Online Learning with Partial Feedback. 1 Online Mirror Descent with Estimated Gradient

Size: px
Start display at page:

Download "Online Learning with Partial Feedback. 1 Online Mirror Descent with Estimated Gradient"

Transcription

1 Avance Course in Machine Learning Spring 2010 Online Learning wih Parial Feeback Hanous are joinly prepare by Shie Mannor an Shai Shalev-Shwarz In previous lecures we alke abou he general framework of online convex opimizaion an erive an algorihm for preicion wih exper avice from his general framework To apply he online algorihm, we nee o know he graien of he loss funcion a he en of each roun In he preicion of exper avice seing, his boils own o knowing he cos of each iniviual exper In his lecure, we show ha in orer o apply he online mirror escen algorihm i suffices o know an esimae of he graien In paricular, his yiels a no-regre algorihm for a famous problem calle he muli-arme bani problem 1 Online Mirror Descen wih Esimae Graien Recall he online mirror escen algorihm we escribe in Lecure 4 Now suppose ha insea of seing v o be a sub-graien of g (w ), we shall se v o be a ranom vecor wih E[v g (w ) Algorihm 1 Online Mirror Descen wih Esimae Graien Iniialize: w 1 f (0) for = 1 o T Play w A Pick v a ranom s ( E[v v 1,, v 1 g (w ) Upae w +1 f η ) s=1 v en for We now show ha he analysis sill hols as long as we have some boun on E[ v 2 Theorem 1 Suppose Algorihm 1 is use wih a funcion f ha is β-srongly [ convex wr a norm on A an has f 1 T (0) = 0 Suppose he loss funcions g are convex an ha E T v 2 V 2 Then, he algorihm run wih any posiive η enjoys he expece regre boun, E g (w ) min g (u) max u A f(u) + ηv 2 T u A η 2β In paricular, choosing η = E 2β max u f(u) V 2 T we obain g (w ) min u A g (u) V 2 max u A f(u) T β Proof Apply Corollary 1 from Lecure 4 o he sequence ηv 1,, ηv T o ge, for all u, Rearranging gives, η v, u f(u) η v, w + 1 ηv 2 2β v, w u f(u) η + η 2β v 2 Online Learning wih Parial Feeback-1

2 Taking expecaion of boh sies wih respec o he ranomness in choosing v we obain ha [ E[ v, w u f(u) + η η 2β T E 1 T v 2 A each roun, le v = E[v v 1,, v 1 g (w ) Using he assumpions in he heorem we ge ha E v, w u f(u) + η η 2β T V 2 By convexiy of g, g (w ) g (u) v, w u Therefore, E g (w ) g (u) f(u) η Since he above hols for all u A he resul follows + ηv 2 T 2β 2 The Muli-Arme Bani Problem In he muli-arme bani problem, here are arms, an on each online roun he learner shoul choose one of he arms, enoe I, where he chosen arm can be a ranom variable Then, i receives a cos of choosing his arm, c,i [0, 1 The vecor c [0, 1 associaes a cos for each of he arms, bu he learner only ge o see he cos of he arm i pulls Nohing is assume abou he sequence of vecors c 1, c 2, The performance of he learner is using by is regre for no always pulling he bes arm, E c,i min c,i, i where he expecaion is over he ranomness of he learner This problem nicely capures he exploraion-exploiaion raeoff On one han, we woul like o pull he arm which, base on previous rouns, we believe has he lowes cos On he oher han, maybe i beer o explore he arms an fin anoher arm wih a smaller cos To approach he muli-arme bani problem we use he general resul erive in he previous secion Le he loss funcion be g (w) = w, c an noe ha if w is a probabiliy vecor an I w, hen g (w ) = E[c,I The graien of he loss is c, bu we on know he value of all elemens of c To esimae he graien we shall efine a vecor v s Clearly, E[v = c Aiionally, v,j = { c,j /w,j if j = I 0 else E[ v 2 i w,i (c,i ) 2 /w 2,i i 1/w,i To ensure ha his quaniy is no excessively large we will efine he se of allowe isribuions o be A = {w : w i [, 1, i w i = 1}, where is a parameer o be efine laer Thus, E[ v 2 1/ Applying Theorem 1 we obain ha for all u A 2 log() T E g (w ) g (u) + Online Learning wih Parial Feeback-2

3 Finally, Le C i = T c,i an noe ha for each i if we se u o be s u i = 1 ( 1) an u j = hen So, overall, g (u) = C i + j i E g (w ) C i + T + (C j C i ) C i + T 2 log() T Seing = (2 log()t/( 2 T 2 )) 1/4 = (2 log()/( 2 T )) 1/4 we obain he regre boun ( E g (w ) C i + O (log() 2 T 3 ) 1/4) = Õ(1/2 T 3/4 ) 3 An improve Muli-Arme Bani Preicor We now erive anoher algorihm, calle EXP3 (which sans for exponenial-weigh algorihm for exploraion an exploiaion), ha enjoys a regre boun of O( T ) The algorihm is ue o Auer, Cesa-Bianchi, Freun, an Schapire Remark: Throughou his secion, we hink abou c as gain ha we like o maximize raher han a cos One can erive a resul for minimizing a cos by efining c,i 1 c,i for all an i Algorihm 2 EXP3 Parameer: (0, 1 Iniialize: w 1 = (1,, 1) for = 1 o T Se = j=1 w,j Se p,i = (1 )w,i / + / Pull I ranomly accoring o p Receive cos c,i [0, 1 Le v be he vecor wih v,j = c,j p,j 1 [I=j Upae: w +1,j = w,j e v,j/ en for Theorem 2 For any (0, 1) an j [ we have c,j E[C exp3 (e 1) c,j + 1 ln() Proof We have +1 = = w +1,i w,i e v,j/ w,i ( 1 + v,j / + (e 2)(v,i /) 2), Online Learning wih Parial Feeback-3

4 where in he las inequaliy we use he inequaliy e x 1 + x + (e 2)x 2 which hols for x 1 Denoe w,i = w,i / an using he efiniion of v, he above implies: w,i v,i + (e 2) ( ) 2 w,i v 2,I Since w,i p,i /(1 ), an using he efiniion of v,i we ge Z (1 ) c,i + (e 2) ( ) Taking logarihms of boh sies an using ln(1 + x) x we ge c,i p,i ln +1 (1 ) c,i + (e 2) ( ) c,i p,i Summing over we obain ln +1 (1 ) C exp3 + (e 2) ( ) c,i p,i On he oher han, for any acion j we have ln +1 ln w T +1,j Z 1 v,j ln Combining he upper an lower boun we obain v,j ln (1 ) C exp3 + (e 2) ( ) c,i p,i Now, ake expecaion of boh sies (wr o he ranom choice of I ) Noe ha E[v I 1,, I 1 = c an ha E[c,I /p,i I 1,, I 1 = i c,i c,j Therefore, E [ [ c,j ln E (1 ) C exp3 + (e 2) ( ) 2 1 T 1 c,j Rearranging he above gives c,j E[C exp3 (e 1) c,j + 1 ln(), which conclues our proof Corollary 1 Choose = min{1, ln()/((e 1)g}, hen for any j s c,j g we have c,j E[C exp3 2 e 1 g ln() = O( T ln()) Online Learning wih Parial Feeback-4

5 31 Lower boun Theorem 3 For any 2 an T 1 here exiss a isribuion over assignmens of rewars such ha he expece regre of any algorihm (where expecaion is boh wih respec o he ranomizaion of he algorihm an he assignmens of rewars) is a leas Ω(min{ T, T }) A proof can be fin in Auer e al paper The iea is o efine a isribuion over rewars of arms as follows Before he play begins, one acion I is chosen uniformly a ranom o be he goo acion The rewars of he goo acion are chosen ii o be 1 wih probabiliy 1/2 + ɛ an 0 oherwise for some ɛ o be efine laer The rewars of he res of he arms are chosen o be eiher 0 or 1 wih probabiliy 1/2 Now, he iea is o show ha any funcion efine on rewars in previous rouns canno isinguish o well beween rewars ha come accoring o he isribuion menione above an rewars ha come from a uniform isribuion Online Learning wih Parial Feeback-5

Notes on online convex optimization

Notes on online convex optimization Noes on online convex opimizaion Karl Sraos Online convex opimizaion (OCO) is a principled framework for online learning: OnlineConvexOpimizaion Inpu: convex se S, number of seps T For =, 2,..., T : Selec

More information

Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case

Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case Journal of Machine Learning Research 7 206) -32 Submie 9/5; Revise 5/6; Publishe 2/6 Gains an Losses are Funamenally Differen in Regre Minimizaion: he Sparse Case Joon Kwon Insiu e mahémaiques e Jussieu

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Chapter Three Systems of Linear Differential Equations

Chapter Three Systems of Linear Differential Equations Chaper Three Sysems of Linear Differenial Equaions In his chaper we are going o consier sysems of firs orer orinary ifferenial equaions. These are sysems of he form x a x a x a n x n x a x a x a n x n

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

Lecture 4: November 13

Lecture 4: November 13 Compuaional Learning Theory Fall Semeser, 2017/18 Lecure 4: November 13 Lecurer: Yishay Mansour Scribe: Guy Dolinsky, Yogev Bar-On, Yuval Lewi 4.1 Fenchel-Conjugae 4.1.1 Moivaion Unil his lecure we saw

More information

Games Against Nature

Games Against Nature Advanced Course in Machine Learning Spring 2010 Games Agains Naure Handous are joinly prepared by Shie Mannor and Shai Shalev-Shwarz In he previous lecures we alked abou expers in differen seups and analyzed

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

Approximation Algorithms for Unique Games via Orthogonal Separators

Approximation Algorithms for Unique Games via Orthogonal Separators Approximaion Algorihms for Unique Games via Orhogonal Separaors Lecure noes by Konsanin Makarychev. Lecure noes are based on he papers [CMM06a, CMM06b, LM4]. Unique Games In hese lecure noes, we define

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

An introduction to evolution PDEs November 16, 2018 CHAPTER 5 - MARKOV SEMIGROUP

An introduction to evolution PDEs November 16, 2018 CHAPTER 5 - MARKOV SEMIGROUP An inroucion o evoluion PDEs November 6, 8 CHAPTER 5 - MARKOV SEMIGROUP Conens. Markov semigroup. Asympoic of Markov semigroups 3.. Srong posiiviy coniion an Doeblin Theorem 3.. Geomeric sabiliy uner Harris

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Coloring Graphs with Sparse Neighborhoods

Coloring Graphs with Sparse Neighborhoods Journal of Combinaorial Theory, Series B 77, 738 (1999) Aricle ID jcb.1999.1910, available online a hp:www.iealibrary.com on Coloring Graphs wih Sparse Neighborhoos Noga Alon* Deparmen of Mahemaics, Raymon

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

Topics in Combinatorial Optimization May 11, Lecture 22

Topics in Combinatorial Optimization May 11, Lecture 22 8.997 Topics in Combinaorial Opimizaion May, 004 Lecure Lecurer: Michel X. Goemans Scribe: Alanha Newman Muliflows an Disjoin Pahs Le G = (V,E) be a graph an le s,,s,,...s, V be erminals. Our goal is o

More information

Seminar 5 Sustainability

Seminar 5 Sustainability Seminar 5 Susainabiliy Soluions Quesion : Hyperbolic Discouning -. Suppose a faher inheris a family forune of 0 million NOK an he wans o use some of i for himself (o be precise, he share ) bu also o beques

More information

D.I. Survival models and copulas

D.I. Survival models and copulas D- D. SURVIVAL COPULA D.I. Survival moels an copulas Definiions, relaionships wih mulivariae survival isribuion funcions an relaionships beween copulas an survival copulas. D.II. Fraily moels Use of a

More information

U( θ, θ), U(θ 1/2, θ + 1/2) and Cauchy (θ) are not exponential families. (The proofs are not easy and require measure theory. See the references.

U( θ, θ), U(θ 1/2, θ + 1/2) and Cauchy (θ) are not exponential families. (The proofs are not easy and require measure theory. See the references. Lecure 5 Exponenial Families Exponenial families, also called Koopman-Darmois families, include a quie number of well known disribuions. Many nice properies enjoyed by exponenial families allow us o provide

More information

1 Widrow-Hoff Algorithm

1 Widrow-Hoff Algorithm COS 511: heoreical Machine Learning Lecurer: Rob Schapire Lecure # 18 Scribe: Shaoqing Yang April 10, 014 1 Widrow-Hoff Algorih Firs le s review he Widrow-Hoff algorih ha was covered fro las lecure: Algorih

More information

Christos Papadimitriou & Luca Trevisan November 22, 2016

Christos Papadimitriou & Luca Trevisan November 22, 2016 U.C. Bereley CS170: Algorihms Handou LN-11-22 Chrisos Papadimiriou & Luca Trevisan November 22, 2016 Sreaming algorihms In his lecure and he nex one we sudy memory-efficien algorihms ha process a sream

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11.

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11. 1 Mah 334 Tes 1 KEY Spring 21 Secion: 1 Insrucor: Sco Glasgow Daes: Ma 1 and 11. Do NOT wrie on his problem saemen bookle, excep for our indicaion of following he honor code jus below. No credi will be

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

Some Ramsey results for the n-cube

Some Ramsey results for the n-cube Some Ramsey resuls for he n-cube Ron Graham Universiy of California, San Diego Jozsef Solymosi Universiy of Briish Columbia, Vancouver, Canada Absrac In his noe we esablish a Ramsey-ype resul for cerain

More information

1 Solutions to selected problems

1 Solutions to selected problems 1 Soluions o seleced problems 1. Le A B R n. Show ha in A in B bu in general bd A bd B. Soluion. Le x in A. Then here is ɛ > 0 such ha B ɛ (x) A B. This shows x in B. If A = [0, 1] and B = [0, 2], hen

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

On Customized Goods, Standard Goods, and Competition

On Customized Goods, Standard Goods, and Competition On Cusomize Goos, Sanar Goos, an Compeiion Nilari. Syam C. T. auer College of usiness Universiy of Houson 85 Melcher Hall, Houson, TX 7704 Email: nbsyam@uh.eu Phone: (71 74 4568 Fax: (71 74 457 Nana Kumar

More information

Nevertheless, there are well defined (and potentially useful) distributions for which σ 2

Nevertheless, there are well defined (and potentially useful) distributions for which σ 2 M. Meseron-Gibbons: Bioalulus, Leure, Page. The variane. More on improper inegrals In general, knowing only he mean of a isribuion is no as useful as also knowing wheher he isribuion is lumpe near he mean

More information

Boosting with Online Binary Learners for the Multiclass Bandit Problem

Boosting with Online Binary Learners for the Multiclass Bandit Problem Shang-Tse Chen School of Compuer Science, Georgia Insiue of Technology, Alana, GA Hsuan-Tien Lin Deparmen of Compuer Science and Informaion Engineering Naional Taiwan Universiy, Taipei, Taiwan Chi-Jen

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

DIFFERENTIAL GEOMETRY HW 5

DIFFERENTIAL GEOMETRY HW 5 DIFFERENTIAL GEOMETRY HW 5 CLAY SHONKWILER 3. Le M be a complee Riemannian manifold wih non-posiive secional curvaure. Prove ha d exp p v w w, for all p M, all v T p M and all w T v T p M. Proof. Le γ

More information

Online Learning Applications

Online Learning Applications Online Learning Applicaions Sepember 19, 2016 In he las lecure we saw he following guaranee for minimizing misakes wih Randomized Weighed Majoriy (RWM). Theorem 1 Le M be misakes of RWM and M i he misakes

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

REPRESENTATION AND GAUSSIAN BOUNDS FOR THE DENSITY OF BROWNIAN MOTION WITH RANDOM DRIFT

REPRESENTATION AND GAUSSIAN BOUNDS FOR THE DENSITY OF BROWNIAN MOTION WITH RANDOM DRIFT Communicaions on Sochasic Analysis Vol. 1, No. 2 (216) 151-162 Serials Publicaions www.serialspublicaions.com REPRESENTATION AND GAUSSIAN BOUNDS FOR THE DENSITY OF BROWNIAN MOTION WITH RANDOM DRIFT AZMI

More information

Module II, Part C. More Insight into Fiber Dispersion

Module II, Part C. More Insight into Fiber Dispersion Moule II Par C More Insigh ino Fiber Dispersion . Polariaion Moe Dispersion Fiber Birefringence: Imperfec cylinrical symmery leas o wha is known as birefringence. Recall he HE moe an is E x componen which

More information

Online Learning with Preference Feedback

Online Learning with Preference Feedback Online Learning wih Preference Feedback Pannagadaa K. Shivaswamy Deparmen of Compuer Science Cornell Universiy, Ihaca NY pannaga@cs.cornell.edu Thorsen Joachims Deparmen of Compuer Science Cornell Universiy,

More information

Stochastic models and their distributions

Stochastic models and their distributions Sochasic models and heir disribuions Couning cusomers Suppose ha n cusomers arrive a a grocery a imes, say T 1,, T n, each of which akes any real number in he inerval (, ) equally likely The values T 1,,

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

Lie Derivatives operator vector field flow push back Lie derivative of

Lie Derivatives operator vector field flow push back Lie derivative of Lie Derivaives The Lie derivaive is a mehod of compuing he direcional derivaive of a vecor field wih respec o anoher vecor field We already know how o make sense of a direcional derivaive of real valued

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework 4 (Sas 62, Winer 217) Due Tuesday Feb 14, in class Quesions are derived from problems in Sochasic Processes by S. Ross. 1. Le A() and Y () denoe respecively he age and excess a. Find: (a) P{Y

More information

Lecture 2 April 04, 2018

Lecture 2 April 04, 2018 Sas 300C: Theory of Saisics Spring 208 Lecure 2 April 04, 208 Prof. Emmanuel Candes Scribe: Paulo Orensein; edied by Sephen Baes, XY Han Ouline Agenda: Global esing. Needle in a Haysack Problem 2. Threshold

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

The Natural Logarithm

The Natural Logarithm The Naural Logarihm 5-4-007 The Power Rule says n = n + n+ + C provie ha n. The formula oes no apply o. An anierivaive F( of woul have o saisfy F( =. Bu he Funamenal Theorem implies ha if > 0, hen Thus,

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 06 A Primal-Dual Type Algorihm wih he O(/) Convergence Rae for Large Scale Consrained Convex Programs Hao Yu and Michael J. Neely Absrac This paper considers

More information

A Forward-Backward Splitting Method with Component-wise Lazy Evaluation for Online Structured Convex Optimization

A Forward-Backward Splitting Method with Component-wise Lazy Evaluation for Online Structured Convex Optimization A Forward-Backward Spliing Mehod wih Componen-wise Lazy Evaluaion for Online Srucured Convex Opimizaion Yukihiro Togari and Nobuo Yamashia March 28, 2016 Absrac: We consider large-scale opimizaion problems

More information

Hamilton Jacobi equations

Hamilton Jacobi equations Hamilon Jacobi equaions Inoducion o PDE The rigorous suff from Evans, mosly. We discuss firs u + H( u = 0, (1 where H(p is convex, and superlinear a infiniy, H(p lim p p = + This by comes by inegraion

More information

CSE/NB 528 Lecture 14: Reinforcement Learning (Chapter 9)

CSE/NB 528 Lecture 14: Reinforcement Learning (Chapter 9) CSE/NB 528 Lecure 14: Reinforcemen Learning Chaper 9 Image from hp://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg Lecure figures are from Dayan & Abbo s book hp://people.brandeis.edu/~abbo/book/index.hml

More information

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013 IMPLICI AND INVERSE FUNCION HEOREMS PAUL SCHRIMPF 1 OCOBER 25, 213 UNIVERSIY OF BRIISH COLUMBIA ECONOMICS 526 We have exensively sudied how o solve sysems of linear equaions. We know how o check wheher

More information

Expert Advice for Amateurs

Expert Advice for Amateurs Exper Advice for Amaeurs Ernes K. Lai Online Appendix - Exisence of Equilibria The analysis in his secion is performed under more general payoff funcions. Wihou aking an explici form, he payoffs of he

More information

556: MATHEMATICAL STATISTICS I

556: MATHEMATICAL STATISTICS I 556: MATHEMATICAL STATISTICS I INEQUALITIES 5.1 Concenraion and Tail Probabiliy Inequaliies Lemma (CHEBYCHEV S LEMMA) c > 0, If X is a random variable, hen for non-negaive funcion h, and P X [h(x) c] E

More information

An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback

An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback Journal of Machine Learning Research 8 07) - Submitte /6; Publishe 5/7 An Optimal Algorithm for Banit an Zero-Orer Convex Optimization with wo-point Feeback Oha Shamir Department of Computer Science an

More information

CSE/NB 528 Lecture 14: From Supervised to Reinforcement Learning (Chapter 9) R. Rao, 528: Lecture 14

CSE/NB 528 Lecture 14: From Supervised to Reinforcement Learning (Chapter 9) R. Rao, 528: Lecture 14 CSE/NB 58 Lecure 14: From Supervised o Reinforcemen Learning Chaper 9 1 Recall from las ime: Sigmoid Neworks Oupu v T g w u g wiui w Inpu nodes u = u 1 u u 3 T i Sigmoid oupu funcion: 1 g a 1 a e 1 ga

More information

The Real Exchange Rate, Real Interest Rates, and the Risk Premium. Charles Engel University of Wisconsin

The Real Exchange Rate, Real Interest Rates, and the Risk Premium. Charles Engel University of Wisconsin The Real Exchange Rae, Real Ineres Raes, an he Risk Premium Charles Engel Universiy of Wisconsin 1 Define he excess reurn or risk premium on Foreign s.. bons: λ i + Es+ 1 s i = r + Eq+ 1 q r The famous

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n Lecure 3 - Kövari-Sós-Turán Theorem Jacques Versraëe jacques@ucsd.edu We jus finished he Erdős-Sone Theorem, and ex(n, F ) ( /(χ(f ) )) ( n 2). So we have asympoics when χ(f ) 3 bu no when χ(f ) = 2 i.e.

More information

Integral representations and new generating functions of Chebyshev polynomials

Integral representations and new generating functions of Chebyshev polynomials Inegral represenaions an new generaing funcions of Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, 39 186 Roma, Ialy email:

More information

Multiarmed Bandits With Limited Expert Advice

Multiarmed Bandits With Limited Expert Advice uliarmed Bandis Wih Limied Exper Advice Sayen Kale Yahoo Labs ew York sayen@yahoo-inc.com Absrac We consider he problem of minimizing regre in he seing of advice-efficien muliarmed bandis wih exper advice.

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

NEWTRON: an Efficient Bandit algorithm for Online Multiclass Prediction

NEWTRON: an Efficient Bandit algorithm for Online Multiclass Prediction NEWTRON: an Efficien Bandi algorihm for Online Muliclass Predicion Elad Hazan Deparmen of Indusrial Engineering Technion - Israel Insiue of Technology Haifa 32000 Israel ehazan@ie.echnion.ac.il Sayen Kale

More information

Non-Stochastic Bandit Slate Problems

Non-Stochastic Bandit Slate Problems Non-Sochasic Bandi Slae Problems Sayen Kale Yahoo! Research Sana Clara, CA skale@yahoo-inccom Lev Reyzin Georgia Ins of echnology Alana, GA lreyzin@ccgaechedu Absrac Rober E Schapire Princeon Universiy

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Annales Academiæ Scieniarum Fennicæ Mahemaica Volumen 31, 2006, 39 46 CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Joaquim Marín and Javier

More information

Reserves measures have an economic component eg. what could be extracted at current prices?

Reserves measures have an economic component eg. what could be extracted at current prices? 3.2 Non-renewable esources A. Are socks of non-renewable resources fixed? eserves measures have an economic componen eg. wha could be exraced a curren prices? - Locaion and quaniies of reserves of resources

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

Advanced Integration Techniques: Integration by Parts We may differentiate the product of two functions by using the product rule:

Advanced Integration Techniques: Integration by Parts We may differentiate the product of two functions by using the product rule: Avance Inegraion Techniques: Inegraion by Pars We may iffereniae he prouc of wo funcions by using he prouc rule: x f(x)g(x) = f (x)g(x) + f(x)g (x). Unforunaely, fining an anierivaive of a prouc is no

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Online Learning with Queries

Online Learning with Queries Online Learning wih Queries Chao-Kai Chiang Chi-Jen Lu Absrac The online learning problem requires a player o ieraively choose an acion in an unknown and changing environmen. In he sandard seing of his

More information

Cournot games with limited demand: from multiple equilibria to stochastic equilibrium

Cournot games with limited demand: from multiple equilibria to stochastic equilibrium Courno games wih limie eman: from muliple equilibria o sochasic equilibrium Io Polak an Nicolas Privaul Division of Mahemaical Sciences School of Physical an Mahemaical Sciences Nanyang Technological Universiy

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

Assignment 6. Tyler Shendruk December 6, 2010

Assignment 6. Tyler Shendruk December 6, 2010 Assignmen 6 Tyler Shendruk December 6, 1 1 Harden Problem 1 Le K be he coupling and h he exernal field in a 1D Ising model. From he lecures hese can be ransformed ino effecive coupling and fields K and

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model Lecure Noes 3: Quaniaive Analysis in DSGE Models: New Keynesian Model Zhiwei Xu, Email: xuzhiwei@sju.edu.cn The moneary policy plays lile role in he basic moneary model wihou price sickiness. We now urn

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information