Quantum Knots & Mosaics

Size: px
Start display at page:

Download "Quantum Knots & Mosaics"

Transcription

1 Quantum nots??? Quantum nots & Mosaics Samuel Lomonaco University of Maryland Baltimore County (UMBC) Webage: L-O-O- This talk was motivated by a number of papers This talk is based on the paper Lomonaco, Samuel, and Louis auffman, Quantum nots and Mosaics, QI, (008). Rasetti,, Mario, and Tullio Regge, Vortices in He II, current algebras and quantum knots, hysica 80 A, North-Holland, (975), itaev,, Alexei Yu, Fault-tolerant tolerant quantum computation by anyons, ph/97070 Lomonaco, Samuel J., Jr., The modern legacies of Thomson's atomic vortex theory in classical electrodynamics, AMS SAM/5, rovidence, RI (996), Classical Vortices in lasmas What Motivated This Talk? Lomonaco, Samuel J., Jr., The modern legacies of Thomson's atomic vortex theory in classical electrodynamics, AMS SAM/5, rovidence, RI (996),

2 nots Naturally Arise in the Quantum World as Dynamical rocesses Examples of dynamical knots in quantum physics: notted vortices In supercooled helium II In the Bose-Einstein Condensate In the Electron fluid found within the fractional quantum Hall effect Reason for current intense interest: A Natural Topological Obstruction to Decoherence Objectives We seek to create a quantum system that simulates a closed knotted physical piece of rope. We seek to define a quantum knot in such a way as to represent the state of the knotted rope, i.e., the particular spatial configuration of the knot tied in the rope. We also seek to model the ways of moving the rope around (without cutting the rope, and without letting it pass through itself.) Rules of the Game Find a mathematical definition of a quantum knot that is hysically meaningful, i.e., physically implementable,, and Simple enough to be workable and useable. Aspirations We would hope that this definition will be useful in modeling and predicting the behavior of knotted vortices that actually occur in quantum physics such as In supercooled helium II In the Bose-Einstein Condensate In the Electron fluid found within the fractional quantum Hall effect Overview art. Mosaic nots We reduce tame knot theory to a formal system of string manipulation rules,, i.e., string rewriting rules. art Mosaic nots art. Quantum nots We then use mosaic knots to build a physically implementable definition of quantum knots.

3 ??? Mosaic nots T Mosaic Tiles ( u) Let denote the following set of symbols, called mosaic (unoriented) tiles: lease note that, up to rotation, there are exactly 5 tiles Definition of an n-mosaicn An n-mosaic is an n n matrix of tiles, with rows and columns indexed 0,,, n Tile Connection oints A connection point of a tile is a midpoint of an edge which is also the endpoint of a curve drawn on a tile. For example, An example of a 4-mosaic4 0 Connection oints Connection oints 4 Connection oints Contiguous Tiles Two tiles in a mosaic are said to be contiguous if they lie immediately next to each other in either the same row or the same column. Contiguous Not Contiguous Suitably Connected Tiles A tile in a mosaic is said to be Suitably Connected if all its connection points touch the connection points of contiguous tiles. For example, Suitably Connected Not Suitably Connected 3

4 not Mosaics Figure Eight not 5-Mosaic A knot mosaic is a mosaic with all tiles suitably connected. For example, Non-not 4-Mosaic not 4-Mosaic Hopf Link 4-Mosaic Borromean Rings 6-Mosaic Notation M Set of n-mosaics Subset of knot n-mosaics lanar Isotopy Moves 4

5 Non-Determistic Tiles We use the following tile symbols to denote one of two possible tiles: lanar Isotopy (I) Moves on Mosaics 3 For example, the tile or denotes either lanar Isotopy (I) Moves on Mosaics It is understood that each of the above moves depicts all moves obtained by rotating the sub-mosaics by 0, 90, 80,, or 70 degrees. For example, represents each of the following 4 moves: Terminology: k-submosaic Moves Def. A k-submosaic move on a mosaic M is a mosaic move that replaces one k- submosaic in M by another k-submosaic. All of the I moves are examples of -submosaic moves. I.e., each I move replaces a -submosaic by another -submosaic For example, lanar Isotopy (I) Moves on Mosaics Each of the I -submosaic moves represents any one of the (n-k+) possible moves on an n-mosaic lanar Isotopy (I) Moves on Mosaics Each I move acts as a local transformation on an n-mosaic whenever its conditions are met. If its conditions are not met, it acts as the identity transformation. Ergo, each I move is a permutation of the set of all knot n-mosaics In fact, each I move,, as a permutation, is a product of disjoint transpositions. 5

6 Reidemeister (R) Moves on Mosaics Reidemeister Moves R R ' R ' R '' R ''' R More Non-Deterministic Tiles We also use the following tile symbols to denote one of two possible tiles: Synchronized Non-Determistic Tiles Nondeterministic tiles labeled by the same letter are synchronized: For example, the tile or denotes either Reidemeister (R) Moves on Mosaics Reidemeister (R) Moves on Mosaics R 3 '' R 3 ' R 3 ''' R 3 Just like each I move, each R move is a permutation of the set of all knot n-mosaics In fact, each R move,, as a permutation, is a product of disjoint transpositions. ( iv ) R3 ( v ) R3 6

7 The Ambient Group An ( ) We define the ambient isotopy group An ( ) as the subgroup of the group of all permutations of the set generated by the all I moves and all Reidemeister moves. not Type The Mosaic Injection ι ι : M We define the mosaic injection M ( n+ ) ι : M M if 0 i, j n otherwise ( n ) i, j M + < i, j M ( n+ ) Mosaic not Type Def. Two n-mosaics M and same knot n-type,, written n M M' M ' are of the provided there exists an element of the ambient group An ( ) that transforms M into M '. Two n-mosaics M and M ' are of the same knot type if there exists a non-negative negative integer k such that n+ k k ι M k i M' ' n Quickly page through slides 44 to 60 to see animation 7 7

8

9

10 ' n Oriented Mosaics 7 0

11 Oriented Mosaics and Oriented not Type In like manner, we can use the following oriented tiles to construct oriented mosaics, oriented mosaic knots,, and oriented knot type There are 9 oriented tiles, and 9 tiles up to rotation. Rotationally equivalent tiles have been grouped together. art Quantum nots & Quantum not Systems The Hilbert Space ( n ) M Let H be the dimensional Hilbert space with orthonormal basis labeled by the tiles T0 T T T3 T4 T5 T6 T7 T8 T9 T0 We define the Hilbert space M as n ( n ) M H k 0 of n-mosaicsn ( n ) This is the Hilbert space with induced orthonormal basis n T 0 ( k) : 0 ( k) < k { } of n-mosaics The Hilbert Space ( n ) M n We identify each basis ket T k 0 a ket M labeled by an n-mosaic M row major order. ( k ) with using For example, in the 3-mosaic Hilbert space (3) M, the basis ket T T T T T T T T T is identified with the 3-mosaic labeled ket T T5 T4 T9 T T T T T of n-mosaicsn Identification via Row Major Order Let H be the dimensional Hilbert space with orthonormal basis labeled by the tiles T0 T T T3 T4 T5 T6 T7 T8 T9 T0 Construct Mosaic Space n H 0 i, j< n T Select Basis Element k(,) i j H H H H H H H Row Major Order H H H H H H H H H The Hilbert Space ( n ) of Quantum nots The Hilbert space of quantum knots is defined as the sub-hilbert space of M spanned by all orthonormal basis elements labeled by knot n-mosaics.

12 Quantum nots ( n ) We define the Hilbert space M of n-mosaics as ( n ) n M k H 0 This is the Hilbert space with induced orthonormal basis n { } T 0 ( k ) :0 < n k n We identify each basis element T k 0 ( k ) with the mosaic labeled ket M via the bijection T M i, j Row major order where i / n and ni + j j n / n An Example of a Quantum not + The Ambient Group An ( ) as a Unitary Group We identify each element g An ( ) with the linear transformation defined by g Since each element g An ( ) is a permutation, it is a linear transformation that simply permutes basis elements. Hence, under this identification, the ambient group An ( ) becomes a discrete group of unitary transfs on the Hilbert space. An Example of the R R An ( ) + + Group Action The Quantum not System (, An ( ) ) A quantum knot system (, An ( ) ) Def. is a quantum system having as its state space, and having the Ambient group An ( ) as its set of accessible unitary transformations. ( ) The states of quantum system, An ( ) are quantum knots.. The elements of the ambient group An ( ) are quantum moves. () ( ) ( ) (, ()) ( n n+ A, An ( )) (, An ( ) ) ι ι ι ι + hysically hysically hysically Implementable Implementable Implementable The Quantum not System (, An ( ) ) () ( ) ( ) (, ()) ( n n+ A, An ( )) (, An ( ) ) ι ι ι ι + hysically hysically hysically Implementable Implementable Implementable Choosing an integer n is analogous to choosing a length of rope. The longer the rope, the more knots that can be tied. The parameters of the ambient group An ( ) are the knobs one turns to spacially manipulate the quantum knot.

13 Quantum not Type Def. Two quantum knots and are of the same knot n-type,, written n, provided there is an element g g An ( ) s.t. They are of the same knot type,, written m ι, provided there is an integer ι m n+ m m 0 such that Two Quantum nots of the Same not Type R R + + Two Quantum nots NOT of the Same not Type + Hamiltonians of the Generators of the Ambient Group Hamiltonians for An ( ) Each generator g An ( ) is the product of disjoint transpositions, i.e., ( α, β )( α, β ) ( α, β ) g Choose a permutation η so that η gη Hence, σ (, )(, ) (, ) 3 3 σ η gη σ I n 0 0, where σ Also, let σ 0 0, and note that iπ ln( σ) ( s+ )( σ0 σ), s For simplicity, we always choose the branch s 0. ( ) H iηln η gη η g Hamiltonians for An ( ) ( ) π I η σ σ 0 0 η 0 0 ( n ) ( n ) 3

14 Hamiltonians for An ( ) Using the Hamiltonian for the Reidemeister (,) move g e iπ t cos π t and the initial state we have that the solution to Schroedinger s equation for time t is π t i sin Some Miscellaneous Unitary Transformations Not in A Misc. Transformations The crossing tunneling transformation τ ij ( i, j) Misc. Transformations The hyperbolic transformation η ij ( i, j) The mirror image transformation n µ i, j 0 ( i, j) The elliptic transformation ε ij ( i, j) Observable Q. not Invariants Observables which are Quantum not Invariants Question. What do we mean by a physically observable knot invariant? ( ) Let, An ( ) be a quantum knot system. Then a quantum observable Ω is a Hermitian operator on the Hilbert space ( ) n. 4

15 Observable Q. not Invariants Question. But which observables Ω are actually knot invariants? Def. An observable Ω is an invariant of quantum knots provided UΩ U Ω for all U A Observable Q. not Invariants Question. But how do we find quantum knot invariant observables? ( ) Theorem. Let, An ( ) knot system, and let W be a decomposition of the representation An ( ) into irreducible representations. be a quantum Then, for each, the projection operator for the subspace W is quantum knot observable. Observable Q. not Invariants ( ) Theorem. Let, An ( ) be a quantum knot system, and let Ω be an observable on. Let St ( Ω) be the stabilizer subgroup for Ω, i.e., St Ω U A : UΩ U Ω ( ) { } Then the observable UΩU U A/ St( Ω) is a quantum knot invariant, where the above sum is over a complete set of coset representatives of St Ω in An ( ). ( ) Ω Observable Q. not Invariants The following is an example of a quantum knot invariant observable: + Future Directions & Open Questions Future Directions & Open Questions What is the structure of the ambient group An ( ) and its direct limit A lim A? Can one find a presentation of this group? Unlike classical knots, quantum knots can exhibit the non-classical behavior of quantum superposition and quantum entanglement. Are quantum and topological entanglement related to one another? If so, how? 5

16 Future Directions & Open Questions How does one find a quantum observable for the Jones polynomial? This would be a family of observables parameterized by points on the circle in the complex plane. Does this approach lead to an algorithmic improvement to the quantum algorithm created by Aharonov,, Jones, and Landau? How does one create quantum knot observables that represent other knot invariants sauch as, for example, the Vassiliev invariants? Future Directions & Open Questions What is gained by extenting the definition of quantum knot observables to OVMs? What is gained by extending the definition of quantum knot observables to mixed ensembles? Future Directions & Open Questions Def. We define the mosaic number of a knot k as the smallest integer n for which k is representable as a knot n-mosaic. The mosaic number of the trefoil is 4. In general, how does one compute the mosaic number of a knot? Is the mosaic number related to the crossing number of a knot? Future Directions & Open Questions Can quantum knot systems be used to model and predict the behavior of Quantum vortices in supercooled helium? Quantum vortices in the Bose-Einstein Condensate Fractional charge quantification that is manifest in the fractional quantum Hall effect Quantum nots Research Lab!!! UMBC Quantum nots Research Lab 6

17 Weird!!! This talk is based on the paper Lomonaco, Samuel, and Louis auffman, Quantum nots and Mosaics, QI, (008). 7

Throughout this talk: Knot means either a knot or a link

Throughout this talk: Knot means either a knot or a link ??? Quantum nots??? Quantum nots & Mosaics Samuel Lomonaco University of Maryland Baltimore County (UMBC) Email: Lomonaco@UMBC.edu Webage: www.csee.umbc.edu/~lomonaco Throughout this talk: not means either

More information

Quantum Braids. Mosaics. Samuel Lomonaco 10/16/2011. This work is in collaboration with Louis Kauffman

Quantum Braids. Mosaics. Samuel Lomonaco 10/16/2011. This work is in collaboration with Louis Kauffman ??? Quantum raids & Mosaics Samuel Lomonaco University of Maryland altimore County (UMC) Email: Lomonaco@UMC.edu WebPage: www.csee.umbc.edu/~lomonaco Lomonaco Library This work is in collaboration with

More information

Quantum Knots and Mosaics

Quantum Knots and Mosaics Proceedings of Symposia in Applied Mathematics Quantum Knots and Mosaics Samuel J. Lomonaco and Louis H. Kauffman Abstract. In this paper, we give a precise and workable definition of a quantum knot system,

More information

Quantum Computing. Continuous Quantum Hidden Subgroup Algorithms. This work is in collaboration with. Louis H. Kauffman. Samuel J. Lomonaco, Jr.

Quantum Computing. Continuous Quantum Hidden Subgroup Algorithms. This work is in collaboration with. Louis H. Kauffman. Samuel J. Lomonaco, Jr. Quantum Computing amuel J. Lomonaco, Jr. Dept. of Comp. ci.. & Electrical Engineering University of Maryland Baltimore County Baltimore, MD 225 Email: Lomonaco@UMBC.EDU WebPage: http://www.csee.umbc.edu/~lomonaco

More information

Part 1. Grover s s Algorithm. Quantum Computing. The Grover, Shor,, and Deutsch-Jozsa. Algorithms. This work is supported by: Samuel J. Lomonaco, Jr.

Part 1. Grover s s Algorithm. Quantum Computing. The Grover, Shor,, and Deutsch-Jozsa. Algorithms. This work is supported by: Samuel J. Lomonaco, Jr. uantum Computing Samuel J. Lomonaco, Jr. Dept. o Comp. Sci.. & Electrical Engineering University o Maryland Baltimore County Baltimore, MD 5 Email: Lomonaco@UMBC.EDU Webage: http://www.csee.umbc.edu/~lomonaco

More information

Vassiliev Invariants, Chord Diagrams, and Jacobi Diagrams

Vassiliev Invariants, Chord Diagrams, and Jacobi Diagrams Vassiliev Invariants, Chord Diagrams, and Jacobi Diagrams By John Dougherty X Abstract: The goal of this paper is to understand the topological meaning of Jacobi diagrams in relation to knot theory and

More information

Topological order from quantum loops and nets

Topological order from quantum loops and nets Topological order from quantum loops and nets Paul Fendley It has proved to be quite tricky to T -invariant spin models whose quasiparticles are non-abelian anyons. 1 Here I ll describe the simplest (so

More information

Temperley Lieb Algebra I

Temperley Lieb Algebra I Temperley Lieb Algebra I Uwe Kaiser Boise State University REU Lecture series on Topological Quantum Computing, Talk 3 June 9, 2011 Kauffman bracket Given an oriented link diagram K we define K Z[A, B,

More information

Topological Quantum Computation from non-abelian anyons

Topological Quantum Computation from non-abelian anyons Topological Quantum Computation from non-abelian anyons Paul Fendley Experimental and theoretical successes have made us take a close look at quantum physics in two spatial dimensions. We have now found

More information

AN OVERVIEW OF KNOT INVARIANTS

AN OVERVIEW OF KNOT INVARIANTS AN OVERVIEW OF KNOT INVARIANTS WILL ADKISSON ABSTRACT. The central question of knot theory is whether two knots are isotopic. This question has a simple answer in the Reidemeister moves, a set of three

More information

BRAID GROUPS ALLEN YUAN. 1. Introduction. groups. Furthermore, the study of these braid groups is also both important to mathematics

BRAID GROUPS ALLEN YUAN. 1. Introduction. groups. Furthermore, the study of these braid groups is also both important to mathematics BRAID GROUPS ALLEN YUAN 1. Introduction In the first lecture of our tutorial, the knot group of the trefoil was remarked to be the braid group B 3. There are, in general, many more connections between

More information

Topological quantum computation

Topological quantum computation NUI MAYNOOTH Topological quantum computation Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Tutorial Presentation, Symposium on Quantum Technologies, University

More information

The Knot Quandle. Steven Read

The Knot Quandle. Steven Read The Knot Quandle Steven Read Abstract A quandle is a set with two operations that satisfy three conditions. For example, there is a quandle naturally associated to any group. It turns out that one can

More information

Basic Concepts of Group Theory

Basic Concepts of Group Theory Chapter 1 Basic Concepts of Group Theory The theory of groups and vector spaces has many important applications in a number of branches of modern theoretical physics. These include the formal theory of

More information

arxiv: v1 [math.gt] 15 Mar 2017

arxiv: v1 [math.gt] 15 Mar 2017 ENUMERATION ON RAPH MOSAICS KYUNPYO HON AND SEUNSAN OH arxiv:1703.04868v1 [math.t 15 Mar 2017 Abstract. Since the Jones polynomial was discovered, the connection between knot theory and quantum physics

More information

µ INVARIANT OF NANOPHRASES YUKA KOTORII TOKYO INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF SCIENCE AND ENGINEERING 1. Introduction A word will be a sequ

µ INVARIANT OF NANOPHRASES YUKA KOTORII TOKYO INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF SCIENCE AND ENGINEERING 1. Introduction A word will be a sequ µ INVARIANT OF NANOPHRASES YUKA KOTORII TOKYO INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF SCIENCE AND ENGINEERING 1. Introduction A word will be a sequence of symbols, called letters, belonging to a given

More information

Hyperbolic Knots and the Volume Conjecture II: Khov. II: Khovanov Homology

Hyperbolic Knots and the Volume Conjecture II: Khov. II: Khovanov Homology Hyperbolic Knots and the Volume Conjecture II: Khovanov Homology Mathematics REU at Rutgers University 2013 July 19 Advisor: Professor Feng Luo, Department of Mathematics, Rutgers University Overview 1

More information

Supplement to Multiresolution analysis on the symmetric group

Supplement to Multiresolution analysis on the symmetric group Supplement to Multiresolution analysis on the symmetric group Risi Kondor and Walter Dempsey Department of Statistics and Department of Computer Science The University of Chicago risiwdempsey@uchicago.edu

More information

Quantum Braids. Mosaics. Samuel Lomonaco 10/16/2011. This work is in collaboration with Louis Kauffman

Quantum Braids. Mosaics. Samuel Lomonaco 10/16/2011. This work is in collaboration with Louis Kauffman 0/6/0??? Quatum raids & Mosaics Samuel Lomoaco Uiversity of Marylad altimore Couty (UMC) Email: Lomoaco@UMC.edu WebPage: www.csee.umbc.edu/~lomoaco Rules of the Game This work is i collaboratio with Louis

More information

Canonical Forms Some questions to be explored by high school investigators William J. Martin, WPI

Canonical Forms Some questions to be explored by high school investigators William J. Martin, WPI MME 529 June 2017 Canonical Forms Some questions to be explored by high school investigators William J. Martin, WPI Here are some exercises based on various ideas of canonical form in mathematics. Perhaps

More information

Knots and Physics. Lifang Xia. Dec 12, 2012

Knots and Physics. Lifang Xia. Dec 12, 2012 Knots and Physics Lifang Xia Dec 12, 2012 Knot A knot is an embedding of the circle (S 1 ) into three-dimensional Euclidean space (R 3 ). Reidemeister Moves Equivalent relation of knots with an ambient

More information

Stochastic Histories. Chapter Introduction

Stochastic Histories. Chapter Introduction Chapter 8 Stochastic Histories 8.1 Introduction Despite the fact that classical mechanics employs deterministic dynamical laws, random dynamical processes often arise in classical physics, as well as in

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Modern Algebra June 22, 2017 Midterm Exam There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of

More information

arxiv:quant-ph/ v1 31 Mar 2004

arxiv:quant-ph/ v1 31 Mar 2004 Quantum Hidden Subgroup Algorithms: The Devil Is in the Details Samuel J. Lomonaco, Jr. a and Louis H. Kauffman b a Department of Computer Science and Electrical Engineering, University of Maryland arxiv:quant-ph/0403229v1

More information

QUANTUM COMPUTATION OF THE JONES POLYNOMIAL

QUANTUM COMPUTATION OF THE JONES POLYNOMIAL UNIVERSITÀ DEGLI STUDI DI CAMERINO SCUOLA DI SCIENZE E TECNOLOGIE Corso di Laurea in Matematica e applicazioni (classe LM-40) QUANTUM COMPUTATION OF THE JONES POLYNOMIAL Tesi di Laurea in Topologia Relatore:

More information

Knots and Physics. Louis H. Kauffman

Knots and Physics. Louis H. Kauffman Knots and Physics Louis H. Kauffman http://front.math.ucdavis.edu/author/l.kauffman Figure 1 - A knot diagram. I II III Figure 2 - The Reidemeister Moves. From Feynman s Nobel Lecture The character of

More information

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo University of Oxford 12-15 April, 2016 Exchange statistics Basic concepts Jon Magne Leinaas Department of Physics University of Oslo Outline * configuration space with identifications * from permutations

More information

Polynomials in knot theory. Rama Mishra. January 10, 2012

Polynomials in knot theory. Rama Mishra. January 10, 2012 January 10, 2012 Knots in the real world The fact that you can tie your shoelaces in several ways has inspired mathematicians to develop a deep subject known as knot theory. mathematicians treat knots

More information

Quantum computation in topological Hilbertspaces. A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen

Quantum computation in topological Hilbertspaces. A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen Quantum computation in topological Hilbertspaces A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen Introduction In two words what is it about? Pushing around fractionally

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Discrete Mathematics. Benny George K. September 22, 2011

Discrete Mathematics. Benny George K. September 22, 2011 Discrete Mathematics Benny George K Department of Computer Science and Engineering Indian Institute of Technology Guwahati ben@iitg.ernet.in September 22, 2011 Set Theory Elementary Concepts Let A and

More information

Quadrature for the Finite Free Convolution

Quadrature for the Finite Free Convolution Spectral Graph Theory Lecture 23 Quadrature for the Finite Free Convolution Daniel A. Spielman November 30, 205 Disclaimer These notes are not necessarily an accurate representation of what happened in

More information

A brief Incursion into Knot Theory. Trinity University

A brief Incursion into Knot Theory. Trinity University A brief Incursion into Knot Theory Eduardo Balreira Trinity University Mathematics Department Major Seminar, Fall 2008 (Balreira - Trinity University) Knot Theory Major Seminar 1 / 31 Outline 1 A Fundamental

More information

A Mathematical Analysis of The Generalized Oval Track Puzzle

A Mathematical Analysis of The Generalized Oval Track Puzzle Rose-Hulman Undergraduate Mathematics Journal Volume 12 Issue 1 Article 5 A Mathematical Analysis of The Generalized Oval Track Puzzle Samuel Kaufmann Carnegie Mellon University, sakaufma@andrew.cmu.edu

More information

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 1 QMA - the quantum analog to MA (and NP). Definition 1 QMA. The complexity class QMA is the class of all languages

More information

Topological insulator part II: Berry Phase and Topological index

Topological insulator part II: Berry Phase and Topological index Phys60.nb 11 3 Topological insulator part II: Berry Phase and Topological index 3.1. Last chapter Topological insulator: an insulator in the bulk and a metal near the boundary (surface or edge) Quantum

More information

Quantum Groups and Link Invariants

Quantum Groups and Link Invariants Quantum Groups and Link Invariants Jenny August April 22, 2016 1 Introduction These notes are part of a seminar on topological field theories at the University of Edinburgh. In particular, this lecture

More information

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 4 Postulates of Quantum Mechanics I In today s lecture I will essentially be talking

More information

Classification of Four-Component Rotationally Symmetric Rose Links

Classification of Four-Component Rotationally Symmetric Rose Links Rose-Hulman Undergraduate Mathematics Journal Volume 18 Issue 1 Article 8 Classification of Four-Component Rotationally Symmetric Rose Links Julia Creager Birmingham-Southern College Nirja Patel Birmingham-Southern

More information

Physics Department Drexel University Philadelphia, PA

Physics Department Drexel University Philadelphia, PA Overview- Overview- Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu Colloquium, Department of Applied Mathematics New Jersey Institute of Technology Newark, New Jersey

More information

von Neumann algebras, II 1 factors, and their subfactors V.S. Sunder (IMSc, Chennai)

von Neumann algebras, II 1 factors, and their subfactors V.S. Sunder (IMSc, Chennai) von Neumann algebras, II 1 factors, and their subfactors V.S. Sunder (IMSc, Chennai) Lecture 3 at IIT Mumbai, April 24th, 2007 Finite-dimensional C -algebras: Recall: Definition: A linear functional tr

More information

The Waring rank of the Vandermonde determinant

The Waring rank of the Vandermonde determinant The Waring rank of the Vandermonde determinant Alexander Woo (U. Idaho) joint work with Zach Teitler(Boise State) SIAM Conference on Applied Algebraic Geometry, August 3, 2014 Waring rank Given a polynomial

More information

An Introduction to Mathematical Knots

An Introduction to Mathematical Knots An Introduction to Mathematical Knots Nick Brettell Postgrad talk, 2011 Nick Brettell (UC) An Introduction to Mathematical Knots Postgrad talk 1 / 18 Outline 1 Introduction to knots Knots and Links History

More information

Knots, Coloring and Applications

Knots, Coloring and Applications Knots, Coloring and Applications Ben Webster University of Virginia March 10, 2015 Ben Webster (UVA) Knots, Coloring and Applications March 10, 2015 1 / 14 This talk is online at http://people.virginia.edu/~btw4e/knots.pdf

More information

Dependence of logarithms on commutative algebraic groups

Dependence of logarithms on commutative algebraic groups INTERNATIONAL CONFERENCE on ALGEBRA and NUMBER THEORY Hyderabad, December 11 16, 2003 Dependence of logarithms on commutative algebraic groups Michel Waldschmidt miw@math.jussieu.fr http://www.math.jussieu.fr/

More information

arxiv:math/ v1 [math.gt] 2 Nov 1999

arxiv:math/ v1 [math.gt] 2 Nov 1999 A MOVE ON DIAGRAMS THAT GENERATES S-EQUIVALENCE OF KNOTS Swatee Naik and Theodore Stanford arxiv:math/9911005v1 [math.gt] 2 Nov 1999 Abstract: Two knots in three-space are S-equivalent if they are indistinguishable

More information

Quantum Algorithms. Andreas Klappenecker Texas A&M University. Lecture notes of a course given in Spring Preliminary draft.

Quantum Algorithms. Andreas Klappenecker Texas A&M University. Lecture notes of a course given in Spring Preliminary draft. Quantum Algorithms Andreas Klappenecker Texas A&M University Lecture notes of a course given in Spring 003. Preliminary draft. c 003 by Andreas Klappenecker. All rights reserved. Preface Quantum computing

More information

On the growth of Turaev-Viro 3-manifold invariants

On the growth of Turaev-Viro 3-manifold invariants On the growth of Turaev-Viro 3-manifold invariants E. Kalfagianni (based on work w. R. Detcherry and T. Yang) Michigan State University Redbud Topology Conference, OSU, April 018 E. Kalfagianni (MSU) J

More information

COMBINATORIAL GROUP THEORY NOTES

COMBINATORIAL GROUP THEORY NOTES COMBINATORIAL GROUP THEORY NOTES These are being written as a companion to Chapter 1 of Hatcher. The aim is to give a description of some of the group theory required to work with the fundamental groups

More information

Knot Homology from Refined Chern-Simons Theory

Knot Homology from Refined Chern-Simons Theory Knot Homology from Refined Chern-Simons Theory Mina Aganagic UC Berkeley Based on work with Shamil Shakirov arxiv: 1105.5117 1 the knot invariant Witten explained in 88 that J(K, q) constructed by Jones

More information

Representation Theory

Representation Theory Representation Theory Representations Let G be a group and V a vector space over a field k. A representation of G on V is a group homomorphism ρ : G Aut(V ). The degree (or dimension) of ρ is just dim

More information

Analysis and geometry on groups

Analysis and geometry on groups Analysis and geometry on groups Andrzej Zuk Paris Contents 1 Introduction 1 2 Amenability 2 2.1 Amenable groups............................. 2 2.2 Automata groups............................. 5 2.3 Random

More information

Algebraic aspects of Hadamard matrices

Algebraic aspects of Hadamard matrices Algebraic aspects of Hadamard matrices Padraig Ó Catháin University of Queensland 22 February 2013 Overview Difference set Relative difference set Symmetric Design Hadamard matrix Overview 1 Hadamard matrices

More information

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2)

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2) MAT65 Mathematical Quantum Mechanics Brief Review of the Representations of SU() (Notes for MAT80 taken by Shannon Starr, October 000) There are many references for representation theory in general, and

More information

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS 1 SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS HUAJUN HUANG AND HONGYU HE Abstract. Let G be the group preserving a nondegenerate sesquilinear form B on a vector space V, and H a symmetric subgroup

More information

KNOT POLYNOMIALS. ttp://knotebook.org (ITEP) September 21, ITEP, Moscow. September 21, / 73

KNOT POLYNOMIALS. ttp://knotebook.org (ITEP) September 21, ITEP, Moscow. September 21, / 73 http://knotebook.org ITEP, Moscow September 21, 2015 ttp://knotebook.org (ITEP) September 21, 2015 1 / 73 H K R (q A) A=q N = Tr R P exp A K SU(N) September 21, 2015 2 / 73 S = κ 4π d 3 x Tr (AdA + 2 )

More information

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Workshop on Quantum Computing and its Application March 16, 2017 Qubits Unitary transformations Quantum Circuits Quantum Measurements Quantum

More information

Tutte Polynomials with Applications

Tutte Polynomials with Applications Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 6 (26), pp. 4781 4797 Research India Publications http://www.ripublication.com/gjpam.htm Tutte Polynomials with Applications

More information

Recitation 1 (Sep. 15, 2017)

Recitation 1 (Sep. 15, 2017) Lecture 1 8.321 Quantum Theory I, Fall 2017 1 Recitation 1 (Sep. 15, 2017) 1.1 Simultaneous Diagonalization In the last lecture, we discussed the situations in which two operators can be simultaneously

More information

Adjoint Representations of the Symmetric Group

Adjoint Representations of the Symmetric Group Adjoint Representations of the Symmetric Group Mahir Bilen Can 1 and Miles Jones 2 1 mahirbilencan@gmail.com 2 mej016@ucsd.edu Abstract We study the restriction to the symmetric group, S n of the adjoint

More information

Quantum Computing and the Jones Polynomial

Quantum Computing and the Jones Polynomial Contemporary Mathematics Quantum Computing and the Jones Polynomial Louis H. Kauffman Abstract. This paper is an exploration of relationships between the Jones polynomial and quantum computing. We discuss

More information

KNOT CLASSIFICATION AND INVARIANCE

KNOT CLASSIFICATION AND INVARIANCE KNOT CLASSIFICATION AND INVARIANCE ELEANOR SHOSHANY ANDERSON Abstract. A key concern of knot theory is knot equivalence; effective representation of these objects through various notation systems is another.

More information

Markov Chains, Stochastic Processes, and Matrix Decompositions

Markov Chains, Stochastic Processes, and Matrix Decompositions Markov Chains, Stochastic Processes, and Matrix Decompositions 5 May 2014 Outline 1 Markov Chains Outline 1 Markov Chains 2 Introduction Perron-Frobenius Matrix Decompositions and Markov Chains Spectral

More information

6 Permutations Very little of this section comes from PJE.

6 Permutations Very little of this section comes from PJE. 6 Permutations Very little of this section comes from PJE Definition A permutation (p147 of a set A is a bijection ρ : A A Notation If A = {a b c } and ρ is a permutation on A we can express the action

More information

Physics Department Drexel University Philadelphia, PA 19104

Physics Department Drexel University Philadelphia, PA 19104 Overview- Overview- Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu Physics & Topology Workshop Drexel University, Philadelphia, PA 19104 Sept. 9, 2008 Table of Contents

More information

CONTINUITY. 1. Continuity 1.1. Preserving limits and colimits. Suppose that F : J C and R: C D are functors. Consider the limit diagrams.

CONTINUITY. 1. Continuity 1.1. Preserving limits and colimits. Suppose that F : J C and R: C D are functors. Consider the limit diagrams. CONTINUITY Abstract. Continuity, tensor products, complete lattices, the Tarski Fixed Point Theorem, existence of adjoints, Freyd s Adjoint Functor Theorem 1. Continuity 1.1. Preserving limits and colimits.

More information

1. What Is Knot Theory? Why Is It In Mathematics?

1. What Is Knot Theory? Why Is It In Mathematics? 1. What Is Knot Theory? Why Is It In Mathematics? In this chapter, we briefly explain some elementary foundations of knot theory. In 1.1, we explain about knots, links and spatial graphs together with

More information

= A + A 1. = ( A 2 A 2 ) 2 n 2. n = ( A 2 A 2 ) n 1. = ( A 2 A 2 ) n 1. We start with the skein relation for one crossing of the trefoil, which gives:

= A + A 1. = ( A 2 A 2 ) 2 n 2. n = ( A 2 A 2 ) n 1. = ( A 2 A 2 ) n 1. We start with the skein relation for one crossing of the trefoil, which gives: Solutions to sheet 4 Solution to exercise 1: We have seen in the lecture that the Kauffman bracket is invariant under Reidemeister move 2. In particular, we have chosen the values in the skein relation

More information

The tangent space to an enumerative problem

The tangent space to an enumerative problem The tangent space to an enumerative problem Prakash Belkale Department of Mathematics University of North Carolina at Chapel Hill North Carolina, USA belkale@email.unc.edu ICM, Hyderabad 2010. Enumerative

More information

Algebraic Structures Exam File Fall 2013 Exam #1

Algebraic Structures Exam File Fall 2013 Exam #1 Algebraic Structures Exam File Fall 2013 Exam #1 1.) Find all four solutions to the equation x 4 + 16 = 0. Give your answers as complex numbers in standard form, a + bi. 2.) Do the following. a.) Write

More information

List of topics for the preliminary exam in algebra

List of topics for the preliminary exam in algebra List of topics for the preliminary exam in algebra 1 Basic concepts 1. Binary relations. Reflexive, symmetric/antisymmetryc, and transitive relations. Order and equivalence relations. Equivalence classes.

More information

Since G is a compact Lie group, we can apply Schur orthogonality to see that G χ π (g) 2 dg =

Since G is a compact Lie group, we can apply Schur orthogonality to see that G χ π (g) 2 dg = Problem 1 Show that if π is an irreducible representation of a compact lie group G then π is also irreducible. Give an example of a G and π such that π = π, and another for which π π. Is this true for

More information

Fourier analysis of boolean functions in quantum computation

Fourier analysis of boolean functions in quantum computation Fourier analysis of boolean functions in quantum computation Ashley Montanaro Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

Bundles over quantum weighted projective spaces

Bundles over quantum weighted projective spaces Bundles over quantum weighted projective spaces Tomasz Swansea University Lancaster, September 2012 Joint work with Simon A Fairfax References: TB & SAF, Quantum teardrops, Comm. Math. Phys. in press (arxiv:1107.1417)

More information

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky What follows is Vladimir Voevodsky s snapshot of his Fields Medal work on motivic homotopy, plus a little philosophy and from my point of view the main fun of doing mathematics Voevodsky (2002). Voevodsky

More information

arxiv: v1 [math.gt] 11 Aug 2008

arxiv: v1 [math.gt] 11 Aug 2008 Link invariants from finite Coxeter racks Sam Nelson Ryan Wieghard arxiv:0808.1584v1 [math.gt] 11 Aug 2008 Abstract We study Coxeter racks over Z n and the knot and link invariants they define. We exploit

More information

The Banach Tarski Paradox and Amenability Lecture 23: Unitary Representations and Amenability. 23 October 2012

The Banach Tarski Paradox and Amenability Lecture 23: Unitary Representations and Amenability. 23 October 2012 The Banach Tarski Paradox and Amenability Lecture 23: Unitary Representations and Amenability 23 October 2012 Subgroups of amenable groups are amenable One of today s aims is to prove: Theorem Let G be

More information

1 The fundamental group Topology I

1 The fundamental group Topology I Fundamental group 1 1 The fundamental group Topology I Exercise: Put the picture on the wall using two nails in such a way that removing either of the nails will make the picture fall down to the floor.

More information

Realizing non-abelian statistics in quantum loop models

Realizing non-abelian statistics in quantum loop models Realizing non-abelian statistics in quantum loop models Paul Fendley Experimental and theoretical successes have made us take a close look at quantum physics in two spatial dimensions. We have now found

More information

Primitive ideals in quantum matrices. J. Bell

Primitive ideals in quantum matrices. J. Bell Primitive ideals in quantum matrices J. Bell 1 In this talk, we consider the ring of m n quantum matrices O q (M m,n ). The easiest way to visualize this algebra is that it is a complex algebra generated

More information

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille Math 429/581 (Advanced) Group Theory Summary of Definitions, Examples, and Theorems by Stefan Gille 1 2 0. Group Operations 0.1. Definition. Let G be a group and X a set. A (left) operation of G on X is

More information

Advancement to Candidacy. Patterns in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts

Advancement to Candidacy. Patterns in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts 5000 10 000 15 000 3 10 12 2 10 12 1 10 12 Patterns in the Coefficients of the Colored Jones Polynomial 1 10 12 Advisor: Justin Roberts 2 10 12 3 10 12 Introduction Knots and Knot Invariants The Jones

More information

Topological Quantum Computation

Topological Quantum Computation Texas A&M University October 2010 Outline 1 Gates, Circuits and Universality Examples and Efficiency 2 A Universal 3 The State Space Gates, Circuits and Universality Examples and Efficiency Fix d Z Definition

More information

A method for construction of Lie group invariants

A method for construction of Lie group invariants arxiv:1206.4395v1 [math.rt] 20 Jun 2012 A method for construction of Lie group invariants Yu. Palii Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia and Institute

More information

Linear Algebra and Dirac Notation, Pt. 3

Linear Algebra and Dirac Notation, Pt. 3 Linear Algebra and Dirac Notation, Pt. 3 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 3 February 1, 2017 1 / 16

More information

10. The subgroup subalgebra correspondence. Homogeneous spaces.

10. The subgroup subalgebra correspondence. Homogeneous spaces. 10. The subgroup subalgebra correspondence. Homogeneous spaces. 10.1. The concept of a Lie subgroup of a Lie group. We have seen that if G is a Lie group and H G a subgroup which is at the same time a

More information

BASIC GROUP THEORY : G G G,

BASIC GROUP THEORY : G G G, BASIC GROUP THEORY 18.904 1. Definitions Definition 1.1. A group (G, ) is a set G with a binary operation : G G G, and a unit e G, possessing the following properties. (1) Unital: for g G, we have g e

More information

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle Chapter 1 Identical particles 1.1 Distinguishable particles The Hilbert space of N has to be a subspace H = N n=1h n. Observables Ân of the n-th particle are self-adjoint operators of the form 1 1 1 1

More information

Lecture 19 (Nov. 15, 2017)

Lecture 19 (Nov. 15, 2017) Lecture 19 8.31 Quantum Theory I, Fall 017 8 Lecture 19 Nov. 15, 017) 19.1 Rotations Recall that rotations are transformations of the form x i R ij x j using Einstein summation notation), where R is an

More information

arxiv:math/ v1 [math.gt] 16 Aug 2000

arxiv:math/ v1 [math.gt] 16 Aug 2000 arxiv:math/0008118v1 [math.gt] 16 Aug 2000 Stable Equivalence of Knots on Surfaces and Virtual Knot Cobordisms J. Scott Carter University of South Alabama Mobile, AL 36688 cartermathstat.usouthal.edu Masahico

More information

Quantum Algorithms Lecture #3. Stephen Jordan

Quantum Algorithms Lecture #3. Stephen Jordan Quantum Algorithms Lecture #3 Stephen Jordan Summary of Lecture 1 Defined quantum circuit model. Argued it captures all of quantum computation. Developed some building blocks: Gate universality Controlled-unitaries

More information

KNOT THEORY. Louis Kauffman

KNOT THEORY. Louis Kauffman KNOT THEORY Louis Kauffman Preface This essay constitutes a gentle introduction to the theory of knots as it has been influenced by developments concurrent with the discovery of the Jones polynomial in

More information

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory Part V 7 Introduction: What are measures and why measurable sets Lebesgue Integration Theory Definition 7. (Preliminary). A measure on a set is a function :2 [ ] such that. () = 2. If { } = is a finite

More information

Study of Topological Surfaces

Study of Topological Surfaces Study of Topological Surfaces Jamil Mortada Abstract This research project involves studying different topological surfaces, in particular, continuous, invertible functions from a surface to itself. Dealing

More information

Quiz 07a. Integers Modulo 12

Quiz 07a. Integers Modulo 12 MA 3260 Lecture 07 - Binary Operations Friday, September 28, 2018. Objectives: Continue with binary operations. Quiz 07a We have a machine that is set to run for x hours, turn itself off for 3 hours, and

More information

1 Linear Algebra Problems

1 Linear Algebra Problems Linear Algebra Problems. Let A be the conjugate transpose of the complex matrix A; i.e., A = A t : A is said to be Hermitian if A = A; real symmetric if A is real and A t = A; skew-hermitian if A = A and

More information

The Theory of Quantum Information

The Theory of Quantum Information The Theory of Quantum Information John Watrous Institute for Quantum Computing University of Waterloo 2018 John Watrous To be published by Cambridge University Press. Please note that this is a draft,

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

arxiv: v1 [math.sg] 6 Nov 2015

arxiv: v1 [math.sg] 6 Nov 2015 A CHIANG-TYPE LAGRANGIAN IN CP ANA CANNAS DA SILVA Abstract. We analyse a simple Chiang-type lagrangian in CP which is topologically an RP but exhibits a distinguishing behaviour under reduction by one

More information