Nonlinear Buckling Prediction in ANSYS. August 2009

Size: px
Start display at page:

Download "Nonlinear Buckling Prediction in ANSYS. August 2009"

Transcription

1 Nonlinear Buckling Prediction in ANSYS August 2009

2 Buckling Overview Prediction of buckling of engineering structures is a challenging problem for several reasons: A real structure contains imperfections that can greatly effect the buckling factor. Many engineering structures will retain load-carrying capability after initial buckling. Determining when an analysis has reached instability is often difficult to verify.

3 Buckling Overview ANSYS provides two techniques for simulating buckling: Eigenvalue, or linear, buckling. This approach performs an eigenvalue solution to obtain the theoretical buckling load factor for an ideal elastic structure. Considered non-conservative since imperfections and nonlinearities prevent most structures from achieving their theoretical buckling strength. Typically used as a first pass on the buckling load and shape. Nonlinear buckling. Consists of running a nonlinear, large deflection solution until the analysis stops converging, indicating an instability. Detailed review of the nonlinear behavior must be used to determine if analysis has reached a true structural instability. Factors such as the presence of imperfections, element formulation, step size, element mesh size, and nonlinear convergence settings will play a role in the prediction of the instability. Post-buckling, i.e. the ability of a structure to carry load after buckling has occurred, can be predicted.

4 Recommended Buckling Analysis Procedure A typical buckling analysis will include the following steps: Perform eigenvalue buckling solution to determine estimates for buckling factors and expected buckling modes. If modeling a portion or sector of a full structure, the predicted modes will only be those that can be represented with that sector. Perform nonlinear analysis to determine more accurate buckling solution. Most physical structures will contain imperfections that will cause buckling well below theoretical buckling limits. Imperfections can be added into the analysis via: Small applied displacements. Small applied loading. Small changes in geometry can use an eigenvalue mode to apply a small perturbation in the geometry using the ANSYS UPCOORD command. Run nonlinear solution until it stops converging, indicating an instability. Review force-displacement behavior at key locations to determine if non-convergence is due to structure instability (buckling) or numerical instability. Consider that many engineering structures can buckle locally but continue to carry additional loading (post-buckling). Use of newer element technology and updating default nonlinear settings may help in obtaining accurate solutions.

5 Buckling Study Consider the sector model of the cylindrical shell with stiffener. The geometry modeled is a cylinder with stiffeners, loaded with radial point forces as shown in the one-sector model below. Model is fixed at one end in all DOF, and symmetry conditions are used at the cyclic boundaries. Various ANSYS shell element types and solution settings were used to predict the large deflection nonlinear analysis which in some cases includes both a pre- and post-buckling response.

6 Eigenvalue Solution Eigenvalue buckling analysis was performed to provide a starting point for this analysis. Eigenvalue analyses were run with the SHELL63, SHELL181 and SHELL281. For the one-sector model: All models predicted the same results, with the first two modes shown below:

7 Eigenvalue Solution The first mode occurs at a load factor of This mode predicts adjacent cylindrical segments moving in opposite radial directions. This mode is characterized as having a nodal diameter of 4, since the deflected shape repeats 4 times around the circumference. In this mode, the stiffener bends in the tangential direction. The second mode occurs at a load factor of The mode is a nodal diameter of 8. This mode is more likely to occur when the stiffener bends in the radial direction but remains planar.

8 Eigenvalue Solution If modeling the full 360-degree structure, the lowest eigenvalue buckling mode is shown below with the following characteristics: Nodal diameter of 3. Load factor = is lower than lowest sector load factor of Sector model cannot predict this mode.

9 Nonlinear buckling analyses were run for several cases: Element types: SHELL63 SHELL181 SHELL281 Nonlinear settings: Default settings. PRED,OFF and a tighter convergence tolerance of 1x fixed substeps over applied loading of N. Large deflections turned on. Ideal geometry and loading (no imperfections modeled).

10 A review of the final displaced shapes indicates that these analyses deformed into the second eigenvalue (nodal diameter = 8) mode shape. An example deformed shape from the default SHELL181 case:

11 A plot of the force versus radial deflection at the location of the point load at all substeps for all models is presented:

12 Observations from the force-deflection behavior: All analyses predict the same general behavior. Differences occur only in nonlinear convergence. There are several inflection points in the force-deflection curve, but there is no indication that the structure has become completely unstable. The correct buckling load cannot be inferred by just looking at the final nonconverged value. Nonlinear buckling requires a review of the force-deflection behavior. Since the newer ANSYS elements contain the latest features to aid in obtaining converged solutions, it is not surprising that they can predict more post-buckling. The default nonlinear settings in ANSYS are intended for basic nonlinear analyses. Advanced nonlinearities such as buckling prediction usually require modification of the default settings. Experience and careful review of results can determine when it is appropriate to change these settings.

13 A close inspection of the deflected shapes and animations indicates the following buckling stages: At approximately 0.30: buckling of cylindrical panels inward. At approximately 0.55: buckling of center of stiffener inward. At approximately 0.80: buckling of free end of cylinder inward.

14 Based on the nonlinear large deflection analyses, the following summary can be made: Assuming a geometry without imperfections, the structure will initially buckle in mode 2, at a load factor of approximately Analyses that continue to converge past this load are predicting a postbuckling behavior. For the real problem this behavior may not be physical due to imperfections, plasticity, etc, where this post-buckling strength may be numerically over-estimated. The newer shell elements have better convergence capabilities and thus are able to predict more of the post-buckling behavior. A real structure would most likely not buckle in this manner. Slight imperfections would most likely cause the model to become unstable sooner. If the true ultimate capacity of the structure is of interest, it is recommended to perform a series of simulations including geometric imperfections, material plasticity, variations in loading to be included in the analysis model to provide a relative comparison of limit loads.

15 Since the lowest buckling mode for this structure is not excited by the previous models, it is recommended that a nonlinear buckling analysis be performed using an imperfect geometry. A standard procedure in this case is to provide a slight imperfection by using the ANSYS UPCOORD feature. The mode 1 mode shape from the eigenvalue solution, with a very small scale factor applied, was used to update the nodal locations used in a subsequent nonlinear analysis. The imperfection applied to the model is on the order of manufacturing tolerances and is not visibly noticeable.

16 The subsequent analysis using SHELL181s stopped converging at load factor = with the following buckled shape:

17 The characteristics of this buckled shape: Due to the slight imperfection, bending of the stiffener in the tangential direction occurs, enabling this buckling mode. This mode is more severe and less likely to continue to postbuckle, as indicated by the flat force-deflection behavior.

18 It is important to note that the sector model is limited to predictions of buckled shapes that can be represented by the sector geometry and boundary conditions. As an illustration of this concept, if a full model is run with no imperfections (using the SHELL181 model), the full model will buckle sooner than the sector model. The force-deflection curves from the two analyses are exact up until the full model buckles. The final buckled shape shows the stiffeners deflecting tangentially.

19 By adding an imperfection to the full model, an even lower buckling mode can be obtained. The eigenvalue buckling analysis of the full model indicated that the first buckling mode (nodal diameter = 3) occurs at a much lower load. By running a nonlinear analysis of the full model, including a geometric imperfection by using UPCOORD based on the first mode, a buckling factor of is found with the buckled shape shown below.

20 Buckling Study Summary This buckling study illustrates the following points: Analyzing the nonlinear behavior of the sector model, the final load predicted at non-convergence can be different based on element formulation and nonlinear settings. Review of the results indicates that all the analyses predicted similar results, but the newer element formulations were able to model more of the postbuckling behavior. In this case, lower buckling factors and more physically realistic and consistent results can be found by including initial imperfections into the geometry. In addition, even lower buckling factors can be determined when modeling the full structure, which can buckle into lower modes than the sector model. Therefore, for this structure and based on all of the analyses performed and assumptions made, a load factor of 8.5% of the full loading would be considered an accurate assessment of the buckling load of this structure.

21 Buckling Analysis Summary Accurate calculation of physically realistic buckling loads using ANSYS requires the following considerations: Many buckling problems require adding small imperfections to allow the structure to deflect into more physically realistic buckling modes. Results between full and sector models will typically not provide the same buckling factors, due to the full model not having the constraints of sectorsymmetry and thus having the ability to buckle into lower energy modes. Default nonlinear settings are valid for many cases, but they often require adjustment for advanced nonlinear behavior such as post-buckling. Nonlinear analyses require detailed review of the overall force-deflection behavior throughout the entire analysis, not just a review of the final point. It is recommended that eigenvalue buckling always be performed prior to nonlinear buckling to provide understanding in how the nonlinear model will behave.

Using Energy History Data to Obtain Load vs. Deflection Curves from Quasi-Static Abaqus/Explicit Analyses

Using Energy History Data to Obtain Load vs. Deflection Curves from Quasi-Static Abaqus/Explicit Analyses Using Energy History Data to Obtain Load vs. Deflection Curves from Quasi-Static Abaqus/Explicit Analyses Brian Baillargeon, Ramesh Marrey, Randy Grishaber 1, and David B. Woyak 2 1 Cordis Corporation,

More information

Course in. Geometric nonlinearity. Nonlinear FEM. Computational Mechanics, AAU, Esbjerg

Course in. Geometric nonlinearity. Nonlinear FEM. Computational Mechanics, AAU, Esbjerg Course in Nonlinear FEM Geometric nonlinearity Nonlinear FEM Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity it continued

More information

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL SREELATHA P.R * M.Tech. Student, Computer Aided Structural Engineering, M A College of Engineering, Kothamangalam 686 666,

More information

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure ISSN : 48-96, Vol. 6, Issue 8, ( Part -4 August 06, pp.3-38 RESEARCH ARTICLE Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure Dr.Ragbe.M.Abdusslam Eng. Khaled.S.Bagar ABSTRACT

More information

Local Buckling Analysis of Thin-Wall Shell Structures

Local Buckling Analysis of Thin-Wall Shell Structures Delft University of Technology Master Thesis Project Local Buckling Analysis of Thin-Wall Shell Structures Version 4.0(Final) Author: Fan Ye Supervisors: Prof.Dr.Ir. J.G. Rots, Faculty CEG Dr.Ir. P.C.J.

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

Experimental Study and Numerical Simulation on Steel Plate Girders With Deep Section

Experimental Study and Numerical Simulation on Steel Plate Girders With Deep Section 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 2015, University of

More information

Unit 18 Other Issues In Buckling/Structural Instability

Unit 18 Other Issues In Buckling/Structural Instability Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability

More information

Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght

Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght Mechanics and Mechanical Engineering Vol. 11, No 1 (2007) 37 48 c Technical University of Lodz Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght Tadeusz

More information

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) 1 University of Science & Technology Beijing, China, niukm@ustb.edu.cn 2 Tsinghua University, Department of Engineering Mechanics, Beijing, China,

More information

PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS

PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS FONDATĂ 1976 THE ANNALS OF DUNAREA DE JOS UNIVERSITY OF GALATI. FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N 0. 007, ISSN 15 08X PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS

More information

Buckling, Postbuckling, and Collapse Analysis with Abaqus. Abaqus 2017

Buckling, Postbuckling, and Collapse Analysis with Abaqus. Abaqus 2017 Buckling, Postbuckling, and Collapse Analysis with Abaqus Abaqus 2017 About this Course Course objectives Upon completion of this course you will be able to: Perform linear eigenvalue buckling analysis

More information

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES Savvas Akritidis, Daphne

More information

Axisymmetric Modeling. This tutorial gives an overview of axisymmetric modeling. Learn how to:

Axisymmetric Modeling. This tutorial gives an overview of axisymmetric modeling. Learn how to: Axisymmetric Modeling I-DEAS Tutorials: Simulation Projects This tutorial gives an overview of axisymmetric modeling. Learn how to: sketch on the XZ plane apply boundary conditions mesh axisymmetric elements

More information

Second Order Analysis In the previous classes we looked at a method that determines the load corresponding to a state of bifurcation equilibrium of a perfect frame by eigenvalye analysis The system was

More information

DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD

DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD P. WŁUKA, M. URBANIAK, T. KUBIAK Department of Strength of Materials, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź,

More information

ASSESMENT OF THE EFFECT OF BOUNDARY CONDITIONS ON CYLINDRICAL SHELL MODAL RESPONSES

ASSESMENT OF THE EFFECT OF BOUNDARY CONDITIONS ON CYLINDRICAL SHELL MODAL RESPONSES ASSESMENT OF THE EFFECT OF BOUNDARY CONDITIONS ON CYLINDRICAL SHELL MODAL RESPONSES ABSTRACT Eduards Skukis, Kaspars Kalnins, Olgerts Ozolinsh Riga Technical University Institute of Materials and Structures

More information

Probabilistic Assessment of a Stiffened Carbon Fibre Composite Panel Operating in its Postbuckled Region Authors: Correspondence:

Probabilistic Assessment of a Stiffened Carbon Fibre Composite Panel Operating in its Postbuckled Region Authors: Correspondence: Probabilistic Assessment of a Stiffened Carbon Fibre Composite Panel Operating in its Postbuckled Region Authors: D. Elder and R. Thomson Cooperative Research Centre for Advanced Composite Structures Limited

More information

Size Effects In the Crushing of Honeycomb Structures

Size Effects In the Crushing of Honeycomb Structures 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference 19-22 April 2004, Palm Springs, California AIAA 2004-1640 Size Effects In the Crushing of Honeycomb Structures Erik C.

More information

Knockdown Factors for Buckling of Cylindrical and Spherical Shells Subject to Reduced Biaxial Membrane Stress

Knockdown Factors for Buckling of Cylindrical and Spherical Shells Subject to Reduced Biaxial Membrane Stress Knockdown Factors for Buckling of Cylindrical and Spherical Shells Subject to Reduced Biaxial Membrane Stress The Harvard community has made this article openly available. Please share how this access

More information

Nonlinear analysis in ADINA Structures

Nonlinear analysis in ADINA Structures Nonlinear analysis in ADINA Structures Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Topics presented Types of nonlinearities Materially nonlinear only Geometrically nonlinear analysis Deformation-dependent

More information

Dynamic Capacitance Extraction of A Triaxial Capacitive Accelerometer

Dynamic Capacitance Extraction of A Triaxial Capacitive Accelerometer Dynamic Capacitance Extraction of A Triaxial Capacitive Accelerometer Zhenchuan Yang, Gang LI, Yilong Hao, Guoying Wu Institute of Microelectronics, Peking University, Beijing, 100871 China Abstract Capacitive

More information

Advanced stability analysis and design of a new Danube archbridge. DUNAI, László JOÓ, Attila László VIGH, László Gergely

Advanced stability analysis and design of a new Danube archbridge. DUNAI, László JOÓ, Attila László VIGH, László Gergely Advanced stability analysis and design of a new Danube archbridge DUNAI, László JOÓ, Attila László VIGH, László Gergely Subject of the lecture Buckling of steel tied arch Buckling of orthotropic steel

More information

INFLUENCE OF WEB THICKNESS REDUCTION IN THE SHEAR RESISTANCE OF NON-PRISMATIC TAPERED PLATE GIRDERS

INFLUENCE OF WEB THICKNESS REDUCTION IN THE SHEAR RESISTANCE OF NON-PRISMATIC TAPERED PLATE GIRDERS INFLUENCE OF WEB THICKNESS REDUCTION IN THE SHEAR RESISTANCE OF NON-PRISMATIC TAPERED PLATE GIRDERS Paulo J. S. Cruz 1, Lúcio Lourenço 1, Hélder Quintela 2 and Manuel F. Santos 2 1 Department of Civil

More information

Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases

Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases Georg Haasemann Conrad Kloß 1 AIMCAL Conference 2016 MOTIVATION Wrinkles in web handling system Loss of

More information

COMPRESSIVE BEHAVIOR OF IMPACT DAMAGED COMPOSITE LAMINATES

COMPRESSIVE BEHAVIOR OF IMPACT DAMAGED COMPOSITE LAMINATES 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS COMPRESSIVE BEHAVIOR OF IMPACT DAMAGED COMPOSITE LAMINATES Hiroshi Suemasu*, Wataru Sasaki**, Yuuichiro Aoki***, Takashi Ishikawa**** *Department of

More information

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 6 May 2017 ISSN: 2455-5703 An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

More information

Post-Buckling Behavior of Laminated Composite Cylindrical Shells Subjected to Axial, Bending and Torsion Loads

Post-Buckling Behavior of Laminated Composite Cylindrical Shells Subjected to Axial, Bending and Torsion Loads World Journal of Engineering and Technology, 25, 3, 85-94 Published Online November 25 in SciRes. http://www.scirp.org/journal/wjet http://dx.doi.org/.4236/wjet.25.349 Post-Buckling Behavior of Laminated

More information

Shear Strength of End Web Panels

Shear Strength of End Web Panels Paper 10 Shear Strength of End Web Panels Civil-Comp Press, 2012 Proceedings of the Eleventh International Conference on Computational Structures Technology, B.H.V. Topping, (Editor), Civil-Comp Press,

More information

Software Verification

Software Verification EXAMPLE 1-026 FRAME MOMENT AND SHEAR HINGES EXAMPLE DESCRIPTION This example uses a horizontal cantilever beam to test the moment and shear hinges in a static nonlinear analysis. The cantilever beam has

More information

ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES

ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES Delete endnote 18, which says "Express metric values in exponential form" A-8100 INTRODUCTION A-8110 SCOPE (a) This Article contains a method of analysis

More information

Finite Element Analysis of Buckling of Corrugated Fiberboard

Finite Element Analysis of Buckling of Corrugated Fiberboard Send Orders for Reprints to reprints@benthamscience.ae The Open Mechanical Engineering Journal, 2014, 8, 257-263 257 Finite Element Analysis of Buckling of Corrugated Fiberboard Yali Ma *,1, Zhen Gong

More information

Theoretical Manual Theoretical background to the Strand7 finite element analysis system

Theoretical Manual Theoretical background to the Strand7 finite element analysis system Theoretical Manual Theoretical background to the Strand7 finite element analysis system Edition 1 January 2005 Strand7 Release 2.3 2004-2005 Strand7 Pty Limited All rights reserved Contents Preface Chapter

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Workshop 8. Lateral Buckling

Workshop 8. Lateral Buckling Workshop 8 Lateral Buckling cross section A transversely loaded member that is bent about its major axis may buckle sideways if its compression flange is not laterally supported. The reason buckling occurs

More information

The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force

The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force Cai-qin Cao *, Kan Liu, Jun-zhe Dong School of Science, Xi an University of

More information

FEA A Guide to Good Practice. What to expect when you re expecting FEA A guide to good practice

FEA A Guide to Good Practice. What to expect when you re expecting FEA A guide to good practice FEA A Guide to Good Practice What to expect when you re expecting FEA A guide to good practice 1. Background Finite Element Analysis (FEA) has transformed design procedures for engineers. Allowing more

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

Nonlinear Modeling for Health Care Applications Ashutosh Srivastava Marc Horner, Ph.D. ANSYS, Inc.

Nonlinear Modeling for Health Care Applications Ashutosh Srivastava Marc Horner, Ph.D. ANSYS, Inc. Nonlinear Modeling for Health Care Applications Ashutosh Srivastava Marc Horner, Ph.D. ANSYS, Inc. 2 Motivation 12 Motivation Linear analysis works well for only small number of applications. The majority

More information

Postbuckling Analyses of Elastic Cylindrical Shells under Axial Compression

Postbuckling Analyses of Elastic Cylindrical Shells under Axial Compression Postbuckling Analyses of Elastic Cylindrical Shells under Axial Compression Takaya Kobayashi and Yasuko Mihara Mechanical Design & Analysis Corporation Tokyo, Japan Abstract: In the design of a modern

More information

Gerald Allen Cohen, 83, passed away Oct. 1, 2014, at his home in Laguna Beach.

Gerald Allen Cohen, 83, passed away Oct. 1, 2014, at his home in Laguna Beach. Dr Gerald Allen Cohen (1931-2014) Ring-stiffened shallow conical shell designed with the use of FASOR for NASA s Viking project in the 1970s. (from NASA TN D-7853, 1975, by Walter L. Heard, Jr., Melvin

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels METNET Workshop October 11-12, 2009, Poznań, Poland Experimental and numerical analysis of sandwich metal panels Zbigniew Pozorski, Monika Chuda-Kowalska, Robert Studziński, Andrzej Garstecki Poznan University

More information

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes)

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes) The Islamic University of Gaza Department of Civil Engineering ENGC 6353 Design of Spherical Shells (Domes) Shell Structure A thin shell is defined as a shell with a relatively small thickness, compared

More information

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH Journal of Engineering Science and Technology Vol. 12, No. 11 (2017) 2839-2854 School of Engineering, Taylor s University FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING

More information

Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed

Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed Mechanics and Mechanical Engineering Vol. 14, No. 2 (2010) 309 316 c Technical University of Lodz Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed Jakub Marcinowski Institute

More information

Nonlinear elastic buckling and postbuckling analysis of cylindrical panels

Nonlinear elastic buckling and postbuckling analysis of cylindrical panels Nonlinear elastic buckling and postbuckling analysis of cylindrical panels Yang Zhou a, Ilinca Stanciulescu a,, Thomas Eason b, Michael Spottswood b a Rice University, Department of Civil and Environmental

More information

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workbench - Mechanical Introduction 12.0 Chapter 5 Vibration Analysis 5-1 Chapter Overview In this chapter, performing free vibration analyses in Simulation will be covered. In Simulation, performing a

More information

Adaptive Analysis of Bifurcation Points of Shell Structures

Adaptive Analysis of Bifurcation Points of Shell Structures First published in: Adaptive Analysis of Bifurcation Points of Shell Structures E. Ewert and K. Schweizerhof Institut für Mechanik, Universität Karlsruhe (TH), Kaiserstraße 12, D-76131 Karlsruhe, Germany

More information

On Nonlinear Buckling and Collapse Analysis using Riks Method

On Nonlinear Buckling and Collapse Analysis using Riks Method Visit the SIMULIA Resource Center for more customer examples. On Nonlinear Buckling and Collapse Analysis using Riks Method Mingxin Zhao, Ph.D. UOP, A Honeywell Company, 50 East Algonquin Road, Des Plaines,

More information

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES 14.1 GENERAL REMARKS In structures where dominant loading is usually static, the most common cause of the collapse is a buckling failure. Buckling may

More information

Electromechanical Finite Element Modeling of Unstiffened Smart Steel Shear Walls (SSSWs)

Electromechanical Finite Element Modeling of Unstiffened Smart Steel Shear Walls (SSSWs) Electromechanical Finite Element Modeling of Unstiffened Smart Steel Shear Walls (SSSWs) Y. Shahbazi 1, M. Eghbalian 2, M.R. Chenaghlou 3, K.Abedi 4 1- PhD Student of structural Engineering, Sahand University

More information

Analysis of a Casted Control Surface using Bi-Linear Kinematic Hardening

Analysis of a Casted Control Surface using Bi-Linear Kinematic Hardening Analysis of a Casted Control Surface using Bi-Linear Kinematic Hardening Abdul Manan Haroon A. Baluch AERO, P.O Box 91, Wah Cantt. 47040 Pakistan Abstract Control Surfaces or Fins are very essential parts

More information

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF For ROTORS Chapter 1 : Physical Aspects of rotor dynamics This document is the property of SAMTECH S.A. MEF 101-01-A, Page 1 Table of Contents rotor dynamics Introduction Rotating parts Gyroscopic

More information

Thermal buckling and post-buckling of laminated composite plates with. temperature dependent properties by an asymptotic numerical method

Thermal buckling and post-buckling of laminated composite plates with. temperature dependent properties by an asymptotic numerical method hermal buckling and post-buckling of laminated composite plates with temperature dependent properties by an asymptotic numerical method F. Abdoun a,*, L. Azrar a,b, E.M. Daya c a LAMA, Higher School of

More information

NON LINEAR BUCKLING OF COLUMNS Dr. Mereen Hassan Fahmi Technical College of Erbil

NON LINEAR BUCKLING OF COLUMNS Dr. Mereen Hassan Fahmi Technical College of Erbil Abstract: NON LINEAR BUCKLING OF COLUMNS Dr. Mereen Hassan Fahmi Technical College of Erbil The geometric non-linear total potential energy equation is developed and extended to study the behavior of buckling

More information

Effect of loading pulse duration on dynamic buckling of stiffened panels

Effect of loading pulse duration on dynamic buckling of stiffened panels MAT EC Web of Conferences 16, 76 (214) DOI: 1151/ matecconf/ 21416 76 C Owned by the authors, published by EDP Sciences, 214 Effect of loading pulse duration on dynamic buckling of stiffened panels O Mouhat

More information

Reports RESEARCH REPORT RP00-3 RESEARCH REPORT RP01-1 OCTOBER REVISION 2006 REVISION

Reports RESEARCH REPORT RP00-3 RESEARCH REPORT RP01-1 OCTOBER REVISION 2006 REVISION research report A AISI Design Sponsored Approach Resear for ch Complex Reports AISI Sponsored Stiffeners Research Reports RESEARCH REPORT RP00-3 RP01-1 RESEARCH REPORT RP01-1 OCTOBER 2001 2000 REVISION

More information

CRITERIA FOR SELECTION OF FEM MODELS.

CRITERIA FOR SELECTION OF FEM MODELS. CRITERIA FOR SELECTION OF FEM MODELS. Prof. P. C.Vasani,Applied Mechanics Department, L. D. College of Engineering,Ahmedabad- 380015 Ph.(079) 7486320 [R] E-mail:pcv-im@eth.net 1. Criteria for Convergence.

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 05, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 05, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol., Issue 05, 015 ISSN (online): 1-061 Post Buckling Analysis of Silos and Optimization of Additional Stiffeners Ms. S. H. Gujar 1

More information

Torsion of shafts with circular symmetry

Torsion of shafts with circular symmetry orsion of shafts with circular symmetry Introduction Consider a uniform bar which is subject to a torque, eg through the action of two forces F separated by distance d, hence Fd orsion is the resultant

More information

Stochastic Simulation of Aircraft Fuselage Assembly Considering Manufacturing Uncertainties

Stochastic Simulation of Aircraft Fuselage Assembly Considering Manufacturing Uncertainties 9th European LS-DYNA Conference 0 Stochastic Simulation of Aircraft Fuselage Assembly Considering Manufacturing Uncertainties Dietmar C. Vogt, Sönke Klostermann EADS Innovation Works, Germany Introduction

More information

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES Konuralp Girgin (Ph.D. Thesis, Institute of Science and Technology,

More information

BUCKLING AND POSTBUCKLING ANALYSIS OF SHELLS UNDER QUASI-STATIC AND DYNAMIC LOADS

BUCKLING AND POSTBUCKLING ANALYSIS OF SHELLS UNDER QUASI-STATIC AND DYNAMIC LOADS BUCKLING AND POSTBUCKLING ANALYSIS OF SHELLS UNDER QUASI-STATIC AND DYNAMIC LOADS R. Degenhardt, H. Klein, A. Kling, H. Temmen, R. Zimmermann DLR Institute of Structural Mechanics Lilienthalplatz 7, 388

More information

MSC Nastran N is for NonLinear as in SOL400. Shekhar Kanetkar, PhD

MSC Nastran N is for NonLinear as in SOL400. Shekhar Kanetkar, PhD MSC Nastran N is for NonLinear as in SOL400 Shekhar Kanetkar, PhD AGENDA What is SOL400? Types of Nonlinearities Contact Defining Contact Moving Rigid Bodies Friction in Contact S2S Contact CASI Solver

More information

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 23 Gauss Law Copyright 23-1 Electric Flux Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge +Q. Now the enclosed particle

More information

Professor Nguyen Dinh Duc

Professor Nguyen Dinh Duc Professor Nguyen Dinh Duc From: Nguyen Dinh Duc and Pham-Toan Thang, Nonlinear buckling of imperfect eccentrically stiffened metal-ceramic-metal S-FGM thin circular cylindrical shells with temperature-dependent

More information

3. Overview of MSC/NASTRAN

3. Overview of MSC/NASTRAN 3. Overview of MSC/NASTRAN MSC/NASTRAN is a general purpose finite element analysis program used in the field of static, dynamic, nonlinear, thermal, and optimization and is a FORTRAN program containing

More information

EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS

EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu, Hawaii, February 17-22, 2008 ISROMAC12-2008-20076 EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS

More information

Contact analysis - theory and concepts

Contact analysis - theory and concepts Contact analysis - theory and concepts Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Overview Review of contact concepts segments, surfaces, groups, pairs Interaction of contactor nodes and target segments

More information

Large Thermal Deflections of a Simple Supported Beam with Temperature-Dependent Physical Properties

Large Thermal Deflections of a Simple Supported Beam with Temperature-Dependent Physical Properties Large Thermal Deflections of a Simple Supported Beam with Temperature-Dependent Physical Properties DR. ŞEREF DOĞUŞCAN AKBAŞ Civil Engineer, Şehit Muhtar Mah. Öğüt Sok. No:2/37, 34435 Beyoğlu- Istanbul,

More information

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis Rotating Machinery, 10(4): 283 291, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print / 1542-3034 online DOI: 10.1080/10236210490447728 Deflections and Strains in Cracked Shafts due to Rotating

More information

ANSYS Explicit Dynamics Update. Mai Doan

ANSYS Explicit Dynamics Update. Mai Doan ANSYS Explicit Dynamics Update Mai Doan Mai.Doan@ansys.com +1 512 687 9523 1/32 ANSYS Explicit Dynamics Update Outline Introduction Solve Problems that were Difficult or Impossible in the Past Structural

More information

LINEAR AND NONLINEAR SHELL THEORY. Contents

LINEAR AND NONLINEAR SHELL THEORY. Contents LINEAR AND NONLINEAR SHELL THEORY Contents Strain-displacement relations for nonlinear shell theory Approximate strain-displacement relations: Linear theory Small strain theory Small strains & moderate

More information

Longitudinal buckling of slender pressurised tubes

Longitudinal buckling of slender pressurised tubes Fluid Structure Interaction VII 133 Longitudinal buckling of slender pressurised tubes S. Syngellakis Wesse Institute of Technology, UK Abstract This paper is concerned with Euler buckling of long slender

More information

Creating Axisymmetric Models in FEMAP

Creating Axisymmetric Models in FEMAP Creating Axisymmetric Models in FEMAP 1. Introduction NE/Nastran does not support 2-d axisymmetric elements. 3-d axisymmetric models are supported, and can be generated with a few additional steps. The

More information

CHAPTER 5 PROPOSED WARPING CONSTANT

CHAPTER 5 PROPOSED WARPING CONSTANT 122 CHAPTER 5 PROPOSED WARPING CONSTANT 5.1 INTRODUCTION Generally, lateral torsional buckling is a major design aspect of flexure members composed of thin-walled sections. When a thin walled section is

More information

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-015 1678 Study the Increasing of the Cantilever Plate Stiffness by Using s Jawdat Ali Yakoob Iesam Jondi Hasan Ass.

More information

A STRUCTURE DESIGN OF CFRP REAR PRESSURE BULKHEAD WITHOUT STIFFENERS

A STRUCTURE DESIGN OF CFRP REAR PRESSURE BULKHEAD WITHOUT STIFFENERS Xi an, 2-25 th August 217 A STRUCTURE DESIGN OF CFRP REAR PRESSURE BULKHEAD WITHOUT STIFFENERS LI Zhongyang 1, LI Dong 2 Mailbox72-35, Yanliang District, Xian, China, Email: zhongyangli@live.com Keywords:

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Local buckling is an extremely important facet of cold formed steel

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Local buckling is an extremely important facet of cold formed steel 5.3 Local buckling Local buckling is an extremely important facet of cold formed steel sections on account of the fact that the very thin elements used will invariably buckle before yielding. Thinner the

More information

NX Nastran 10. Rotor Dynamics User s Guide

NX Nastran 10. Rotor Dynamics User s Guide NX Nastran 10 Rotor Dynamics User s Guide Proprietary & Restricted Rights Notice 2014 Siemens Product Lifecycle Management Software Inc. All Rights Reserved. This software and related documentation are

More information

ANSYS Mechanical Basic Structural Nonlinearities

ANSYS Mechanical Basic Structural Nonlinearities Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria

More information

UNIT- I Thin plate theory, Structural Instability:

UNIT- I Thin plate theory, Structural Instability: UNIT- I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading Thin plates having

More information

Deflections and Strains in Cracked Shafts Due to Rotating Loads: A Numerical and Experimental Analysis

Deflections and Strains in Cracked Shafts Due to Rotating Loads: A Numerical and Experimental Analysis International Journal of Rotating Machinery, 9: 303 311, 2003 Copyright c Taylor & Francis Inc. ISSN: 1023-621X DOI: 10.1080/10236210390147416 Deflections and Strains in Cracked Shafts Due to Rotating

More information

Nonlinear Analysis Of An EPDM Hydraulic Accumulator Bladder. Richard Kennison, Race-Tec

Nonlinear Analysis Of An EPDM Hydraulic Accumulator Bladder. Richard Kennison, Race-Tec Nonlinear Analysis Of An EPDM Hydraulic Accumulator Bladder Richard Kennison, Race-Tec Agenda Race-Tec Overview Accumulator Experimental Testing Material Testing Numerical Analysis: 1. Linear Buckling

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:249-9745, Date: 2-4 July, 215 Thermal Post buckling Analysis of Functionally Graded Materials Cylindrical Shell

More information

Elastic shear buckling capacity of the longitudinally stiffened flat panels

Elastic shear buckling capacity of the longitudinally stiffened flat panels Analysis and Design of Marine Structures Guedes Soares & Shenoi (Eds) 015 Taylor & Francis Group, London, ISBN 978-1-138-0789-3 Elastic shear buckling capacity of the longitudinally stiffened flat panels

More information

Nonlinear Dynamics of Spherical Shells Buckling under Step Pressure. CEMPS, University of Exeter, Exeter EX4 4QF, UK

Nonlinear Dynamics of Spherical Shells Buckling under Step Pressure. CEMPS, University of Exeter, Exeter EX4 4QF, UK Nonlinear Dynamics of Spherical Shells Buckling under Step Pressure Jan Sieber a, John W. Hutchinson b and J. Michael T. Thompson c a CEMPS, University of Exeter, Exeter EX4 4QF, UK b SEAS, Harvard University,

More information

Part D: Frames and Plates

Part D: Frames and Plates Part D: Frames and Plates Plane Frames and Thin Plates A Beam with General Boundary Conditions The Stiffness Method Thin Plates Initial Imperfections The Ritz and Finite Element Approaches A Beam with

More information

Eurocode 3: Design of steel structures. Part 1-6: Strength and Stability of Shell Structures National Annex

Eurocode 3: Design of steel structures. Part 1-6: Strength and Stability of Shell Structures National Annex ICS 91.010.30, 91.080.10 SR EN 1993-1-6/NA STANDARD ROMÂN 2011 Eurocode 3: Design of steel structures. Part 1-6: Strength and Stability of Shell Structures National Annex Eurocod 3: Proiectarea structurilor

More information

ALGORITHM FOR NON-PROPORTIONAL LOADING IN SEQUENTIALLY LINEAR ANALYSIS

ALGORITHM FOR NON-PROPORTIONAL LOADING IN SEQUENTIALLY LINEAR ANALYSIS 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-9 Chenjie Yu, P.C.J. Hoogenboom and J.G. Rots DOI 10.21012/FC9.288 ALGORITHM FOR NON-PROPORTIONAL LOADING

More information

An efficient analytical model to evaluate the first two local buckling modes of finite cracked plate under tension

An efficient analytical model to evaluate the first two local buckling modes of finite cracked plate under tension 278 An efficient analytical model to evaluate the first two local buckling modes of finite cracked plate under tension Abstract The analytical approach is presented for both symmetric and anti-symmetric

More information

Automatic Scheme for Inelastic Column Buckling

Automatic Scheme for Inelastic Column Buckling Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE 16) Prague, Czech Republic March 30 31, 2016 Paper No. ICSENM 122 DOI: 10.11159/icsenm16.122 Automatic Scheme

More information

ME 475 Modal Analysis of a Tapered Beam

ME 475 Modal Analysis of a Tapered Beam ME 475 Modal Analysis of a Tapered Beam Objectives: 1. To find the natural frequencies and mode shapes of a tapered beam using FEA.. To compare the FE solution to analytical solutions of the vibratory

More information

ANALYSIS OF THE INTERACTIVE BUCKLING IN STIFFENED PLATES USING A SEMI-ANALYTICAL METHOD

ANALYSIS OF THE INTERACTIVE BUCKLING IN STIFFENED PLATES USING A SEMI-ANALYTICAL METHOD EUROSTEEL 2014, September 10-12, 2014, Naples, Italy ANALYSIS OF THE INTERACTIVE BUCKLING IN STIFFENED PLATES USING A SEMI-ANALYTICAL METHOD Pedro Salvado Ferreira a, Francisco Virtuoso b a Polytechnic

More information

Finite Element Analysis of Compression of Thin, High Modulus, Cylindrical Shells with Low-Modulus Core

Finite Element Analysis of Compression of Thin, High Modulus, Cylindrical Shells with Low-Modulus Core Finite Element Analysis of Compression of Thin, High Modulus, Cylindrical Shells with Low-Modulus Core Robert S. Joseph Design Engineering Analysis Corporation, McMurray, PA ABSTRACT Long, cylindrical

More information

Snapping of a Planar Elastica With Fixed End Slopes

Snapping of a Planar Elastica With Fixed End Slopes Jen-San Chen 1 Professor e-mail: jschen@ntu.edu.tw Yong-Zhi Lin Graduate Student Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan Snapping of a Planar Elastica With

More information

POST-BUCKLING BEHAVIOUR OF IMPERFECT SLENDER WEB

POST-BUCKLING BEHAVIOUR OF IMPERFECT SLENDER WEB Engineering MECHANICS, Vol. 14, 007, No. 6, p. 43 49 43 POST-BUCKLING BEHAVIOUR OF IMPERFECT SLENDER WEB Martin Psotný, Ján Ravinger* The stability analysis of slender web loaded in compression is presented.

More information

D && 9.0 DYNAMIC ANALYSIS

D && 9.0 DYNAMIC ANALYSIS 9.0 DYNAMIC ANALYSIS Introduction When a structure has a loading which varies with time, it is reasonable to assume its response will also vary with time. In such cases, a dynamic analysis may have to

More information

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires 13 th International LS-DYNA Users Conference Session: Electromagnetic A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel

More information