there is always opposed an equal reaction. State what

More information

glass Calculate the magnitude of the Young modulus for glass. State your answer to (a) in terms of SI fundamental units.

glass Calculate the magnitude of the Young modulus for glass. State your answer to (a) in terms of SI fundamental units. Q1.The term ultrasound refers to vibrations in a material that occur at frequencies too high to be detected by a human ear. When ultrasound waves move through a solid, both longitudinal and transverse

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class:

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class: Homework Book Wave Properties Huijia Physics Homework Book 1 Semester 2 Name: Homeroom: Physics Class: Week 1 Reflection, Refraction, wave equations 1. If the wavelength of an incident wave is 1.5cm and

More information

Chapter 13. F =!kx. Vibrations and Waves. ! = 2" f = 2" T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases.

Chapter 13. F =!kx. Vibrations and Waves. ! = 2 f = 2 T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases. Chapter 13 Vibrations and Waves Hooke s Law Reviewed F =!k When is positive, F is negative ; When at equilibrium (=0, F = 0 ; When is negative, F is positive ; 1 2 Sinusoidal Oscillation Graphing vs. t

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Wave Motion

JURONG JUNIOR COLLEGE Physics Department Tutorial: Wave Motion JURONG JUNIOR COLLEGE Physics Department Tutorial: Wave Motion 1 The same progressive wave is represented by the following graphs. displacement y against time y p y displacement y against position x q

More information

4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes

4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes 4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes I. DEFINING TERMS A. HOW ARE OSCILLATIONS RELATED TO WAVES? II. EQUATIONS

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

More information

The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is directly proportional to the frequency.

The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is directly proportional to the frequency. Q1.For a body performing simple harmonic motion, which one of the following statements is correct? The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is

More information

A-level Physics (7407/7408)

A-level Physics (7407/7408) A-level Physics (7407/7408) Further Mechanics Test Name: Class: Date: September 2016 Time: 55 Marks: 47 Page 1 Q1.The diagram shows a strobe photograph of a mark on a trolley X, moving from right to left,

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 16 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc. Chapter 16 Traveling Waves IN THIS CHAPTER, you will learn the basic properties

More information

Standing waves [49 marks]

Standing waves [49 marks] Standing waves [49 marks] 1. The graph shows the variation with time t of the velocity v of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Physics Common Assessment Unit 5-8 3rd Nine Weeks 1) What is the direction of the force(s) that maintain(s) circular motion? A) one force pulls the object inward toward the radial center while another force pushes the object at a right angle to the first

More information

1. C [1] 2. D [1] 3. D [1] 4. A [1] 5. (a) (i) the amplitude is constant; 1

1. C [1] 2. D [1] 3. D [1] 4. A [1] 5. (a) (i) the amplitude is constant; 1 1. C. D 3. D 4. A 5. (a) (i) the amplitude is constant 1 period is 0.0s a max = π = = 19.7 0 m s x0 31.4.0 10 T Award [] for correct bald answer and ignore any negative signs in answer. (iii) displacement

More information

AHL 9.1 Energy transformation

AHL 9.1 Energy transformation AHL 9.1 Energy transformation 17.1.2018 1. [1 mark] A pendulum oscillating near the surface of the Earth swings with a time period T. What is the time period of the same pendulum near the surface of the

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

NARAYANA JUNIOR COLLEGE

NARAYANA JUNIOR COLLEGE SR IIT ALL STREAMS ADV MODEL DPT-6 Date: 18/04/2016 One (or) More Than One Answer Type: PHYSICS 31. A particle is executing SHM between points -X m and X m, as shown in figure-i. The velocity V(t) of the

More information

Section 1 Simple Harmonic Motion. The student is expected to:

Section 1 Simple Harmonic Motion. The student is expected to: Section 1 Simple Harmonic Motion TEKS The student is expected to: 7A examine and describe oscillatory motion and wave propagation in various types of media Section 1 Simple Harmonic Motion Preview Objectives

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

AP Physics 1 Waves and Simple Harmonic Motion Practice Test AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical

More information

Waves Final Review. Name: Date: 1. On which one of the following graphs is the wavelength λ and the amplitude a of a wave correctly represented?

Waves Final Review. Name: Date: 1. On which one of the following graphs is the wavelength λ and the amplitude a of a wave correctly represented? Name: Date: Waves Final Review 1. On which one of the following graphs is the wavelength λ and the amplitude a of a wave correctly represented? A. Displacement λ a Distance along wave B. Displacement λ

More information

St Olave s Grammar School. AS Physics Mock Revision Checklist

St Olave s Grammar School. AS Physics Mock Revision Checklist St Olave s Grammar School Mock Practical skills.. a Can you design experiments, including ones to solve problems set in a practical context?.. b Can you identify the variables that must be controlled in

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Preview Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects. Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there

More information

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice Exam Instructions The final exam will be weighted as follows: Modules 1 6 15 20% Modules

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

) in the box next to your answer. (1) (b) Explain why it is difficult to predict when an earthquake will happen. (2)

) in the box next to your answer. (1) (b) Explain why it is difficult to predict when an earthquake will happen. (2) Earthquakes 1 (a) Seismic (earthquake) waves can be either P-waves or S-waves. Which row of the table is correct for P-waves? Put a cross ( ) in the box next to your answer. (1) type of wave can they be

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

A Level. A Level Physics. Oscillations (Answers) AQA, Edexcel. Name: Total Marks: /30

A Level. A Level Physics. Oscillations (Answers) AQA, Edexcel. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA, Edexcel A Level A Level Physics Oscillations (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. The graph

More information

Name: Period: Date: Explain why the sound heard by the observer changes regularly. Determine the maximum frequency of the sound heard by the observer.

Name: Period: Date: Explain why the sound heard by the observer changes regularly. Determine the maximum frequency of the sound heard by the observer. Name: Period: Date: IB-2 Doppler Effect Practice 1. This question is about the Doppler effect. A stationary loudspeaker emits sound of frequency of 1000 Hz. Nadine attaches the loudspeaker to a string.

More information

not to be republished NCERT OSCILLATIONS Chapter Fourteen MCQ I π y = 3 cos 2ωt The displacement of a particle is represented by the equation

not to be republished NCERT OSCILLATIONS Chapter Fourteen MCQ I π y = 3 cos 2ωt The displacement of a particle is represented by the equation Chapter Fourteen OSCILLATIONS MCQ I 14.1 The displacement of a particle is represented by the equation π y = 3 cos 2ωt 4. The motion of the particle is (a) simple harmonic with period 2p/w. (b) simple

More information

UNIT 1 MODULE 2: OSCILLATIONS AND WAVES GENERAL OBJECTIVES EXPLANATORY NOTES SPECIFIC OBJECTIVES. On completion of this Module, students should:

UNIT 1 MODULE 2: OSCILLATIONS AND WAVES GENERAL OBJECTIVES EXPLANATORY NOTES SPECIFIC OBJECTIVES. On completion of this Module, students should: MODULE 2: OSCILLATIONS AND WAVES GENERAL OBJECTIVES On completion of this Module, students should: 1. understand the different types of oscillatory motion; 2. appreciate the properties common to all 3.

More information

KEY SOLUTION. 05/07/01 PHYSICS 223 Exam #1 NAME M 1 M 1. Fig. 1a Fig. 1b Fig. 1c

KEY SOLUTION. 05/07/01 PHYSICS 223 Exam #1 NAME M 1 M 1. Fig. 1a Fig. 1b Fig. 1c KEY SOLUTION 05/07/01 PHYSICS 223 Exam #1 NAME Use g = 10 m/s 2 in your calculations. Wherever appropriate answers must include units. 1. Fig. 1a shows a spring, 20 cm long. The spring gets compressed

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration.

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration. is a What you Hear The ear converts sound energy to mechanical energy to a nerve impulse which is transmitted to the brain. The Pressure Wave sets the Ear Drum into Vibration. electroencephalogram v S

More information

1. a) A flag waving in the breeze flaps once each s. What is the period and frequency of the flapping flag?

1. a) A flag waving in the breeze flaps once each s. What is the period and frequency of the flapping flag? PHYSICS 20N UNIT 4 REVIEW NAME: Be sure to show explicit formulas and substitutions for all calculational questions, where appropriate. Round final answers correctly; give correct units. Be sure to show

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations Chapter Goal: To understand systems that oscillate with simple harmonic motion. Slide 14-2 Chapter 14 Preview Slide 14-3 Chapter 14 Preview Slide 14-4 Chapter 14 Preview Slide 14-5

More information

WAVES MODULE 3.1 PRACTICAL ACTIVITY TRAVELLING WAVES GRAPHICAL ANALYSIS WORKSHOP

WAVES MODULE 3.1 PRACTICAL ACTIVITY TRAVELLING WAVES GRAPHICAL ANALYSIS WORKSHOP HSC PHYSICS ONLINE WAVES MODULE 3.1 PRACTICAL ACTIVITY TRAVELLING WAVES GRAPHICAL ANALYSIS WORKSHOP This practical activity is best done with a team of three people. There should be a reflection period

More information

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 15 Lecture RANDALL D. KNIGHT Chapter 15 Oscillations IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic

More information

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path? T5-1 [237 marks] 1. A circuit is formed by connecting a resistor between the terminals of a battery of electromotive force (emf) 6 V. The battery has internal resistance. Which statement is correct when

More information

Year 9- Physics First Term Revision

Year 9- Physics First Term Revision Year 9- Physics First Term Revision All objects EMIT and ABSORB infrared radiation The hotter the obect, the more infrared radiation it emits (gives off) Dark/Matte surfaces are good absorbers of infrared

More information

[2] [2] Fig. 4.1

[2] [2] Fig. 4.1 1 (a) (i) Explain what is meant by a progressive wave.... [2] (ii) State two differences between a progressive and a stationary wave. 1... 2... [2] (b) Fig. 4.1 shows, at time t = 0, the shape of a section

More information

Test 3 Preparation Questions

Test 3 Preparation Questions Test 3 Preparation Questions A1. Which statement is true concerning an object executing simple harmonic motion? (A) Its velocity is never zero. (B) Its acceleration is never zero. (C) Its velocity and

More information

AP Physics Problems Simple Harmonic Motion, Mechanical Waves and Sound

AP Physics Problems Simple Harmonic Motion, Mechanical Waves and Sound AP Physics Problems Simple Harmonic Motion, Mechanical Waves and Sound 1. 1977-5 (Mechanical Waves/Sound) Two loudspeakers, S 1 and S 2 a distance d apart as shown in the diagram below left, vibrate in

More information

D. 2πmv 2 (Total 1 mark)

D. 2πmv 2 (Total 1 mark) 1. A particle of mass m is moving with constant speed v in uniform circular motion. What is the total work done by the centripetal force during one revolution? A. Zero B. 2 mv 2 C. mv 2 D. 2πmv 2 2. A

More information

Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves

Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves Sang-Wook Cheong Friday, February 16 th, 2017 Two Exam 1 Questions with errors Correct answer: L = r X p = (2000

More information

Answers to examination-style questions. Answers Marks Examiner s tips

Answers to examination-style questions. Answers Marks Examiner s tips (a) (i) With the object on the spring: the mean value of x = 72 mm, e = 70 mm (ii).4% Each reading was ±0.5 mm. As the extension was the subtraction of two readings the absolute errors are added to give

More information

CHAPTER 11 TEST REVIEW

CHAPTER 11 TEST REVIEW AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST

More information

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves PHYSICS 220 Lecture 19 Waves What is a Wave A wave is a disturbance that travels away from its source and carries energy. A wave can transmit energy from one point to another without transporting any matter

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

More information

Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance

Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance Oscillations Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance 1 Revision problem Please try problem #31 on page 480 A pendulum

More information

Chapter 14 (Oscillations) Key concept: Downloaded from

Chapter 14 (Oscillations) Key concept: Downloaded from Chapter 14 (Oscillations) Multiple Choice Questions Single Correct Answer Type Q1. The displacement of a particle is represented by the equation. The motion of the particle is (a) simple harmonic with

More information

Chapter 16: Oscillations

Chapter 16: Oscillations Chapter 16: Oscillations Brent Royuk Phys-111 Concordia University Periodic Motion Periodic Motion is any motion that repeats itself. The Period (T) is the time it takes for one complete cycle of motion.

More information

PAP Physics Spring Exam Review

PAP Physics Spring Exam Review Class: Date: PAP Physics Spring Exam Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. A container of gas is at a pressure of.3 0 5 Pa

More information

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1 Q1. Two points on a progressive wave are one-eighth of a wavelength apart. The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave? 0.2

More information

Superposition and Standing Waves

Superposition and Standing Waves Physics 1051 Lecture 9 Superposition and Standing Waves Lecture 09 - Contents 14.5 Standing Waves in Air Columns 14.6 Beats: Interference in Time 14.7 Non-sinusoidal Waves Trivia Questions 1 How many wavelengths

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HARMONIC MOTION Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 Fig..1 shows a device for measuring the frequency of vibrations of an engine. The rigid

More information

Waves Encountering Barriers

Waves Encountering Barriers Waves Encountering Barriers Reflection and Refraction: When a wave is incident on a boundary that separates two regions of different wave speed, part of the wave is reflected and part is transmitted. Figure

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

General Physics I Spring Oscillations

General Physics I Spring Oscillations General Physics I Spring 2011 Oscillations 1 Oscillations A quantity is said to exhibit oscillations if it varies with time about an equilibrium or reference value in a repetitive fashion. Oscillations

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

AP Physics B Summer Assignment

AP Physics B Summer Assignment BERGEN COUNTY TECHNICAL SCHOOL AP Physics B Summer Assignment 2011 Solve all problems on separate paper. This will be due the first week of school. If you need any help you can e-mail Mr. Zavorotniy at

More information

1. For which of the following motions of an object must the acceleration always be zero?

1. For which of the following motions of an object must the acceleration always be zero? 1. For which of the following motions of an object must the acceleration always be zero? I. Any motion in a straight line II. Simple harmonic motion III. Any motion in a circle I only II only III that

More information

Final Exam Concept Map

Final Exam Concept Map Final Exam Concept Map Rule of thumb to study for any comprehensive final exam - start with what you know - look at the quiz problems. If you did not do well on the quizzes, you should certainly learn

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

f 1/ T T 1/ f Formulas Fs kx m T s 2 k l T p 2 g v f

f 1/ T T 1/ f Formulas Fs kx m T s 2 k l T p 2 g v f f 1/T Formulas T 1/ f Fs kx Ts 2 m k Tp 2 l g v f What do the following all have in common? Swing, pendulum, vibrating string They all exhibit forms of periodic motion. Periodic Motion: When a vibration

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

Physics Spring 2008 Midterm #1 Solution

Physics Spring 2008 Midterm #1 Solution Physics 102-1 Spring 2008 Midterm #1 Solution Grading note: There are seven problems on nine pages. Point values are given with each problem. They add up to 110 points. In multi-part problems, points are

More information

motion and waves 4 Simple harmonic Kinematics of simple harmonic motion Oscillations 4.1

motion and waves 4 Simple harmonic Kinematics of simple harmonic motion Oscillations 4.1 4 Simple harmonic motion and waves 4.1 Kinematics of simple harmonic motion swing is an example of oscillatory motion. ssessment statements 4.1.1 Describe examples of oscillations. 4.1.2 Define the terms

More information