The Gravity Model: Example Calibration

Size: px
Start display at page:

Download "The Gravity Model: Example Calibration"

Transcription

1 The Gravity Model: Example Calibration Philip A. Viton October 28, 2014 Gravity Example October 28, / 22

2 Introduction This summarizes the example calibration (not the prediction) from the Gravity Model: Derivation and Calibration handout, minus some of the detailed commentary. You may find it useful when you do gravity-model calculations, since you don t have to page through the longer handout. Note that this doesn t include the Appendix from the longer handout. If you find yourself in trouble when you apply the gravity model you should probably review the Appendix. Gravity Example October 28, / 22

3 Example Data Trip-interchange matrix: T 0 = Interzonal travel-times matrix: t 0 = We shall use a convergence criterion of 5% in all iterative steps (α L = 0.95, α H = 1.05). Gravity Example October 28, / 22

4 Step 0 In our example we shall take δ = 5 minutes. This defines the following superzones: with superzonal trip totals: Superzone Zonal Pairs 1 I 1 = {1, 1}, {2, 2}, {3, 3} 2 I 2 = {1, 2}, {2, 1} 3 I 3 = {1, 3}, {2, 3}, {3, 1}, {3, 2} O S = [450, 590, 490] Gravity Example October 28, / 22

5 Step 0 In our example, we will be calculating 3 distinct travel-time factors. It is a simple matter to parlay these three into a full set F of factors. Formally, we define a mapping (rule) φ that takes our 3 estimates of the travel time factors (F 1, F 2, F 3 ) and produce an estimate of the full F ij matrix. In our case this rule is: F 1 F 2 F 3 φ(f 1, F 2, F 3 ) = F 2 F 1 F 3. F 3 F 3 F 1 Finally we set K 1 = (This amounts to ignoring the K s for now, since they enter the gravity model multiplicatively). Gravity Example October 28, / 22

6 Step 1, Iteration 1 Initial estimate: F 0 i = (1, 1, 1). Apply φ and get F 0 = Gravity Example October 28, / 22

7 Step 1, Iteration 1 Apply the gravity model and find: T 1 = Tij 1 = O0 i A0 j F ij 0 m A 0 mf 0 im = Gravity Example October 28, / 22

8 Step 1, Iteration 1 Convergence check; against the superzone totals Target Actual Error ratio Ei Note that the targets are the superzonal trip totals. We see that we have not converged. Gravity Example October 28, / 22

9 Step 1, Iteration 2 New superzonal factors Fi 1 ratios: are the previous F s corrected by the error Fi 1 = Fi 0 Ei 1 = [1.0, 1.0, 1.0] [ , , ] = [ , , ] Apply φ to derive the full set of travel-time factors: F 1 = Gravity Example October 28, / 22

10 Step 1, Iteration 2 T 2 = Tij 2 = O0 i A0 j F ij 1 m A 0 mf 1 im = Gravity Example October 28, / 22

11 Step 1, Iteration 2 Convergence test: Still no convergence Target Actual Error ratio Ei Gravity Example October 28, / 22

12 Step 1, Iteration 3 New interzonal F i : Fi 2 = Fi 1 Ei 2 = [ , , ] [ , , ] = [ , , ] Apply φ : F 2 = Gravity Example October 28, / 22

13 Step 1, Iteration 3 Apply the gravity model: T 3 = Gravity Example October 28, / 22

14 Step 1, Iteration 3 Convergence check: These have all converged. Target Actual Error ratio Gravity Example October 28, / 22

15 Step 1, Final Result At the end of Step 1 we have our final estimate of the travel-time factors ˆF ˆF ij, which is the F matrix we obtained at the convergent iteration of our step-1 computations, ie ˆF = Gravity Example October 28, / 22

16 Step 2, Setup (I) Continuing our example, based on ˆF from Step 1 and K 1 we have an estimate of the travel-time matrix we re trying to reproduce, namely the final T matrix from the previous step: T 3 = Gravity Example October 28, / 22

17 Step 2, Setup (II) Is this good enough? We need only check the columns (conservation of attractions) for convergence: Target Actual Error ratio Note that we check against the actual A 0 we have no more use for the superzones. Clearly not good enough. So we need to do the balancing step. Gravity Example October 28, / 22

18 Step 2, Iteration 1, Column Factoring The column factors are the previous error ratios, so , , We multiply the elements in each column by its column factor giving T 1a = Example: the (1, 2) element of T 1 (= ) is in column 2, so we use the second column factor, giving = = T 1a 12. Note that this satisfies conservation of attractions, but no longer satisfies conservation of origins. Gravity Example October 28, / 22

19 Step 2, Iteration 1, Row Factoring The row factors are the row-wise error factors of T 1a : Target Actual Error ratio and multiplying each row by its row factor gives T 1b = Example: the (1, 2) element of T 1a, (= ) is in row 1, so we use the first row factor, giving = = T 1b 12. Gravity Example October 28, / 22

20 Step 2, Iteration 1, Convergence Check We need to check the columns only, since the row factoring assures conservation of origins. We have converged. Target Actual Error ratio Gravity Example October 28, / 22

21 Step 3 In order to reproduce the individual elements of T 0 we use the zonal adjustment factors, which we have ignored up to now. The zonal adjustment (K ) factors are now computed as ˆK ij = Tij 0 Tij 1b (ie on the last (convergent) T matrix from step 2) and where means element-by-element division. Then ˆK = = Gravity Example October 28, / 22

22 BPR Method: Summary of Example Results For our calibration of the gravity model using the BPR method we have found: ˆF = (from the final result of Step 1); and ˆK = (from Step 3). Gravity Example October 28, / 22

CIV3703 Transport Engineering. Module 2 Transport Modelling

CIV3703 Transport Engineering. Module 2 Transport Modelling CIV3703 Transport Engineering Module Transport Modelling Objectives Upon successful completion of this module you should be able to: carry out trip generation calculations using linear regression and category

More information

Urban Transportation planning Prof. Dr. V. Thamizh Arasan Department of Civil Engineering Indian Institute of Technology, Madras

Urban Transportation planning Prof. Dr. V. Thamizh Arasan Department of Civil Engineering Indian Institute of Technology, Madras Urban Transportation planning Prof. Dr. V. Thamizh Arasan Department of Civil Engineering Indian Institute of Technology, Madras Lecture No. # 26 Trip Distribution Analysis Contd. This is lecture twenty

More information

Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment

Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment 25.04.2017 Course Outline Forecasting overview and data management Trip generation modeling Trip distribution

More information

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and Elementary Matrices In this special handout of material not contained in the text, we introduce the concept of elementary matrix. Elementary matrices are useful in several ways that will be shown in this

More information

Chapter 1. Trip Distribution. 1.1 Overview. 1.2 Definitions and notations Trip matrix

Chapter 1. Trip Distribution. 1.1 Overview. 1.2 Definitions and notations Trip matrix Chapter 1 Trip Distribution 1.1 Overview The decision to travel for a given purpose is called trip generation. These generated trips from each zone is then distributed to all other zones based on the choice

More information

Properties of Matrix Arithmetic

Properties of Matrix Arithmetic Properties of Matrix Arithmetic I've given examples which illustrate how you can do arithmetic with matrices. Now I'll give precise definitions of the various matrix operations. This will allow me to prove

More information

2015 Grand Forks East Grand Forks TDM

2015 Grand Forks East Grand Forks TDM GRAND FORKS EAST GRAND FORKS 2015 TRAVEL DEMAND MODEL UPDATE DRAFT REPORT To the Grand Forks East Grand Forks MPO October 2017 Diomo Motuba, PhD & Muhammad Asif Khan (PhD Candidate) Advanced Traffic Analysis

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J Olver 3 Review of Matrix Algebra Vectors and matrices are essential for modern analysis of systems of equations algebrai, differential, functional, etc In this

More information

Linear Algebra and Vector Analysis MATH 1120

Linear Algebra and Vector Analysis MATH 1120 Faculty of Engineering Mechanical Engineering Department Linear Algebra and Vector Analysis MATH 1120 : Instructor Dr. O. Philips Agboola Determinants and Cramer s Rule Determinants If a matrix is square

More information

Chapter 1 Indices & Standard Form

Chapter 1 Indices & Standard Form Chapter 1 Indices & Standard Form Section 1.1 Simplifying Only like (same letters go together; same powers and same letter go together) terms can be grouped together. Example: a 2 + 3ab + 4a 2 5ab + 10

More information

25. Strassen s Fast Multiplication of Matrices Algorithm and Spreadsheet Matrix Multiplications

25. Strassen s Fast Multiplication of Matrices Algorithm and Spreadsheet Matrix Multiplications 25.1 Introduction 25. Strassen s Fast Multiplication of Matrices Algorithm and Spreadsheet Matrix Multiplications We will use the notation A ij to indicate the element in the i-th row and j-th column of

More information

Transportation Theory and Applications

Transportation Theory and Applications Fall 2017 - MTAT.08.043 Transportation Theory and Applications Lecture IV: Trip distribution A. Hadachi outline Our objective Introducing two main methods for trip generation objective Trip generation

More information

( ) and D( x) have been written out in

( ) and D( x) have been written out in PART E: REPEATED (OR POWERS OF) LINEAR FACTORS Example (Section 7.4: Partial Fractions) 7.27 Find the PFD for x 2 ( x + 2). 3 Solution Step 1: The expression is proper, because 2, the degree of N ( x),

More information

Unit 2: Polynomials Guided Notes

Unit 2: Polynomials Guided Notes Unit 2: Polynomials Guided Notes Name Period **If found, please return to Mrs. Brandley s room, M 8.** Self Assessment The following are the concepts you should know by the end of Unit 1. Periodically

More information

Chapter 4. Determinants

Chapter 4. Determinants 4.2 The Determinant of a Square Matrix 1 Chapter 4. Determinants 4.2 The Determinant of a Square Matrix Note. In this section we define the determinant of an n n matrix. We will do so recursively by defining

More information

Further Signed Numbers

Further Signed Numbers Worksheet 1.7 Further Signed Numbers Section 1 Multiplication of signed numbers Multiplication is a shorthand way of adding together a large number of the same thing. For example, if I have 3 bags of oranges

More information

Vector Algebra August 2013

Vector Algebra August 2013 Vector Algebra 12.1 12.2 28 August 2013 What is a Vector? A vector (denoted or v) is a mathematical object possessing both: direction and magnitude also called length (denoted ). Vectors are often represented

More information

Let s Do Algebra Tiles

Let s Do Algebra Tiles Let s Do Algebra Tiles Algebra Tiles Algebra tiles can be used to model operations involving integers. Let the small green square represent +1 and the small pink square represent -1. The green and pink

More information

Examples of linear systems and explanation of the term linear. is also a solution to this equation.

Examples of linear systems and explanation of the term linear. is also a solution to this equation. . Linear systems Examples of linear systems and explanation of the term linear. () ax b () a x + a x +... + a x b n n Illustration by another example: The equation x x + 5x 7 has one solution as x 4, x

More information

Unit 2: Polynomials Guided Notes

Unit 2: Polynomials Guided Notes Unit 2: Polynomials Guided Notes Name Period **If found, please return to Mrs. Brandley s room, M-8.** 1 Self-Assessment The following are the concepts you should know by the end of Unit 1. Periodically

More information

Unit 2: Polynomials Guided Notes

Unit 2: Polynomials Guided Notes Unit 2: Polynomials Guided Notes Name Period **If found, please return to Mrs. Brandley s room, M 8.** Self Assessment The following are the concepts you should know by the end of Unit 1. Periodically

More information

6.4 Determinants and Cramer s Rule

6.4 Determinants and Cramer s Rule 6.4 Determinants and Cramer s Rule Objectives Determinant of a 2 x 2 Matrix Determinant of an 3 x 3 Matrix Determinant of a n x n Matrix Cramer s Rule If a matrix is square (that is, if it has the same

More information

Basic Math Problems Unit 1

Basic Math Problems Unit 1 Basic Math Problems Unit 1 Name Period Using fractions: When you are using fractions in science, we need to convert them into decimals. You can do this by dividing the top number by the bottom number.

More information

Working with equations for speed and velocity

Working with equations for speed and velocity Working with equations for speed and velocity Objectives Interpret symbolic relationships. Describe motion using equations for speed and average velocity. Solve speed and velocity problems mathematically.

More information

Polynomial Division. You may also see this kind of problem written like this: Perform the division x2 +2x 3

Polynomial Division. You may also see this kind of problem written like this: Perform the division x2 +2x 3 Polynomial Division 5015 You do polynomial division the way you do long division of numbers It s difficult to describe the general procedure in words, so I ll work through some eamples stepbystep Eample

More information

Describing Motion Using Equations. Describing Motion Using Equations. For example 1/2/2015

Describing Motion Using Equations. Describing Motion Using Equations. For example 1/2/2015 Describing Motion Using Equations One of the most accurate ways of describing the motion of objects is to use equations! Yes this means! Describing Motion Using Equations We ve already learned that speed

More information

CH 14 MORE DIVISION, SIGNED NUMBERS, & EQUATIONS

CH 14 MORE DIVISION, SIGNED NUMBERS, & EQUATIONS 1 CH 14 MORE DIVISION, SIGNED NUMBERS, & EQUATIONS Division and Those Pesky Zeros O ne of the most important facts in all of mathematics is that the denominator (bottom) of a fraction can NEVER be zero.

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

URBAN TRANSPORTATION SYSTEM (ASSIGNMENT)

URBAN TRANSPORTATION SYSTEM (ASSIGNMENT) BRANCH : CIVIL ENGINEERING SEMESTER : 6th Assignment-1 CHAPTER-1 URBANIZATION 1. What is Urbanization? Explain by drawing Urbanization cycle. 2. What is urban agglomeration? 3. Explain Urban Class Groups.

More information

1 Last time: linear systems and row operations

1 Last time: linear systems and row operations 1 Last time: linear systems and row operations Here s what we did last time: a system of linear equations or linear system is a list of equations a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

محاضرة رقم 4. UTransportation Planning. U1. Trip Distribution

محاضرة رقم 4. UTransportation Planning. U1. Trip Distribution UTransportation Planning U1. Trip Distribution Trip distribution is the second step in the four-step modeling process. It is intended to address the question of how many of the trips generated in the trip

More information

[Refer Slide Time: 00:45]

[Refer Slide Time: 00:45] Differential Calculus of Several Variables Professor: Sudipta Dutta Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Module 1 Lecture No 2 Continuity and Compactness. Welcome

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

ECON2285: Mathematical Economics

ECON2285: Mathematical Economics ECON2285: Mathematical Economics Yulei Luo FBE, HKU September 2, 2018 Luo, Y. (FBE, HKU) ME September 2, 2018 1 / 35 Course Outline Economics: The study of the choices people (consumers, firm managers,

More information

Trip Distribution. Chapter Overview. 8.2 Definitions and notations. 8.3 Growth factor methods Generalized cost. 8.2.

Trip Distribution. Chapter Overview. 8.2 Definitions and notations. 8.3 Growth factor methods Generalized cost. 8.2. Transportation System Engineering 8. Trip Distribution Chapter 8 Trip Distribution 8. Overview The decision to travel for a given purpose is called trip generation. These generated trips from each zone

More information

Topic 2: The mathematical formalism and the standard way of thin

Topic 2: The mathematical formalism and the standard way of thin The mathematical formalism and the standard way of thinking about it http://www.wuthrich.net/ MA Seminar: Philosophy of Physics Vectors and vector spaces Vectors and vector spaces Operators Albert, Quantum

More information

Ch. 12 Rational Functions

Ch. 12 Rational Functions Ch. 12 Rational Functions 12.1 Finding the Domains of Rational F(n) & Reducing Rational Expressions Outline Review Rational Numbers { a / b a and b are integers, b 0} Multiplying a rational number by a

More information

Lasso, Ridge, and Elastic Net

Lasso, Ridge, and Elastic Net Lasso, Ridge, and Elastic Net David Rosenberg New York University October 29, 2016 David Rosenberg (New York University) DS-GA 1003 October 29, 2016 1 / 14 A Very Simple Model Suppose we have one feature

More information

5.1 Vectors A vector is a one-dimensional array of numbers. A column vector has its m elements arranged from top to bottom.

5.1 Vectors A vector is a one-dimensional array of numbers. A column vector has its m elements arranged from top to bottom. Youngstown State University Industrial and Systems Engineering ISEGR Systems Analysis and Design Session - Vector and Matrix Operations. Vectors A vector is a one-dimensional array of numbers. A column

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

Mathematics 90 (3122) CA (Class Addendum) 3: Inverse Properties Mt. San Jacinto College Menifee Valley Campus Fall 2009

Mathematics 90 (3122) CA (Class Addendum) 3: Inverse Properties Mt. San Jacinto College Menifee Valley Campus Fall 2009 Mathematics 90 (322) CA (Class Addendum) 3: Inverse Properties Mt. San Jacinto College Menifee Valley Campus Fall 2009 Solutions Name This class handout is worth a maimum of five (5) points. It is due

More information

REVIEW FOR EXAM II. The exam covers sections , the part of 3.7 on Markov chains, and

REVIEW FOR EXAM II. The exam covers sections , the part of 3.7 on Markov chains, and REVIEW FOR EXAM II The exam covers sections 3.4 3.6, the part of 3.7 on Markov chains, and 4.1 4.3. 1. The LU factorization: An n n matrix A has an LU factorization if A = LU, where L is lower triangular

More information

Momentum Balances & Quadratic Equations

Momentum Balances & Quadratic Equations Momentum Balances & Quadratic Equations ABET Course Outcomes: C.1 formulate and solve engineering problems using linear and quadratic equations By the end of this class you should be able to: Solve problems

More information

Electromagnetism lab project

Electromagnetism lab project Electromagnetism lab project Contents 1. Overview of the course 2. How to analyse errors in measurements 3. How to make graphical representations (plots) Overview Four lab experiments Biot Savart s law

More information

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system Finite Math - J-term 07 Lecture Notes - //07 Homework Section 4. - 9, 0, 5, 6, 9, 0,, 4, 6, 0, 50, 5, 54, 55, 56, 6, 65 Section 4. - Systems of Linear Equations in Two Variables Example. Solve the system

More information

Lab I. 2D Motion. 1 Introduction. 2 Theory. 2.1 scalars and vectors LAB I. 2D MOTION 15

Lab I. 2D Motion. 1 Introduction. 2 Theory. 2.1 scalars and vectors LAB I. 2D MOTION 15 LAB I. 2D MOTION 15 Lab I 2D Motion 1 Introduction In this lab we will examine simple two-dimensional motion without acceleration. Motion in two dimensions can often be broken up into two separate one-dimensional

More information

Cofactors and Laplace s expansion theorem

Cofactors and Laplace s expansion theorem Roberto s Notes on Linear Algebra Chapter 5: Determinants Section 3 Cofactors and Laplace s expansion theorem What you need to know already: What a determinant is. How to use Gauss-Jordan elimination to

More information

Motion in Two Dimensions Teacher s Guide

Motion in Two Dimensions Teacher s Guide Motion in Two Dimensions Teacher s Guide Objectives: 1. Use kinematic equations for motion in two dimensions to determine the range of a projectile.. Use the equation for torque to determine at what point

More information

MAXIMUM AND MINIMUM 2

MAXIMUM AND MINIMUM 2 POINT OF INFLECTION MAXIMUM AND MINIMUM Example 1 This looks rather simple: x 3 To find the stationary points: = 3x So is zero when x = 0 There is one stationary point, the point (0, 0). Is it a maximum

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Linear Algebra Handout

Linear Algebra Handout Linear Algebra Handout References Some material and suggested problems are taken from Fundamentals of Matrix Algebra by Gregory Hartman, which can be found here: http://www.vmi.edu/content.aspx?id=779979.

More information

Lab I. 2D Motion. 1 Introduction. 2 Theory. 2.1 scalars and vectors LAB I. 2D MOTION 15

Lab I. 2D Motion. 1 Introduction. 2 Theory. 2.1 scalars and vectors LAB I. 2D MOTION 15 LAB I. 2D MOTION 15 Lab I 2D Motion 1 Introduction In this lab we will examine simple two-dimensional motion without acceleration. Motion in two dimensions can often be broken up into two separate one-dimensional

More information

DIRECTED NUMBERS ADDING AND SUBTRACTING DIRECTED NUMBERS

DIRECTED NUMBERS ADDING AND SUBTRACTING DIRECTED NUMBERS DIRECTED NUMBERS POSITIVE NUMBERS These are numbers such as: 3 which can be written as +3 46 which can be written as +46 14.67 which can be written as +14.67 a which can be written as +a RULE Any number

More information

Unit 4 - Rational expressions and equations. Rational expressions. A Rational Number is the ratio

Unit 4 - Rational expressions and equations. Rational expressions. A Rational Number is the ratio Unit 4 - Rational expressions and equations 4.1 Equivalent rational expressions Rational expressions What is a rational number? A Rational Number is the ratio Examples: What might a rational expression

More information

ECON0702: Mathematical Methods in Economics

ECON0702: Mathematical Methods in Economics ECON0702: Mathematical Methods in Economics Yulei Luo SEF of HKU January 12, 2009 Luo, Y. (SEF of HKU) MME January 12, 2009 1 / 35 Course Outline Economics: The study of the choices people (consumers,

More information

PHIL 422 Advanced Logic Inductive Proof

PHIL 422 Advanced Logic Inductive Proof PHIL 422 Advanced Logic Inductive Proof 1. Preamble: One of the most powerful tools in your meta-logical toolkit will be proof by induction. Just about every significant meta-logical result relies upon

More information

Expressions that always have the same value. The Identity Property of Addition states that For any value a; a + 0 = a so = 3

Expressions that always have the same value. The Identity Property of Addition states that For any value a; a + 0 = a so = 3 Name Key Words/Topic 2.1 Identity and Zero Properties Topic 2 Guided Notes Equivalent Expressions Identity Property of Addition Identity Property of Multiplication Zero Property of Multiplication The sum

More information

Vector, Matrix, and Tensor Derivatives

Vector, Matrix, and Tensor Derivatives Vector, Matrix, and Tensor Derivatives Erik Learned-Miller The purpose of this document is to help you learn to take derivatives of vectors, matrices, and higher order tensors (arrays with three dimensions

More information

Commutators in the Steenrod algebra

Commutators in the Steenrod algebra Commutators in the Steenrod algebra J. H. Palmieri and J. J. Zhang University of Washington Vancouver, 5 October 2008 J. H. Palmieri and J. J. Zhang (Washington) Commutators in the Steenrod algebra Vancouver,

More information

Solving Systems of Equations: A brief tutorial for

Solving Systems of Equations: A brief tutorial for Solving Systems of Equations: A brief tutorial for 15.053 This is a very brief introduction to solving systems of equations. You probably learned these techniques in high school, and you certainly learned

More information

Ph170- General Physics I

Ph170- General Physics I Ph170- General Physics I Ch. 1 Overview, Fundamental Units, Dimensional Analysis, How to Study Physics Pui K. Lam Overview: What is Physics? (1) Physics seeks to discover and study the fundamental interactions

More information

Dealing with Rotating Coordinate Systems Physics 321. (Eq.1)

Dealing with Rotating Coordinate Systems Physics 321. (Eq.1) Dealing with Rotating Coordinate Systems Physics 321 The treatment of rotating coordinate frames can be very confusing because there are two different sets of aes, and one set of aes is not constant in

More information

Chapter 5 Arithmetic AND terminology used in paper

Chapter 5 Arithmetic AND terminology used in paper Chapter 5 Arithmetic AND terminology used in paper (Usually Q1 Paper 1) This revision guide covers o Rounding o Numbers in the standard form (to one decimal place, to two decimal..etc) (write as a x 10

More information

Scientific Notation. exploration. 1. Complete the table of values for the powers of ten M8N1.j. 110 Holt Mathematics

Scientific Notation. exploration. 1. Complete the table of values for the powers of ten M8N1.j. 110 Holt Mathematics exploration Georgia Performance Standards M8N1.j 1. Complete the table of values for the powers of ten. Exponent 6 10 6 5 10 5 4 10 4 Power 3 10 3 2 10 2 1 1 0 2 1 0.01 10 10 1 10 1 1 1 0 1 1 0.1 10 0

More information

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures Kinematics Lab 1 Introduction An object moving in one dimension and undergoing constant or uniform acceleration has a position given by: x(t) =x 0 +v o t +1/2at 2 where x o is its initial position (its

More information

Determinants of 2 2 Matrices

Determinants of 2 2 Matrices Determinants In section 4, we discussed inverses of matrices, and in particular asked an important question: How can we tell whether or not a particular square matrix A has an inverse? We will be able

More information

Physics 8 Monday, September 12, 2011

Physics 8 Monday, September 12, 2011 Physics 8 Monday, September 12, 2011 If you didn t pick up second half of textbook (starting with Chapter 8) on Friday, you can pick it up now. The bookstore is expecting more clickers to arrive soon (tomorrow?

More information

In notes, handouts, tests shaded is Positive and non-shaded (white) is Negative

In notes, handouts, tests shaded is Positive and non-shaded (white) is Negative Thursday, October 15th 2015 Unit 2 Integers Review of Grade 7 In your text book Yellow is Positive and Red is Negative In notes, handouts, tests shaded is Positive and non-shaded (white) is Negative Remember

More information

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8 1 To solve the system x 1 + x 2 = 4 2x 1 9x 2 = 2 we find an (easier to solve) equivalent system as follows: Replace equation 2 with (2 times equation 1 + equation 2): x 1 + x 2 = 4 Solve equation 2 for

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 1 Simplex solves LP by starting at a Basic Feasible Solution (BFS) and moving from BFS to BFS, always improving the objective function,

More information

Binary Arithmetic: counting with ones

Binary Arithmetic: counting with ones Binary Arithmetic: counting with ones Robin McLean 28 February 2015 Weighing in ounces Suppose we have one of each of the following weights: 32oz, 16oz, 8oz, 4oz, 2oz and 1oz. Can we weigh any whole number

More information

Image Registration Lecture 2: Vectors and Matrices

Image Registration Lecture 2: Vectors and Matrices Image Registration Lecture 2: Vectors and Matrices Prof. Charlene Tsai Lecture Overview Vectors Matrices Basics Orthogonal matrices Singular Value Decomposition (SVD) 2 1 Preliminary Comments Some of this

More information

The simplex algorithm

The simplex algorithm The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case. It does yield insight into linear programs, however,

More information

NUMERICAL MATHEMATICS & COMPUTING 7th Edition

NUMERICAL MATHEMATICS & COMPUTING 7th Edition NUMERICAL MATHEMATICS & COMPUTING 7th Edition Ward Cheney/David Kincaid c UT Austin Engage Learning: Thomson-Brooks/Cole wwwengagecom wwwmautexasedu/cna/nmc6 October 16, 2011 Ward Cheney/David Kincaid

More information

Transit Modeling Update. Trip Distribution Review and Recommended Model Development Guidance

Transit Modeling Update. Trip Distribution Review and Recommended Model Development Guidance Transit Modeling Update Trip Distribution Review and Recommended Model Development Guidance Contents 1 Introduction... 2 2 FSUTMS Trip Distribution Review... 2 3 Proposed Trip Distribution Approach...

More information

I am trying to keep these lessons as close to actual class room settings as possible.

I am trying to keep these lessons as close to actual class room settings as possible. Greetings: I am trying to keep these lessons as close to actual class room settings as possible. They do not intend to replace the text book actually they will involve the text book. An advantage of a

More information

Unit 1 Linear Models. Answer. Question. Model. Question. Answer. 3 Types of Models. Model: A simplified version of reality

Unit 1 Linear Models. Answer. Question. Model. Question. Answer. 3 Types of Models. Model: A simplified version of reality Model: A simplified version of reality Model Example: Free Fall is a model of falling objects that ignores air resistance. Free Fall assumes that only gravity affects falling motion. Real fall in an atmosphere

More information

Vector calculus background

Vector calculus background Vector calculus background Jiří Lebl January 18, 2017 This class is really the vector calculus that you haven t really gotten to in Calc III. Let us start with a very quick review of the concepts from

More information

Electric Circuits Part 2: Kirchhoff s Rules

Electric Circuits Part 2: Kirchhoff s Rules Electric Circuits Part 2: Kirchhoff s Rules Last modified: 31/07/2018 Contents Links Complex Circuits Applying Kirchhoff s Rules Example Circuit Labelling the currents Kirchhoff s First Rule Meaning Kirchhoff

More information

conventions and notation

conventions and notation Ph95a lecture notes, //0 The Bloch Equations A quick review of spin- conventions and notation The quantum state of a spin- particle is represented by a vector in a two-dimensional complex Hilbert space

More information

Matrices and RRE Form

Matrices and RRE Form Matrices and RRE Form Notation R is the real numbers, C is the complex numbers (we will only consider complex numbers towards the end of the course) is read as an element of For instance, x R means that

More information

Analysis and Design of Urban Transportation Network for Pyi Gyi Ta Gon Township PHOO PWINT ZAN 1, DR. NILAR AYE 2

Analysis and Design of Urban Transportation Network for Pyi Gyi Ta Gon Township PHOO PWINT ZAN 1, DR. NILAR AYE 2 www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.10 May-2014, Pages:2058-2063 Analysis and Design of Urban Transportation Network for Pyi Gyi Ta Gon Township PHOO PWINT ZAN 1, DR. NILAR AYE

More information

Solution Set 2. Problem 1. [a] + [b] = [a + b] = [b + a] = [b] + [a] ([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + [b + c] = [a] + ([b + c])

Solution Set 2. Problem 1. [a] + [b] = [a + b] = [b + a] = [b] + [a] ([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + [b + c] = [a] + ([b + c]) Solution Set Problem 1 (1) Z/nZ is the set of equivalence classes of Z mod n. Equivalence is determined by the following rule: [a] = [b] if and only if b a = k n for some k Z. The operations + and are

More information

1 procedure for determining the inverse matrix

1 procedure for determining the inverse matrix table of contents 1 procedure for determining the inverse matrix The inverse matrix of a matrix A can be determined only if the determinant of the matrix A is different from zero. The following procedures

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

Mathematical Induction. EECS 203: Discrete Mathematics Lecture 11 Spring

Mathematical Induction. EECS 203: Discrete Mathematics Lecture 11 Spring Mathematical Induction EECS 203: Discrete Mathematics Lecture 11 Spring 2016 1 Climbing the Ladder We want to show that n 1 P(n) is true. Think of the positive integers as a ladder. 1, 2, 3, 4, 5, 6,...

More information

Network Flows. 7. Multicommodity Flows Problems. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 7. Multicommodity Flows Problems. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 7. Multicommodity Flows Problems 7.3 Column Generation Approach Fall 2010 Instructor: Dr. Masoud Yaghini Path Flow Formulation Path Flow Formulation Let first reformulate

More information

Diffusion with particle accounting

Diffusion with particle accounting 4/30/0 Random walk, etc. iffusion, planar iffusion with particle accounting In steady-state plasmas the rate at which plasma is lost to the walls is equal to the rate at which it is created. If the plasma

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Announcements Wednesday, October 25

Announcements Wednesday, October 25 Announcements Wednesday, October 25 The midterm will be returned in recitation on Friday. The grade breakdown is posted on Piazza. You can pick it up from me in office hours before then. Keep tabs on your

More information

IE652 - Chapter 10. Assumptions. Single Machine Scheduling

IE652 - Chapter 10. Assumptions. Single Machine Scheduling IE652 - Chapter 10 Single Machine Scheduling 1 Assumptions All jobs are processed on a single machine Release time of each job is 0 Processing times are known with certainty Scheduling Sequencing in this

More information

RATIONAL EXPRESSIONS AND EQUATIONS. Chapter 4

RATIONAL EXPRESSIONS AND EQUATIONS. Chapter 4 RATIONAL EXPRESSIONS AND EQUATIONS Chapter 4 4.1 EQUIVALENT RATIONAL EXPRESSIONS Chapter 4 RATIONAL EXPRESSIONS What is a rational number? A Rational Number is the ratio of two integers Examples: 2 3 7

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics October 17, 2017 CS 361: Probability & Statistics Inference Maximum likelihood: drawbacks A couple of things might trip up max likelihood estimation: 1) Finding the maximum of some functions can be quite

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information

The Simplex Method: An Example

The Simplex Method: An Example The Simplex Method: An Example Our first step is to introduce one more new variable, which we denote by z. The variable z is define to be equal to 4x 1 +3x 2. Doing this will allow us to have a unified

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

Math Lecture 3 Notes

Math Lecture 3 Notes Math 1010 - Lecture 3 Notes Dylan Zwick Fall 2009 1 Operations with Real Numbers In our last lecture we covered some basic operations with real numbers like addition, subtraction and multiplication. This

More information