ADOMIAN DECOMPOSITION METHOD FOR THREE-DIMENSIONAL DIFFUSION MODEL IN FRACTAL HEAT TRANSFER INVOLVING LOCAL FRACTIONAL DERIVATIVES

Size: px
Start display at page:

Download "ADOMIAN DECOMPOSITION METHOD FOR THREE-DIMENSIONAL DIFFUSION MODEL IN FRACTAL HEAT TRANSFER INVOLVING LOCAL FRACTIONAL DERIVATIVES"

Transcription

1 THERMAL SCIENCE, Year 215, Vol. 19, Suppl. 1, pp. S137-S141 S137 ADOMIAN DECOMPOSITION METHOD FOR THREE-DIMENSIONAL DIFFUSION MODEL IN FRACTAL HEAT TRANSFER INVOLVING LOCAL FRACTIONAL DERIVATIVES by Zhi-Ping FAN a, Hassan Kamil JASSIM b,c, Ravinder Krishna RAINA d, and Xiao-Jun YANG e a School of Computer Science and Educational Software, Guangzhou University, Guangzhou, China b Department of Mathematics, Faculty of Education for Pure Sciences, University of Thi-Qar, Nasiryah, Iraq c Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran d Department of Mathematics, College of Technology and Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India e Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, China Original scientific paper DOI: /TSCI15S1S37F The non-differentiable analytical solution of the 3-D diffusion equation in fractal heat transfer is investigated in this article. The Adomian decomposition method is considered in the local fractional operator sense. The obtained result is given to show the sample and efficient features of the presented technique to implement fractal heat transfer problems. Key words: Adomian decomposition method, diffusion equation, fractal heat transfer, local fractional derivative Introduction The theory of local fractional calculus attracts researchers from mathematical physics and engineering applications [1-8]. This interest spans the works of diffusion phenomena with non-differentiability [9-11]. The 3-D diffusion model in fractal heat transfer involving local fractional derivatives (LFD) was presented as [2, 8]: subject to the initial and boundary conditions: 2 Φ( yz,,, τ ) η Φ ( yz,,, τ) = τ (1) Φ ( yz,,,) = f( yz,, ) (2a) Φ (, yz,, τ) =Φ ( ayz,,, τ) = g( yz,, τ) (2b) 1 Corresponding author; dyangiaojun@163.com

2 S138 Fan, Z. P. et al.: Adomian Decomposition Method for Three-Dimensional Diffusion THERMAL SCIENCE, Year 215, Vol. 19, Suppl. 1, pp. S137-S141 Φ (,, z, τ) =Φ ( bz,,, τ) = g ( z,, τ) (2c) 2 Φ (, y,,) t =Φ (, yct,,) = g(, yt,) (2d) where the local fractional Laplace operator is defined as [1, 2, 4-8]: = + + y z (3) η β is a non-differentiable diffusion coefficient, and Φ( yzτ,,, ) is satisfied with the non-differentiable concentration distribution [2, 9]. Recently, the authors [1] suggested the local fractional Adomian decomposition method (LFADM) to consider 1-D diffusion equation on Cantor time-space. Based on it, Yan et al. considered the Laplace equation within the LFD [11]. Baleanu et al. developed non-differential solution to wave equation on Cantor sets within the LFD [12]. The main target of this manuscript to utilize the method to implement the 3-D diffusion model in fractal heat transfer. 3-D diffusion model in fractal heat transfer We first rewrite the problem (1) in the local fractional operator form: ( ) (2 ) (2 ) (2 ) Lτ Φ ( yz,,, τ) = η [ L Φ ( yz,,, τ) + Lyy Φ ( yz,,, τ) + Lzz Φ ( yz,,, τ)] (4) where the local fractional differential operators (see A1 of the Appendi) L L (2 ), (2 ) yy, and are defined by: (2 ) L zz L ( ) τ (.) = (.), τ (2 ) L (2 ) L zz 2 (.) = (.), 2 2 (2 ) L yy Adopting the inverse operator (see A2 of the Appendi) and using the initial condition leads to: 2 ( ), t (.) = (.), 2 y L (.) = (.) (5a,b,c,d) 2 z ( ) ( ) τ τ (,,, τ ) L L Φ yz = ( ) (2 ) (2 ) (2 ) τ yy zz ( ) L τ to both sides of (4) = η L [ Φ Φ ( yz,,, τ) +Φ Φ ( yz,,, τ) + L Φ ( yz,,, τ)] (6) Hence, we get: Φ ( yzτ,,, ) = ( ) (2 ) (2 ) (2 ) t yy zz = η L [ L Φ ( yz,,, t) + L Φ ( yz,,, t) + L Φ ( yz,,, t)] +Φ ( yz,,,) (7) According to the LFADM we decompose the unknown function Φ ( yzτ,,, ) as an infinite series: Substituting (8) into (7) yield: Φ ( yz,,, τ) = Φn ( yz,,, τ) (8) n=

3 THERMAL SCIENCE, Year 215, Vol. 19, Suppl. 1, pp. S137-S141 S139 ( ) (2 ) (2 ) (2 ) n (, y, z,) L L n L yy n L Φ =Φ + η τ Φ + Φ + zz Φn n= n= n= n= (9) The components Φn ( yz,,, τ ), n can be completely determined by using the cursive relationship: Taking Φ ( yz,,, τ ) =Φ ( yz,,,) (1a) 2 ( ) (2 ) (2 ) (2 ) n+ τ η τ n yy n zz n Φ 1 (, y, z, ) = L [ L Φ + L Φ + L Φ ], n (1b) Φ ( yz,,,) = sin ( )cos ( y )cos ( z ) (11a) Φ (, yz,, τ) =Φ (π, yz,, τ) = (11b) Φ (,, z, τ) = Φ (,π, z, τ) = 3 E [ (2 τ) ]sin ( )cos ( z ) (11c) we have: Φ ( y,,, τ) = Φ ( y,,π, τ) = 3 E[ (2 τ) ]sin ( )cos ( y ) (11d) η =.2 (11e) Φ ( yz,,, τ ) = sin ( )cos ( y )cos ( z ) (12a) ( ) (2 ) (2 ) (2 ) n+ 1 τ τ n yy n zz n Φ (, y, z, ) =.2 L [ L Φ + L Φ + L Φ ], n (12b) Consequently, we obtain: Φ ( yz,,, τ ) = sin ( )cos ( y )cos ( z ) (13) ( ) (2 ) (2 ) (2 ) 1 y τ Lτ L T Lyy T Lzz T Φ (,, ) =.2 [ + + ] = 3(.2 τ ) = sin ( )cos ( y )cos ( z ) (14) Γ (1 + ) ( ) (2 ) (2 ) (2 ) 2 y τ Lτ L T1 Lyy T1 Lzz T1 Φ (,, ) =.2 [ + + ] = 2 3(.2 τ ) = sin ( )cos ( y )cos ( z ) (15) Γ (1 + 2 ) ( ) (2 ) (2 ) (2 ) 3 y τ Lτ L T2 Lyy T2 Lzz T2 Φ (,, ) =.2 [ + + ] 3 3(.2 τ ) = sin ( )cos ( y )cos ( z ) (16) Γ (1 + 3 ) and so on. The solution in a non-differentiable series form:

4 S14 Fan, Z. P. et al.: Adomian Decomposition Method for Three-Dimensional Diffusion THERMAL SCIENCE, Year 215, Vol. 19, Suppl. 1, pp. S137-S141 i (.2 τ ) Φ ( yz,,, τ ) = 3sin ( )cos ( y )cos ( z ) ( 1) (17) Γ (1 + i ) is readily obtained. Therefore, the eact solution can be written as: Φ ( yz,,, τ) = 3 E [ (.2 τ) ] sin ( )cos ( y )cos ( z ) (18) Figure 1 shows the eact solution of the 3-D diffusion model in fractal heat transfer when = ln 2 / ln 3, z =, and τ =. i= i Conclusions In this work, the LFADM has been successfully employed to solve the 3-D diffusion model in fractal heat transfer involving LFD. The obtained solution is a nondifferentiable function, which is defined on Cantor function and it discontinuously depend on the LFD. Nomenclature, y, z space co-ordinates, [m] Φ(, y, z, τ) the concentration distribution, [ ] Figure 1. The eact solution of the 3-D diffusion model in fractal heat transfer when = ln2/ln3, and τ = Greek symbols time fractal dimensional order, [ ] τ time, [s] References [1] Yang, X. J., Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, 211 [2] Yang, X. J., Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, USA, 212 [3] Yang, X. J., et al., Cantor-Type Cylindrical-Coordinate Method for Differential Equations with Local Fractional Derivatives, Physics Letters A, 377 (213), 28-3, pp [4] Yang, X. J., et al., Mathematical Aspects of the Heisenberg Uncertainty Principle within Local Fractional Fourier Analysis, Boundary Value Problems, 213 (213), 1, pp [5] Christianto, V., Rahul, B., A Derivation of Proca Equations on Cantor Sets: a Local Fractional Approach, Bulletin of Mathematical Sciences & Applications, 3 (214), 4, pp [6] Liu, H. Y., et al., Fractional Calculus for Nanoscale Flow and Heat Transfer, International Journal of Numerical Methods for Heat & Fluid Flow, 24 (214), 6, pp [7] Yang, X.-J., et al., Modeling Fractal Waves on Shallow Water Surfaces via Local Fractional Kortewegde Vries Equation, Abstract and Applied Analysis, 214 (214), ID [8] Zhang, Y., et al., On a Local Fractional Wave Equation under Fied Entropy Arising in Fractal Hydrodynamics, Entropy, 16 (214), 12, pp [9] Hao, Y. J., et al., Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates, Advances in Mathematical Physics, 213 (213), ID [1] Yang, X. J., et al., Approimation Solutions for Diffusion Equation on Cantor Time-Space, Proceeding of the Romanian Academy A, 14 (213), 2, pp

5 THERMAL SCIENCE, Year 215, Vol. 19, Suppl. 1, pp. S137-S141 S141 [11] Yan, S. P., et al., Local Fractional Adomian Decomposition and Function Decomposition Methods for Solving Laplace Equation within Local Fractional Operators, Advances in Mathematical Physics, 214 (214), ID [12] Baleanu, D., et al., Local Fractional Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within Local Fractional Operators, Abstract and Applied Analysis, 214 (214), ID Appendi A The local fractional derivative (local fractional differential operator) of Ψ ( ) of order at = is defined as [1, 2, 1-12]: ( ) Ψ Ψ d [ ( ) ( )]) Ψ ( ) ( ) lim = =Ψ = d ( ) where [ Ψ( ) Ψ( )] Γ ( + 1)[ Ψ( ) Ψ ( )]. Its inverse operator (local fractional integral operator) ψ ( ) of order in the interval [ ξζ, ] is given as [1, 2, 1-12]: ζ N 1 ( ) 1 1 ζ ( ) = ( )(d ) = lim ( )( ) (1 ) (1 ) τ j j Γ + Γ + j = (A1) I f ψτ τ f τ τ (A2) where the partitions of the interval [ ξζ, ] are denoted as ( τ j, τ j + 1), with τ j = τ j+ 1 τ j, τ = a, τ N = b, and τ = ma{ τ, τ1,...}, j =,..., N 1. Paper submitted: November 11, 214 Paper revised: February 2, 215 Paper accepted: February 28, 215

Solving Poisson Equation within Local Fractional Derivative Operators

Solving Poisson Equation within Local Fractional Derivative Operators vol. (207), Article ID 0253, 2 pages doi:0.3/207/0253 AgiAl Publishing House http://www.agialpress.com/ Research Article Solving Poisson Equation within Local Fractional Derivative Operators Hassan Kamil

More information

ON THE FRACTAL HEAT TRANSFER PROBLEMS WITH LOCAL FRACTIONAL CALCULUS

ON THE FRACTAL HEAT TRANSFER PROBLEMS WITH LOCAL FRACTIONAL CALCULUS THERMAL SCIENCE, Year 2015, Vol. 19, No. 5, pp. 1867-1871 1867 ON THE FRACTAL HEAT TRANSFER PROBLEMS WITH LOCAL FRACTIONAL CALCULUS by Duan ZHAO a,b, Xiao-Jun YANG c, and Hari M. SRIVASTAVA d* a IOT Perception

More information

Research Article Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator

Research Article Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator Mathematical Problems in Engineering, Article ID 9322, 7 pages http://d.doi.org/.55/24/9322 Research Article Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local

More information

SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD

SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD THERMAL SCIENCE, Year 15, Vol. 19, Suppl. 1, pp. S69-S75 S69 SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD by Syed Tauseef MOHYUD-DIN a, Naveed AHMED a, Asif WAHEED c, Muhammad

More information

AN INTEGRAL TRANSFORM APPLIED TO SOLVE THE STEADY HEAT TRANSFER PROBLEM IN THE HALF-PLANE

AN INTEGRAL TRANSFORM APPLIED TO SOLVE THE STEADY HEAT TRANSFER PROBLEM IN THE HALF-PLANE THERMAL SCIENCE: Year 07, Vol., Suppl., pp. S05-S S05 AN INTEGRAL TRANSFORM APPLIED TO SOLVE THE STEADY HEAT TRANSFER PROBLEM IN THE HALF-PLANE by Tongqiang XIA a, Shengping YAN b, Xin LIANG b, Pengjun

More information

Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations

Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations Int. J. Adv. Appl. Math. and Mech. 3( (05 50 58 (ISSN: 347-59 IJAAMM Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Application of Laplace Adomian

More information

Research Article On Local Fractional Continuous Wavelet Transform

Research Article On Local Fractional Continuous Wavelet Transform Hindawi Publishing Corporation Abstract and Applied Analysis Volume 203, Article ID 72546, 5 pages http://dx.doi.org/0.55/203/72546 Research Article On Local Fractional Continuous Wavelet Transform Xiao-Jun

More information

ON LOCAL FRACTIONAL OPERATORS VIEW OF COMPUTATIONAL COMPLEXITY Diffusion and Relaxation Defined on Cantor Sets

ON LOCAL FRACTIONAL OPERATORS VIEW OF COMPUTATIONAL COMPLEXITY Diffusion and Relaxation Defined on Cantor Sets THERMAL SCIENCE, Year 6, Vol., Suppl. 3, pp. S755-S767 S755 ON LOCAL FRACTIONAL OPERATORS VIEW OF COMPUTATIONAL COMPLEXITY Diffusion and Relaxation Defined on Cantor Sets by Xiao-Jun YANG a, Zhi-Zhen ZHANG

More information

EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD

EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD THERMAL SCIENCE, Year 15, Vol. 19, No. 4, pp. 139-144 139 EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD by Hong-Cai MA a,b*, Dan-Dan YAO a, and

More information

Research Article Local Fractional Variational Iteration Method for Local Fractional Poisson Equations in Two Independent Variables

Research Article Local Fractional Variational Iteration Method for Local Fractional Poisson Equations in Two Independent Variables Abstract and Applied Analysis, Article ID 484323, 7 pages http://d.doi.org/.55/24/484323 Research Article Local Fractional Variational Iteration Method for Local Fractional Poisson Equations in Two Independent

More information

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation International Differential Equations Volume 2010, Article ID 764738, 8 pages doi:10.1155/2010/764738 Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

More information

Local Fractional Integral Transforms

Local Fractional Integral Transforms From the SelectedWorks of Xiao-Jun Yang 2011 Local Fractional Integral Transforms Yang X Available at: https://works.bepress.com/yang_xiaojun/3/ Progress in Nonlinear Science Science is the moving boundary

More information

NEW PERIODIC WAVE SOLUTIONS OF (3+1)-DIMENSIONAL SOLITON EQUATION

NEW PERIODIC WAVE SOLUTIONS OF (3+1)-DIMENSIONAL SOLITON EQUATION Liu, J., et al.: New Periodic Wave Solutions of (+)-Dimensional Soliton Equation THERMAL SCIENCE: Year 7, Vol., Suppl., pp. S69-S76 S69 NEW PERIODIC WAVE SOLUTIONS OF (+)-DIMENSIONAL SOLITON EQUATION by

More information

VALIDATION OF ACCURACY AND STABILITY OF NUMERICAL SIMULATION FOR 2-D HEAT TRANSFER SYSTEM BY AN ENTROPY PRODUCTION APPROACH

VALIDATION OF ACCURACY AND STABILITY OF NUMERICAL SIMULATION FOR 2-D HEAT TRANSFER SYSTEM BY AN ENTROPY PRODUCTION APPROACH Brohi, A. A., et al.: Validation of Accuracy and Stability of Numerical Simulation for... THERMAL SCIENCE: Year 017, Vol. 1, Suppl. 1, pp. S97-S104 S97 VALIDATION OF ACCURACY AND STABILITY OF NUMERICAL

More information

Lakshmi - Manoj generalized Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar

Lakshmi - Manoj generalized Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar Pure and Applied Mathematics Journal 2015; 4(2): 57-61 Published online March 23, 2015 (http://www.sciencepublishinggroup.com/j/pamj) doi: 10.11648/j.pamj.20150402.15 ISSN: 2326-9790 (Print); ISSN: 2326-9812

More information

The Discrete Yang-Fourier Transforms in Fractal Space

The Discrete Yang-Fourier Transforms in Fractal Space From the Selectedorks of Xiao-Jun Yang April 4, 2012 The Discrete Yang-Fourier Transforms in Fractal Space Yang Xiao-Jun Available at: https://worksbepresscom/yang_xiaojun/21/ Advances in Electrical Engineering

More information

A new insight into complexity from the local fractional calculus view point: modelling growths of populations

A new insight into complexity from the local fractional calculus view point: modelling growths of populations new insight into complexity from the local fractional calculus view point: moelling growths of populations Xiao-Jun Yang anj..tenreiromachao Communicate by. Debbouche In this paper, we moel the growths

More information

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013) ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9(205 No.2,pp.3-20 Approimate Solutions of Fractional Linear and Nonlinear Differential Equations Using Laplace Homotopy

More information

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD R. C. Mittal 1 and Ruchi Nigam 2 1 Department of Mathematics, I.I.T. Roorkee, Roorkee, India-247667. Email: rcmmmfma@iitr.ernet.in

More information

Exp-function Method for Fractional Differential Equations

Exp-function Method for Fractional Differential Equations From the SelectedWorks of Ji-Huan He 2013 Exp-function Method for Fractional Differential Equations Ji-Huan He Available at: https://works.bepress.com/ji_huan_he/73/ Citation Information: He JH. Exp-function

More information

Application of fractional sub-equation method to the space-time fractional differential equations

Application of fractional sub-equation method to the space-time fractional differential equations Int. J. Adv. Appl. Math. and Mech. 4(3) (017) 1 6 (ISSN: 347-59) Journal homepage: www.ijaamm.com IJAAMM International Journal of Advances in Applied Mathematics and Mechanics Application of fractional

More information

NEW RHEOLOGICAL MODELS WITHIN LOCAL FRACTIONAL DERIVATIVE

NEW RHEOLOGICAL MODELS WITHIN LOCAL FRACTIONAL DERIVATIVE c) 2017 Rom. Rep. Phys. for accepted papers only) NEW RHEOLOGICAL MODELS WITHIN LOCAL FRACTIONAL DERIVATIVE XIAO-JUN YANG 1,2, FENG GAO 1,2, H. M. SRIVASTAVA 3,4 1 School of Mechanics and Civil Engineering,

More information

A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION

A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION THERMAL SCIENCE: Year 7, Vol., Suppl., pp. S-S7 S A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION by Wei XU a, Wen CHEN a*, Ying-Jie LIANG a*, and Jose WEBERSZPIL b a State Key Laboratory

More information

Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term

Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term From the SelectedWorks of Hassan Askari 2013 Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term Hassan Askari Available at: https://works.bepress.com/hassan_askari/4/ Asian-European

More information

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods Abstract and Applied Analysis Volume 2012, Article ID 350287, 7 pages doi:10.1155/2012/350287 Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation

More information

The local fractional Hilbert transform in fractal space

The local fractional Hilbert transform in fractal space The local fractional ilbert transform in fractal space Guang-Sheng Chen Department of Computer Engineering, Guangxi Modern Vocational Technology College, echi,guangxi, 547000, P.. China E-mail address:

More information

CURRICULUM VITAE. Jie Du

CURRICULUM VITAE. Jie Du CURRICULUM VITAE Jie Du Yau Mathematical Sciences Center Tsinghua University Beijing 100084, P.R. China Office: Room 135, Jin Chun Yuan West Building E-mail: jdu@tsinghua.edu.cn Education joint Ph.D. student,

More information

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2012, Article ID 924956, 11 pages doi:10.1155/2012/924956 Research Article The Extended Fractional Subequation Method for Nonlinear

More information

Research Article Approximation Algorithm for a System of Pantograph Equations

Research Article Approximation Algorithm for a System of Pantograph Equations Applied Mathematics Volume 01 Article ID 714681 9 pages doi:101155/01/714681 Research Article Approximation Algorithm for a System of Pantograph Equations Sabir Widatalla 1 and Mohammed Abdulai Koroma

More information

Maxwell s Equations on Cantor Sets: A Local Fractional Approach

Maxwell s Equations on Cantor Sets: A Local Fractional Approach From the SelectedWorks of Xiao-Jun Yang ovember 7, 2013 Maxwell s Equations on Cantor Sets: A Local Fractional Approach Yang Xiaojun Y. Zhao, Y. Zhao D. Baleanu, D. Baleanu C. Cattani, C. Cattani D. F.

More information

Research Article Solution of (3 1)-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method

Research Article Solution of (3 1)-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method Mathematical Problems in Engineering Volume 212, Article ID 5182, 14 pages doi:1.1155/212/5182 Research Article Solution of ( 1)-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform

More information

KINK DEGENERACY AND ROGUE WAVE FOR POTENTIAL KADOMTSEV-PETVIASHVILI EQUATION

KINK DEGENERACY AND ROGUE WAVE FOR POTENTIAL KADOMTSEV-PETVIASHVILI EQUATION THERMAL SCIENCE, Year 05, Vol. 9, No. 4, pp. 49-435 49 KINK DEGENERACY AND ROGUE WAVE FOR POTENTIAL KADOMTSEV-PETVIASHVILI EQUATION by Hong-Ying LUO a*, Wei TAN b, Zheng-De DAI b, and Jun LIU a a College

More information

ACTA UNIVERSITATIS APULENSIS No 20/2009 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS. Wen-Hua Wang

ACTA UNIVERSITATIS APULENSIS No 20/2009 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS. Wen-Hua Wang ACTA UNIVERSITATIS APULENSIS No 2/29 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS Wen-Hua Wang Abstract. In this paper, a modification of variational iteration method is applied

More information

THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC FRACTAL POROUS MEDIA

THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC FRACTAL POROUS MEDIA Cai, W., et al.: Three-Dimensional Hausdorff Derivative Diffusion Model... THERMAL SCIENCE: Year 08, Vol., Suppl., pp. S-S6 S THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC

More information

College of Engineering Mechanics and Soft Materials, Hohai University, Jiangning, Nanjing, China b

College of Engineering Mechanics and Soft Materials, Hohai University, Jiangning, Nanjing, China b THERMA SCIENCE: Year 28, Vol. 22, Suppl., pp. S65-S75 S65 A MODIFICATION FRACTIONA VARIATIONA ITERATION METHOD FOR SOVING NON-INEAR GAS DYNAMIC AND COUPED KdV EQUATIONS INVOVING OCA FRACTIONA OPERATORS

More information

Fractional Trigonometric Functions in Complexvalued Space: Applications of Complex Number to Local Fractional Calculus of Complex Function

Fractional Trigonometric Functions in Complexvalued Space: Applications of Complex Number to Local Fractional Calculus of Complex Function From the SelectedWorks of Xiao-Jun Yang June 4, 2 Fractional Trigonometric Functions in omplevalued Space: Applications of omple Number to Local Fractional alculus of omple Function Yang Xiao-Jun Available

More information

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction Fractional Differential Calculus Volume 1, Number 1 (211), 117 124 HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION YANQIN LIU, ZHAOLI LI AND YUEYUN ZHANG Abstract In this paper,

More information

Applications Of Differential Transform Method To Integral Equations

Applications Of Differential Transform Method To Integral Equations American Journal of Engineering Research (AJER) 28 American Journal of Engineering Research (AJER) e-issn: 232-847 p-issn : 232-936 Volume-7, Issue-, pp-27-276 www.ajer.org Research Paper Open Access Applications

More information

NEW ANALYTICAL SOLUTION FOR NATURAL CONVECTION OF DARCIAN FLUID IN POROUS MEDIA PRESCRIBED SURFACE HEAT FLUX

NEW ANALYTICAL SOLUTION FOR NATURAL CONVECTION OF DARCIAN FLUID IN POROUS MEDIA PRESCRIBED SURFACE HEAT FLUX THERMAL SCIENCE, Year 11, Vol. 15, Suppl., pp. S1-S7 1 Introduction NEW ANALYTICAL SOLUTION FOR NATURAL CONVECTION OF DARCIAN FLUID IN POROUS MEDIA PRESCRIBED SURFACE HEAT FLUX by Davood Domairy GANJI

More information

Research Article Frequent Oscillatory Behavior of Delay Partial Difference Equations with Positive and Negative Coefficients

Research Article Frequent Oscillatory Behavior of Delay Partial Difference Equations with Positive and Negative Coefficients Hindawi Publishing Corporation Advances in Difference Equations Volume 2010, Article ID 606149, 15 pages doi:10.1155/2010/606149 Research Article Frequent Oscillatory Behavior of Delay Partial Difference

More information

A DELAYED FRACTIONAL MODEL FOR COCOON HEAT-PROOF PROPERTY

A DELAYED FRACTIONAL MODEL FOR COCOON HEAT-PROOF PROPERTY THERMAL SCIENCE, Year 2017, Vol. 21, No. 4, pp. 1867-1871 1867 A DELAYED FRACTIONAL MODEL FOR COCOON HEAT-PROOF PROPERTY by Fu-Juan LIU a, Hong-Yan LIU a,b, Zheng-Biao LI c, and Ji-Huan HE a* a National

More information

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction 0 The Open Mechanics Journal, 007,, 0-5 Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction Equations N. Tolou, D.D. Ganji*, M.J. Hosseini and Z.Z. Ganji Department

More information

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Journal of mathematics and computer Science 7 (23) 38-43 Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Article history: Received March 23 Accepted Apri

More information

Research Article Variational Iteration Method for the Magnetohydrodynamic Flow over a Nonlinear Stretching Sheet

Research Article Variational Iteration Method for the Magnetohydrodynamic Flow over a Nonlinear Stretching Sheet Abstract and Applied Analysis Volume 213, Article ID 573782, 5 pages http://dx.doi.org/1.1155/213/573782 Research Article Variational Iteration Method for the Magnetohydrodynamic Flow over a Nonlinear

More information

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS Hossein Jafari & M. A. Firoozjaee Young Researchers club, Islamic Azad University, Jouybar Branch, Jouybar, Iran

More information

Grammian and Pfaffian solutions as well as Pfaffianization for a (3+1)-dimensional generalized shallow water equation

Grammian and Pfaffian solutions as well as Pfaffianization for a (3+1)-dimensional generalized shallow water equation Grammian and Pfaffian solutions as well as Pfaffianization for a (3+1)-dimensional generalized shallow water equation Tang Ya-Ning( 唐亚宁 ) a), Ma Wen-Xiu( 马文秀 ) b), and Xu Wei( 徐伟 ) a) a) Department of

More information

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components Applied Mathematics Volume 202, Article ID 689820, 3 pages doi:0.55/202/689820 Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

More information

Numerical comparison of two boundary meshless methods for water wave problems

Numerical comparison of two boundary meshless methods for water wave problems Boundary Elements and Other Mesh Reduction Methods XXXVI 115 umerical comparison of two boundary meshless methods for water wave problems Zatianina Razafizana 1,2, Wen Chen 2 & Zhuo-Jia Fu 2 1 College

More information

TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA WITHIN FRACTIONAL COMPLEX TRANSFORM METHOD

TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA WITHIN FRACTIONAL COMPLEX TRANSFORM METHOD Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 13 TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA WITHIN FRACTIONAL COMPLEX TRANSFORM METHOD Habibolla Latifizadeh, Shiraz University

More information

Numerical solution for chemical kinetics system by using efficient iterative method

Numerical solution for chemical kinetics system by using efficient iterative method International Journal of Advanced Scientific and Technical Research Issue 6 volume 1, Jan Feb 2016 Available online on http://wwwrspublicationcom/ijst/indexhtml ISSN 2249-9954 Numerical solution for chemical

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number.

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number. 997 AP Calculus BC: Section I, Part A 5 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number..

More information

Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation

Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation Chin. Phys. B Vol. 19, No. (1 1 Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation Zhang Huan-Ping( 张焕萍 a, Li Biao( 李彪 ad, Chen Yong ( 陈勇 ab,

More information

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Applied Mathematics Volume 22, Article ID 39876, 9 pages doi:.55/22/39876 Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Xiuming Li

More information

An Alternative Approach to Differential-Difference Equations Using the Variational Iteration Method

An Alternative Approach to Differential-Difference Equations Using the Variational Iteration Method An Alternative Approach to Differential-Difference Equations Using the Variational Iteration Method Naeem Faraz a, Yasir Khan a, and Francis Austin b a Modern Textile Institute, Donghua University, 1882

More information

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4 ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.172014 No.1,pp.84-90 Exact Solution of Partial Differential Equation Using Homo-Separation of Variables Abdolamir Karbalaie

More information

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method Applied Mathematical Sciences, Vol. 2, 28, no. 54, 2691-2697 Eact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method J. Biazar 1, M. Eslami and H. Ghazvini

More information

Research Article Uniqueness Theorems on Difference Monomials of Entire Functions

Research Article Uniqueness Theorems on Difference Monomials of Entire Functions Abstract and Applied Analysis Volume 202, Article ID 40735, 8 pages doi:0.55/202/40735 Research Article Uniqueness Theorems on Difference Monomials of Entire Functions Gang Wang, Deng-li Han, 2 and Zhi-Tao

More information

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume, Article ID 644, 9 pages doi:.55//644 Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral

More information

Conformable variational iteration method

Conformable variational iteration method NTMSCI 5, No. 1, 172-178 (217) 172 New Trends in Mathematical Sciences http://dx.doi.org/1.2852/ntmsci.217.135 Conformable variational iteration method Omer Acan 1,2 Omer Firat 3 Yildiray Keskin 1 Galip

More information

Research Article Strong Convergence of a Projected Gradient Method

Research Article Strong Convergence of a Projected Gradient Method Applied Mathematics Volume 2012, Article ID 410137, 10 pages doi:10.1155/2012/410137 Research Article Strong Convergence of a Projected Gradient Method Shunhou Fan and Yonghong Yao Department of Mathematics,

More information

EXACT TRAVELING WAVE SOLUTIONS FOR A NEW NON-LINEAR HEAT TRANSFER EQUATION

EXACT TRAVELING WAVE SOLUTIONS FOR A NEW NON-LINEAR HEAT TRANSFER EQUATION THERMAL SCIENCE, Year 017, Vol. 1, No. 4, pp. 1833-1838 1833 EXACT TRAVELING WAVE SOLUTIONS FOR A NEW NON-LINEAR HEAT TRANSFER EQUATION by Feng GAO a,b, Xiao-Jun YANG a,b,* c, an Yu-Feng ZHANG a School

More information

He s Homotopy Perturbation Method for Nonlinear Ferdholm Integro-Differential Equations Of Fractional Order

He s Homotopy Perturbation Method for Nonlinear Ferdholm Integro-Differential Equations Of Fractional Order H Saeedi, F Samimi / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 wwwijeracom Vol 2, Issue 5, September- October 22, pp52-56 He s Homotopy Perturbation Method

More information

MATH 19520/51 Class 5

MATH 19520/51 Class 5 MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential

More information

Exact Solutions of Fractional-Order Biological Population Model

Exact Solutions of Fractional-Order Biological Population Model Commun. Theor. Phys. (Beijing China) 5 (009) pp. 99 996 c Chinese Physical Society and IOP Publishing Ltd Vol. 5 No. 6 December 15 009 Exact Solutions of Fractional-Order Biological Population Model A.M.A.

More information

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 2 (December 2017, pp. 1072 1087 Applications and Applied Mathematics: An International Journal (AAM Analytical solution

More information

Formation rock failure mode and its recognition method under high pressure squeezing condition in horizontal wells

Formation rock failure mode and its recognition method under high pressure squeezing condition in horizontal wells 01 36 Vol. 36 No. 5 5 Journal of China University of Petroleum Oct. 01 1673-5005 01 05-0105-05 1 3 4 1 1 1. 66580. 30045 3. 710018 4. 73600 TE 358. 1 A doi 10. 3969 /j. issn. 1673-5005. 01. 05. 019 Formation

More information

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations Nonlinear Analysis and Differential Equations, Vol. 3, 015, no. 3, 111-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/nade.015.416 The Modified Adomian Decomposition Method for Solving Nonlinear

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

Research Article Two Different Classes of Wronskian Conditions to a (3 + 1)-Dimensional Generalized Shallow Water Equation

Research Article Two Different Classes of Wronskian Conditions to a (3 + 1)-Dimensional Generalized Shallow Water Equation International Scholarly Research Network ISRN Mathematical Analysis Volume 2012 Article ID 384906 10 pages doi:10.5402/2012/384906 Research Article Two Different Classes of Wronskian Conditions to a 3

More information

New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect

New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect Commun. Theor. Phys. 70 (2018) 803 807 Vol. 70, No. 6, December 1, 2018 New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect Guang-Han

More information

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 1, Issue 1Ver. I. (Jan. 214), PP 8-12 Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation Saad A.

More information

Projective synchronization of a complex network with different fractional order chaos nodes

Projective synchronization of a complex network with different fractional order chaos nodes Projective synchronization of a complex network with different fractional order chaos nodes Wang Ming-Jun( ) a)b), Wang Xing-Yuan( ) a), and Niu Yu-Jun( ) a) a) School of Electronic and Information Engineering,

More information

Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization Methods

Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization Methods Abstract and Applied Analysis Volume 0, Article ID 603748, 8 pages doi:0.55/0/603748 Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization

More information

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx. Math 8, Eam 2, Fall 24 Problem Solution. Integrals, Part I (Trigonometric integrals: 6 points). Evaluate the integral: sin 3 () cos() d. Solution: We begin by rewriting sin 3 () as Then, after using the

More information

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method ohamed I. A. Othman, A.. S. ahdy and R.. Farouk / TJCS Vol. No. () 4-7 The Journal of athematics and Computer Science Available online at http://www.tjcs.com Journal of athematics and Computer Science

More information

An approximation to the solution of Klein-Gordon equation with initial or boundary value condition

An approximation to the solution of Klein-Gordon equation with initial or boundary value condition International Mathematical Forum, 1, 6, no 9, 1433-1439 An approximation to the solution of Klein-Gordon equation with initial or boundary value condition J Biazar and H Ebrahimi Department of Mathematics

More information

Chaos suppression of uncertain gyros in a given finite time

Chaos suppression of uncertain gyros in a given finite time Chin. Phys. B Vol. 1, No. 11 1 1155 Chaos suppression of uncertain gyros in a given finite time Mohammad Pourmahmood Aghababa a and Hasan Pourmahmood Aghababa bc a Electrical Engineering Department, Urmia

More information

PAijpam.eu SECOND KIND CHEBYSHEV WAVELET METHOD FOR SOLVING SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS

PAijpam.eu SECOND KIND CHEBYSHEV WAVELET METHOD FOR SOLVING SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS International Journal of Pure and Applied Mathematics Volume No. 7, 9- ISSN: 3-88 (printed version); ISSN: 3-3395 (on-line version) url: http://www.ijpam.eu doi:.73/ijpam.vi.8 PAijpam.eu SECOND KIND CHEBYSHEV

More information

Research Article Modified T-F Function Method for Finding Global Minimizer on Unconstrained Optimization

Research Article Modified T-F Function Method for Finding Global Minimizer on Unconstrained Optimization Mathematical Problems in Engineering Volume 2010, Article ID 602831, 11 pages doi:10.1155/2010/602831 Research Article Modified T-F Function Method for Finding Global Minimizer on Unconstrained Optimization

More information

The method of successive approximations for exact solutions of Laplace equation and of heat-like and wave-like equations with variable coefficients

The method of successive approximations for exact solutions of Laplace equation and of heat-like and wave-like equations with variable coefficients The method of successive approximations for exact solutions of Laplace equation and of heat-like and wave-like equations with variable coefficients T. Zhanlav and D. Khongorzul National University of Mongolia,

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 1 (211) 233 2341 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Variational

More information

Dr. P.K. Srivastava Assistant Professor of Mathematics Galgotia College of Engineering & Technology Greater Noida (U.P.)

Dr. P.K. Srivastava Assistant Professor of Mathematics Galgotia College of Engineering & Technology Greater Noida (U.P.) Engineering Mathematics-III Dr. P.K. Srivastava Assistant Professor of Mathematics Galgotia College of Engineering & Technology Greater Noida (U.P.) (An ISO 9001:008 Certified Company) Vayu Education of

More information

Simultaneous Accumulation Points to Sets of d-tuples

Simultaneous Accumulation Points to Sets of d-tuples ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.92010 No.2,pp.224-228 Simultaneous Accumulation Points to Sets of d-tuples Zhaoxin Yin, Meifeng Dai Nonlinear Scientific

More information

Solution of Quadratic Integral Equations by the Adomian Decomposition Method

Solution of Quadratic Integral Equations by the Adomian Decomposition Method Copyright 213 Tech Science Press CMES, vol.92, no.4, pp.369-385, 213 Solution of Quadratic Integral Equations by the Adomian Decomposition Method Shou-Zhong Fu 1, Zhong Wang 1 and Jun-Sheng Duan 1,2,3

More information

Application of the Decomposition Method of Adomian for Solving

Application of the Decomposition Method of Adomian for Solving Application of the Decomposition Method of Adomian for Solving the Pantograph Equation of Order m Fatemeh Shakeri and Mehdi Dehghan Department of Applied Mathematics, Faculty of Mathematics and Computer

More information

London-Proca-Hirsch Equations for Electrodynamics of Superconductors on Cantor Sets Victor Christianto *

London-Proca-Hirsch Equations for Electrodynamics of Superconductors on Cantor Sets Victor Christianto * Evolving Trends in Engineering and Technology Online: 2015-02-02 ISSN: 2349-915X, Vol. 4, pp 1-7 doi:10.18052/www.scipress.com/etet.4.1 2015 SciPress Ltd., Switzerland London-Proca-Hirsch Equations for

More information

Review Article Solution and Attractivity for a Rational Recursive Sequence

Review Article Solution and Attractivity for a Rational Recursive Sequence Discrete Dynamics in Nature and Society Volume 2011, Article ID 982309, 17 pages doi:10.1155/2011/982309 Review Article Solution and Attractivity for a Rational Recursive Sequence E. M. Elsayed 1, 2 1

More information

On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions

On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions Xiong Wang Center of Chaos and Complex Network, Department of Electronic Engineering, City University of

More information

Handling the fractional Boussinesq-like equation by fractional variational iteration method

Handling the fractional Boussinesq-like equation by fractional variational iteration method 6 ¹ 5 Jun., COMMUN. APPL. MATH. COMPUT. Vol.5 No. Å 6-633()-46-7 Handling the fractional Boussinesq-like equation by fractional variational iteration method GU Jia-lei, XIA Tie-cheng (College of Sciences,

More information

Research Article Mathematical Models Arising in the Fractal Forest Gap via Local Fractional Calculus

Research Article Mathematical Models Arising in the Fractal Forest Gap via Local Fractional Calculus Abstract and Applied Analysis, Article ID 782393, 6 pages http://d.doi.org/.55/24/782393 Research Article Mathematical Models Arising in the Fractal Forest Gap via Local Fractional Calculus Chun-Ying Long,

More information

CONVERGENCE BEHAVIOUR OF SOLUTIONS TO DELAY CELLULAR NEURAL NETWORKS WITH NON-PERIODIC COEFFICIENTS

CONVERGENCE BEHAVIOUR OF SOLUTIONS TO DELAY CELLULAR NEURAL NETWORKS WITH NON-PERIODIC COEFFICIENTS Electronic Journal of Differential Equations, Vol. 2007(2007), No. 46, pp. 1 7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) CONVERGENCE

More information

NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS

NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS Romanian Reports in Physics 69, 118 217 NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS XIAO-JUN YANG 1,2 1 State Key Laboratory for Geomechanics and Deep Underground

More information

Applications of local fractional calculus to engineering in fractal time-space:

Applications of local fractional calculus to engineering in fractal time-space: Applications o local ractional calculus to engineering in ractal time-space: Local ractional dierential equations with local ractional derivative Yang XiaoJun Department o Mathematics and Mechanics, China

More information

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD Jan 4. Vol. 4 No. 7-4 EAAS & ARF. All rights reserved ISSN5-869 EXACT TRAVELIN WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USIN THE IMPROVED ( /) EXPANSION METHOD Elsayed M.

More information

Homotopy perturbation method for solving hyperbolic partial differential equations

Homotopy perturbation method for solving hyperbolic partial differential equations Computers and Mathematics with Applications 56 2008) 453 458 wwwelseviercom/locate/camwa Homotopy perturbation method for solving hyperbolic partial differential equations J Biazar a,, H Ghazvini a,b a

More information

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method Annals of the University of Craiova, Mathematics and Computer Science Series Volume 39(2), 2012, Pages 200 210 ISSN: 1223-6934 Solving nonlinear fractional differential equation using a multi-step Laplace

More information

AN INSPECTION TO THE HYPERBOLIC HEAT CONDUCTION PROBLEM IN PROCESSED MEAT

AN INSPECTION TO THE HYPERBOLIC HEAT CONDUCTION PROBLEM IN PROCESSED MEAT THERMAL SCIENCE: Year 0, Vol. 1, No. 1A, pp. 303-308 303 AN INSPECTION TO THE HYPERBOLIC HEAT CONDUCTION PROBLEM IN PROCESSED MEAT by Kuo-Chi LIU a*, Han-Taw CHEN b, and Yan-Nan WANG c a Department of

More information

A new modification to homotopy perturbation method for solving Schlömilch s integral equation

A new modification to homotopy perturbation method for solving Schlömilch s integral equation Int J Adv Appl Math and Mech 5(1) (217) 4 48 (ISSN: 2347-2529) IJAAMM Journal homepage: wwwijaammcom International Journal of Advances in Applied Mathematics and Mechanics A new modification to homotopy

More information