xi is asymptotically equivalent to multiplication by Xbxi/bs, where S SOME REMARKS CONCERNING SCHRODINGER'S WA VE EQ UA TION

Size: px
Start display at page:

Download "xi is asymptotically equivalent to multiplication by Xbxi/bs, where S SOME REMARKS CONCERNING SCHRODINGER'S WA VE EQ UA TION"

Transcription

1 (6 eks (VO + vl +... ) ~(1) VOL. 19, 1933 MA THEMA TICS: G. D. BIRKHOFF 339 is necessary due to the weakness that only the approximate frequency distribution ml is known except at the value I = '/2 n. If the data have not been reduced to a zero mean, the shape of the periodogram is not affected but the whole is raised by twice the mean value. The modification of the probability formulae for such data is a routine task. SOME REMARKS CONCERNING SCHRODINGER'S WA VE EQ UA TION By GEORGE D. BIRKHOFF DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY Communicated January 30, 1933 In the present note I propose to approach the wave equation of Schrodinger by a method which, although closely related to methods used by de Broglie and Brillouin,l Schrodinger2 and Dirac,3 is distinct from these and has the advantage of fixing the position of the wave equation from a purely mathematical point of view: namely, the wave equation is the simplest form of linear partial differential equation involving a parameter, for which the classical process determining asymptotic series solutions gives a "multiplier equation" identical with the Hamilton-Jacobi equation, while the Cauchy characteristics of the multiplier equation (along which the asymptotic "wave packet" is always propagated) then become the dynamical trajectories of the corresponding Hamiltonian system. Let L(4,6, X) = 0 be any linear (ordinary or partial) differential equation in if with n - 1 independent variables xi,... x,, and involving a parameter X. This parameter is to be thought of as large in absolute value. In the case which interests us certain of the coefficients of i6 and its derivatives in the above equation become large as X increases. Under these circumstances it has been found in many cases that the operation of differentiation of ii or of its derivatives with respect to any variable xi is asymptotically equivalent to multiplication by Xbxi/bs, where S is a definite function of xi,... x,. Thence one is led to an asymptotic series solution, where vo, vi,... do not involve X. It is with certain general facts concerning this classical, formal process and its relation to the Schrodinger wave equation that the present note deals. If we introduce the modified differential operators

2 340 MA THEMA TICS: G. D. BIRKHOFF PROC. N. A. S..a'i'=la((= l,... n),4 b(i] 1 ( axi X axi the original equation in 4t' may be written as L(s,a A atx', a' 12,. ;Xi,... X.; 0) = (2) ax, X X where L may be expanded in the form of an infinite series in 1/X, Li L _- Lo + L1+...(2') in the case which we are considering. Here Lo may be called the "principal part" of Lo, and may be more explicitly written as follows Lo(+) = + i axj + E ij axj?xj (3) where we assume tij = tji, sijk = tikj = tjki = {jik = = tkjii etc. If now the formal series (1) be substituted in the equation (2), and the coefficients of e)s/xk on the left be equated to 0 for k = 0, 1,..., the first equation determines S and may be written where p (Xl' x"' bxl ' dx") ' (4) p +Et bs + a8sbs +- (5) i )xj ij axs Jxj is a polynomial of degree n in as/axl,... as/a)x, if n is the order of the equation in 4. Conversely any polynomial P determines a corresponding Lo. We shall term (4) the "multiplier equation" for L(4+) = 0. This is a differential equation of the first order in S which does not contain S and is in general non-linear. When we proceed with the further similar equations for k = 1, 2,. we find that the second equation determines vo in (1), the third determines v1, etc. We shall be interested primarily in the equation for vo. Let us observe first that we have, to terms in 1/X, _6114 e),s (-vi _ 8OV+ as)vl axj axi 'X ax xi e.(ax+--ivo +-.aavl)

3 VOL. 19, 1933 MA THEMA TICS: G. D. BIRKHOFF 341 X/Fs as 1 F?bS 1 1 1?'S 'S 'a'ei --IIs s+]vo+---av1 j,etc. bx,bxj ^-e\l ix, X bx,j L x bxj x o X (x,ixj / Here we have used an obvious operational notation. On substituting these expressions in equation (2), the terms in 1/X which involve vt disappear because of the multiplier equation (4), and there remains the following equation for k = 1, bp?-vo +1/ 2P S = Of (6) i byi xi 2 T =yiobyjx(6bxj where we have written yi = bs/ixi for i = 1,... n. Suppose now that we take any complete solution S(xi,... x"; cl,... c) + cn of the multiplier equation. Then x1, * Xn, yl*, Yx may be regarded as independent except for the equation of condition P = 0. If we write dx= P (i = 1,... n) (7) dr ayi and let 4) denote the coefficient of vo in (6), the equation (6) becomes dvo-fd +4vo = 0, whence =Ke. (6') d,r Hence the equation (6) specifies how v0 varies along any curve x, =x,(x), (i = 1,... n), in xi,... xx space representing a solution of (7). But we have also for any i along such a curve dy, a2s dxj _ 2S ap dtr j bxi bxj dr j bxi bxj byjs Furthermore, from the multiplier equation (4) we infer (in xi,... xx space) ')p (2S so that we deduce ap+ E Pa a j byiaxio _of dy _ P (i=1,...n). (8) d-r aixj The equations (7), (8) are the 2n ordinary differential equations in xi,...x, yi,... yn of Hamiltonian type which define the Cauchy characteristics of the multiplier equation (4), provided we restrict attention to those solutions (involving 2n - 1 arbitrary constants) for which P = 0. The general significance of the above results is clear: Consider a regular dimensions so that, for the given function transversal surface T of n - 1 S, the corresponding characteristics intersect T in one and the same sense

4 342 MA THEMA TICS: G. D. BIRKHOFF PROC. N. A. S. throughout. The value of vo may then be given arbitrarily on the transversal surface T, and is then determined elsewhere by integrating along these Cauchy characteristics. For k # 0, the equations analogous to (6') are of tbe form d-+ bvk + 4k = 0 (k = 1, 2, 3,*) (6) di where bk depends linearly and homogeneously upon vo, vi,... vk- 1. Hence each coefficient Vk is determined up to a constant multiple of vo by its value on T. If in particular vo, vi,... are taken as 0 in T except throughout some region V of T, and as vanishing along the boundary of this region, together with their partial derivatives, these functions may be taken to be O except within the corresponding tube of characteristics (on which they are determined to the extent indicated above), and vanishing similarly on the boundary of the tube. Such a region V changes position as the "time" r changes, and the series solution thus gives rise to what we shall term an "asymptotic wave packet." Let us call any function vo which satisfies the linear partial differential equation (6) an "amplitude function," associated with the corresponding "phase function" S. If vo is any assigned amplitude function of S whatsoever, then the integral I = j vdxldx2... dx,, (9) does not vary with r. Here V(r) is the region into which the arbitrary region V at T = 0 is carried along the Cauchy characteristic in "time" r. Conversely if this integral is independent of r for every V, vo will be an amplitude function of S. To prove this result we observe that the integral I may be written J vo(xi, x,,)jdxi... dxn where the transformation from V to VIr is xi = fi(xi,... x,), (i =...), and J is the functional determinant (xl,... x,)/b(xy,... x.). Hence the derivative of I at T = 0 (when xi = xi) is But for I vod vo dxl.. dx,. i axi ayi dt Ar small we have Xi = Xi + Ar (=,...n), ayi and, in consequence,

5 VOL. 19, 1933 MA THEMA TICS: G. D. BIRKHOFF P I.2S ax. byi i (y,6 yy6xix/ whence dj _2 62P 62S dr T0o ie a yi + Eyi a j bx; axj Hence the integral written above vanishes because of the condition (6) upon vo. Consequently di/d-r = 0 for r = 0, and likewise for any r, so that I is necessarily constant. Conversely if the integral I is independent of r for all regions V, it is clear that vo must be an amplitude function. This completes our proof of the above italicized statement. Suppose now that we take n + 1 variables t, xl,.. x", with e _ s +s H(l }x x -a" so that the "multiplier equation" takes the form of the Hamilton-Jacobi partial differential equation witb energy H. The corresponding "principal linear equation" Lo(ik) = 0 is then the usual Schrodinger wave equation 2 ri b /,2r r H l =.X)0 (10) 2 aa H(l XX h bxl * h bx,) provided we take X = 27ri/h. Furthermore the corresponding Hamiltonian equations are together with dt d asa dt ' dro dxi 6H dyi = H (=1,... n) (1 dr y ' dr a-xi so that as/at = const., and r = t + const. The Schr6dinger wave equation is therefore merely the principal equation which has the usual Hamilton-Jacobi partial differential equation H as its multiplier equation. Evidently t = to is a transversal surface T in this special case and the n + 1 dimensional element of volume is dtdxl.. dx,,. Furthermore we may write S = c,t + S*(xi,... X,,; C1,... cn-1) + cn+1 since y, = 6S/I t appears only linearly. Here the Cauchy characteristics become the dynamical trajectories of the corresponding Hamiltonian system (11).

6 344 MA THEMA TICS: G. D. BIRKHOFF PROC. N. A.- S. If we write to a first approximation (vo real,,6 exsvo, y6e)svo X pure imaginary), we see that along any part of an asymptotic wave packet, the integral f Pdtdxi... dx. reduces to fvo2dtdxl... dx, which by our general result remains constant. It follows then that f Wx1...dx. also remains constant. To establish this we begin with the n + 1 dimensional element of volume, taking limits to and t, for t with t - to = At, and then let At tend to zero. Hence we arrive at the following result: In the special case of the Schr6dinger wave equation in 0, the "asymptotic wave packets" follow the corresponding dynamical trajectories, whik the squared.amplitude integral J...dx... dx,, remains constant over any part of the packet, at least to the order of terms in 1/X.5 In conclusion, it is desirable to note what happens un'der any change of independent variables in the general case xi = f1(xi,... x") (i = 1,... n), It is to be observed first of all that because of the identities a"]u 6j. 6[]u ae2l u [xk 2xl a[2u 1 k a[1lu xj bxj bxkbxl k bx EXiXjbXk t. ax, = E xi axj, bxibxj ki Eg the components of L =Lo + LI + do not remain individually invariant in the equation (1), and in particular the principle part Lo is not carried over into the new principal part by the ordinary rules. In fact the coefficients t in the principal part transform by the rules valid for the attached Hamilton.-Jacobi equation. Hence SchrAdinger's wave equation in the form (10) is only maintained (in general) under a linear transformation of the independent variables. This fact indicates that any coordinate system from which we start is to be regarded as a privileged absolute system of reference for the Schr6dinger wave equation, up to an arbitrary linear transformation. 1 L. de Broglie and L. Brillouin, Selected Papers in Wave Mechanics, (translation, London, 1928). 2 E. Schrodinger, Collected Papers on Wave Mechanics, 1-30 (translation, London, 1928). 8 P. L. M. Dirac, Quantum Mechanics, (Oxford, 1930). 4 See my paper, Trans. Am. Math. Soc., 9, (1908). b Dirac asserts incorrectly (loc. cit., p. 121) that the amplitude is constant along a dynamical trajectory. He overlooks the terms in the second partial derivatives in the equation corresponding to (6) in the special case.

QUANTUM MECHANICS AND ASYMPTOTIC SERIESf

QUANTUM MECHANICS AND ASYMPTOTIC SERIESf QUANTUM MECHANICS AND ASYMPTOTIC SERIESf BY G. D. BIRKHOFF PART I. 1. Introduction, In its bold primary outline the program of quantum mechanics in the Schrödinger form runs as follows: (A) Set up the

More information

A (2.3) TX41. XY- YX= at. +_X21p + ~~(2.2) alternate to give one of the same type if the vectors concerned are (each) solutions

A (2.3) TX41. XY- YX= at. +_X21p + ~~(2.2) alternate to give one of the same type if the vectors concerned are (each) solutions 390 MATHEMATICS: D. D. KOSAMBI PROC. N. A. S. equations in ul are obtained from (1.1) by the "infinitesimal change," x = xi + U'3T, where x and x are supposed to be co6rdinates of points on "nearby" paths.

More information

ON DIVISION ALGEBRAS*

ON DIVISION ALGEBRAS* ON DIVISION ALGEBRAS* BY J. H. M. WEDDERBURN 1. The object of this paper is to develop some of the simpler properties of division algebras, that is to say, linear associative algebras in which division

More information

EXPANSIONS IN TERMS OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

EXPANSIONS IN TERMS OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS EXPANSIONS IN TERMS OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS SECOND PAPER: MULTIPLE BIRKHOPP SERIES* Consider the system of expressions BY CHESTER C CAMP l. Setting of the problem Li(z)~ ^l + PioAxi)-^n-^-+---+Pini(xi)z

More information

exceptional value turns out to be, "RAC" CURVATURE calling attention especially to the fundamental Theorem III, and to emphasize

exceptional value turns out to be, RAC CURVATURE calling attention especially to the fundamental Theorem III, and to emphasize VOL. 18, 1932 V,MA THEMA TICS: E. KASNER 267 COMPLEX GEOMETRY AND RELATIVITY: "RAC" CURVATURE BY EDWARD KASNER DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY Communicated February 3, 1932 THEORY OF THE

More information

GEOMETRY OF THE HEAT EQUATION: FIRST PAPER. they forn a two-parameter family, the parameters being temperature and

GEOMETRY OF THE HEAT EQUATION: FIRST PAPER. they forn a two-parameter family, the parameters being temperature and VWOL. 18, 1932 MA THEMA TICS: E. KASNER 475 square of only one of its prime factors when one and only one prime factor of g is congruent to unity with respect to one and only one other such factor and

More information

Double Binary Forms IV.*

Double Binary Forms IV.* 69 Double Binary Forms IV.* (1) Apolarity; (2) Automorphic Transformations. By Professor H. W. TURNBULL. (Bead 6th February 1928. Received 12th April 1. Introduction. The first part of the following investigation

More information

Module 1: Signals & System

Module 1: Signals & System Module 1: Signals & System Lecture 6: Basic Signals in Detail Basic Signals in detail We now introduce formally some of the basic signals namely 1) The Unit Impulse function. 2) The Unit Step function

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx Physics 74 Graduate Quantum Mechanics Solutions to Midterm Exam, Fall 4. [ points] Consider the wave function x Nexp x ix (a) [6] What is the correct normaliation N? The normaliation condition is. exp,

More information

Ed2 + (U2-1)du + u = 0; dt!= Xi(xi, PERTURBATIONS OF DISCONTINUOUS SOLUTIONS OF NON- plane could be exploited).

Ed2 + (U2-1)du + u = 0; dt!= Xi(xi, PERTURBATIONS OF DISCONTINUOUS SOLUTIONS OF NON- plane could be exploited). 214 MA TIIEMAA ICS: N. LEVINSON PROC. N^. A. S. PERTURBATIONS OF DISCONTINUOUS SOLUTIONS OF NON- LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS BY NORMAN LEVINSON MASSACHUSETTS INSTITUTE OF TECHNOLOGY Communicated

More information

3b,12x2y + 3b,=xy2 + b22y3)..., (19) f(x, y) = bo + b,x + b2y + (1/2) (b Ix2 + 2bI2xy + b?2y2) + (1/6) (bilix' + H(u, B) = Prob (xn+1 e BIxn = u).

3b,12x2y + 3b,=xy2 + b22y3)..., (19) f(x, y) = bo + b,x + b2y + (1/2) (b Ix2 + 2bI2xy + b?2y2) + (1/6) (bilix' + H(u, B) = Prob (xn+1 e BIxn = u). 860 MA THEMA TICS: HARRIS AND ROBBINS PROC. N. A. S. The method described here gives the development of the solution of the partial differential equation for the neighborhood of x = y = 0. It can break

More information

4(xo, x, Po, P) = 0.

4(xo, x, Po, P) = 0. 128 MATHEMATICS: F. D. MURNAGHAN PRoe. N. A. S. THE PRINCIPLE OF MA UPERTUIS By FRANCIS D. MURNAGHAN DEPARTMENT OF MATHEMATICS, JOHNS HOPKINS UNIVERSITY Communicated December 22. 1930 For a dynamical system

More information

1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem.

1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem. STATE EXAM MATHEMATICS Variant A ANSWERS AND SOLUTIONS 1 1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem. Definition

More information

Chapter 4: Lagrangian Formalism

Chapter 4: Lagrangian Formalism 28 Chapter 4: Lagrangian Formalism Lagrange s general formulation of mechanics in terms of variational principles shows that conservation of energy arises as a direct consequence of temporal symmetry -

More information

The Time{Dependent Born{Oppenheimer Approximation and Non{Adiabatic Transitions

The Time{Dependent Born{Oppenheimer Approximation and Non{Adiabatic Transitions The Time{Dependent Born{Oppenheimer Approximation and Non{Adiabatic Transitions George A. Hagedorn Department of Mathematics, and Center for Statistical Mechanics, Mathematical Physics, and Theoretical

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Putzer s Algorithm. Norman Lebovitz. September 8, 2016

Putzer s Algorithm. Norman Lebovitz. September 8, 2016 Putzer s Algorithm Norman Lebovitz September 8, 2016 1 Putzer s algorithm The differential equation dx = Ax, (1) dt where A is an n n matrix of constants, possesses the fundamental matrix solution exp(at),

More information

u(o, t) = ZX(x, t) = O, u(l, t) = 62 STUDIES ON GEODESICS IN VIBRATIONS OF ELASTIC BEAMS

u(o, t) = ZX(x, t) = O, u(l, t) = 62 STUDIES ON GEODESICS IN VIBRATIONS OF ELASTIC BEAMS 38 MA THEMA TICS: A. D. MICHAL PROC. N. A. S. dicated in the passage in question. As thus measured, it does not appear at all constant (for constant amplitude) as I should expect it to be. This seems to

More information

ad=-- a (c,d) + a C2 a) (14)

ad=-- a (c,d) + a C2 a) (14) 98 98PHY-SICS: T. V. KARMAN PROC. N. A. S. in the case of an external force F the coefficient cl = MF, where M is called the mobility). The causes of the second type are called forces of diffusion and

More information

Linear DifferentiaL Equation

Linear DifferentiaL Equation Linear DifferentiaL Equation Massoud Malek The set F of all complex-valued functions is known to be a vector space of infinite dimension. Solutions to any linear differential equations, form a subspace

More information

MULTIVARIATE BIRKHOFF-LAGRANGE INTERPOLATION SCHEMES AND CARTESIAN SETS OF NODES. 1. Introduction

MULTIVARIATE BIRKHOFF-LAGRANGE INTERPOLATION SCHEMES AND CARTESIAN SETS OF NODES. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXIII, 2(2004), pp. 217 221 217 MULTIVARIATE BIRKHOFF-LAGRANGE INTERPOLATION SCHEMES AND CARTESIAN SETS OF NODES N. CRAINIC Abstract. In this paper we study the relevance

More information

LECTURE 15 + C+F. = A 11 x 1x1 +2A 12 x 1x2 + A 22 x 2x2 + B 1 x 1 + B 2 x 2. xi y 2 = ~y 2 (x 1 ;x 2 ) x 2 = ~x 2 (y 1 ;y 2 1

LECTURE 15 + C+F. = A 11 x 1x1 +2A 12 x 1x2 + A 22 x 2x2 + B 1 x 1 + B 2 x 2. xi y 2 = ~y 2 (x 1 ;x 2 ) x 2 = ~x 2 (y 1 ;y 2  1 LECTURE 5 Characteristics and the Classication of Second Order Linear PDEs Let us now consider the case of a general second order linear PDE in two variables; (5.) where (5.) 0 P i;j A ij xix j + P i,

More information

Matrix Representation

Matrix Representation Matrix Representation Matrix Rep. Same basics as introduced already. Convenient method of working with vectors. Superposition Complete set of vectors can be used to express any other vector. Complete set

More information

S. Lie has thrown much new light on this operation. The assumption

S. Lie has thrown much new light on this operation. The assumption 600 MATHEMATICS: A. E. ROSS PRoc. N. A. S. The operation of finding the limit of an infinite series has been one of the most fruitful operations of all mathematics. While this is not a group operation

More information

General-relativistic quantum theory of the electron

General-relativistic quantum theory of the electron Allgemein-relativistische Quantentheorie des Elektrons, Zeit. f. Phys. 50 (98), 336-36. General-relativistic quantum theory of the electron By H. Tetrode in Amsterdam (Received on 9 June 98) Translated

More information

Newtonian Mechanics. Chapter Classical space-time

Newtonian Mechanics. Chapter Classical space-time Chapter 1 Newtonian Mechanics In these notes classical mechanics will be viewed as a mathematical model for the description of physical systems consisting of a certain (generally finite) number of particles

More information

f(x) 12 dx = E ft(y) = fst(x, y)f(x) dx (1) f(x) = f :Sr(X, Y)fr(Y) dmr(y) (3a) I If (y)i 2 dmr(y). (2) ) f

f(x) 12 dx = E ft(y) = fst(x, y)f(x) dx (1) f(x) = f :Sr(X, Y)fr(Y) dmr(y) (3a) I If (y)i 2 dmr(y). (2) ) f VOL. 39, 1953 MA THEMA TICS: F. I. MA UTNER 49 ON EIGENFUNCTION EXPANSIONS BY F. I. MAUTNER DEPARTM1ENT of MATHEMATICS, THE JOHNS HOPKINS UNIVERSITY Communicated by J. von Neumann, November 4, 1952 Given

More information

COMPLEMENTARY SURFACES FOR A VECTOR FIELD

COMPLEMENTARY SURFACES FOR A VECTOR FIELD COMPLEMENTARY SURFACES FOR A VECTOR FIELD T. K. PAN 1. Introduction. Let d be a vector field in a surface in an ordinary space. The author defined the curve of v and the asymptotic line of v and proved

More information

function provided the associated graph function g:x -) X X Y defined

function provided the associated graph function g:x -) X X Y defined QUASI-CLOSED SETS AND FIXED POINTS BY GORDON T. WHYBURN UNIVERSITY OF VIRGINIA Communicated December 29, 1966 1. Introduction.-In this paper we develop new separation and intersection properties of certain

More information

PHY 396 K. Solutions for problems 1 and 2 of set #5.

PHY 396 K. Solutions for problems 1 and 2 of set #5. PHY 396 K. Solutions for problems 1 and of set #5. Problem 1a: The conjugacy relations  k,  k,, Ê k, Ê k, follow from hermiticity of the Âx and Êx quantum fields and from the third eq. 6 for the polarization

More information

A NOTE ON THE SINGULAR MANIFOLDS OF A DIFFERENCE POLYNOMIAL

A NOTE ON THE SINGULAR MANIFOLDS OF A DIFFERENCE POLYNOMIAL A NOTE ON THE SINGULAR MANIFOLDS OF A DIFFERENCE POLYNOMIAL RICHARD M. COHN 1. Introduction. In a previous paper 1 we defined essential singular manifolds of a difference polynomial in one unknown, and

More information

\ABC (9) \AX BI Ci\ = 0, r; vi -iv ~*i -n*yi -o

\ABC (9) \AX BI Ci\ = 0, r; vi -iv ~*i -n*yi -o i 9 28.] INVERSION OF TRANSFORMATIONS 565 \ABC BiCi C1A1 Ai Bi (9) \AX BI Ci\ = 0, r; vi -iv ~*i -n*yi -o ' A 2 B2 C2 = 0, B2 C2 d Ai Ai Bi represent the two éliminants of the system (8). The two necessary

More information

Integration - Past Edexcel Exam Questions

Integration - Past Edexcel Exam Questions Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point

More information

LINEAR SYSTEMS AND MATRICES

LINEAR SYSTEMS AND MATRICES CHAPTER 3 LINEAR SYSTEMS AND MATRICES SECTION 3. INTRODUCTION TO LINEAR SYSTEMS This initial section takes account of the fact that some students remember only hazily the method of elimination for and

More information

New Identities for Weak KAM Theory

New Identities for Weak KAM Theory New Identities for Weak KAM Theory Lawrence C. Evans Department of Mathematics University of California, Berkeley Abstract This paper records for the Hamiltonian H = p + W (x) some old and new identities

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer. Lecture 5, January 27, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer. Lecture 5, January 27, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer Lecture 5, January 27, 2006 Solved Homework (Homework for grading is also due today) We are told

More information

Notes on basis changes and matrix diagonalization

Notes on basis changes and matrix diagonalization Notes on basis changes and matrix diagonalization Howard E Haber Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 April 17, 2017 1 Coordinates of vectors and matrix

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

ON THE HK COMPLETIONS OF SEQUENCE SPACES. Abduallah Hakawati l, K. Snyder2 ABSTRACT

ON THE HK COMPLETIONS OF SEQUENCE SPACES. Abduallah Hakawati l, K. Snyder2 ABSTRACT An-Najah J. Res. Vol. II. No. 8, (1994) A. Allah Hakawati & K. Snyder ON THE HK COMPLETIONS OF SEQUENCE SPACES Abduallah Hakawati l, K. Snyder2 2.;.11 1 Le Ile 4) a.ti:;11 1 Lai 131 1 ji HK j; ) 1 la.111

More information

ALGEBRAIC PROPERTIES OF SELF-ADJOINT SYSTEMS*

ALGEBRAIC PROPERTIES OF SELF-ADJOINT SYSTEMS* ALGEBRAIC PROPERTIES OF SELF-ADJOINT SYSTEMS* BY DUNHAM JACKSON The general definition of adjoint systems of boundary conditions associated with ordinary linear differential equations was given by Birkhoff.t

More information

Cubic Splines. Antony Jameson. Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305

Cubic Splines. Antony Jameson. Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305 Cubic Splines Antony Jameson Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305 1 References on splines 1. J. H. Ahlberg, E. N. Nilson, J. H. Walsh. Theory of

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

PROOF OF POINCARE'S GEOMETRIC THEOREM

PROOF OF POINCARE'S GEOMETRIC THEOREM PROOF OF POINCARE'S GEOMETRIC THEOREM BY GEORGE D. BIRKHOFF* In a paper recently published in the Rendiconti del Circolo Matemático di Palermo (vol. 33, 1912, pp. 375-407) and entitled Sur un théorème

More information

Vectors. January 13, 2013

Vectors. January 13, 2013 Vectors January 13, 2013 The simplest tensors are scalars, which are the measurable quantities of a theory, left invariant by symmetry transformations. By far the most common non-scalars are the vectors,

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY SPRING SEMESTER 207 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

(3m - 4)/2 when m is even.' Although these groups are somewhat more

(3m - 4)/2 when m is even.' Although these groups are somewhat more 236 MA THEMA TICS: BRA UER A ND NESBITT PROC. N. A. S. abelian group of order p(m + 1)/2 which contains no operator of order p2 just as in the case when G involves no operator of order p2. In the present

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

Chapter Two Elements of Linear Algebra

Chapter Two Elements of Linear Algebra Chapter Two Elements of Linear Algebra Previously, in chapter one, we have considered single first order differential equations involving a single unknown function. In the next chapter we will begin to

More information

The Periodogram and its Optical Analogy.

The Periodogram and its Optical Analogy. The Periodogram and Its Optical Analogy Author(s): Arthur Schuster Reviewed work(s): Source: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I

THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I J Korean Math Soc 46 (009), No, pp 95 311 THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I Sung Sik Woo Abstract The purpose of this paper is to identify the group of units of finite local rings of the

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

R. D. BOHANNAN. are all solutions, when m is changed to a, these being the partial

R. D. BOHANNAN. are all solutions, when m is changed to a, these being the partial DERIVED SOLUTIONS OF DIFFERENTIAL EQUATIONS. (Short Methods). R. D. BOHANNAN. When F(m) =0 has n roots equal a, then F(m)=0 and its first n 1 derivatives have this root in common. So if F(m, x) is a solution

More information

4.4. Electron in a Periodic Field of a Crystal (the Solid State)

4.4. Electron in a Periodic Field of a Crystal (the Solid State) 26 1. Fundamentals of Electron Theory 0 Figure 4.8. Square well with finite potential barriers. (The zero points on the vertical axis have been shifted for clarity.) Inserting (4.40) yields (4.43) and

More information

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements 1 Historical introduction The Schrödinger equation for one-particle problems 3 Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical

More information

SOLUTIONS ABOUT ORDINARY POINTS

SOLUTIONS ABOUT ORDINARY POINTS 238 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS In Problems 23 and 24 use a substitution to shift the summation index so that the general term of given power series involves x k. 23. nc n x n2 n 24.

More information

HENG HUAT CHAN, SONG HENG CHAN AND SHAUN COOPER

HENG HUAT CHAN, SONG HENG CHAN AND SHAUN COOPER THE q-binomial THEOREM HENG HUAT CHAN, SONG HENG CHAN AND SHAUN COOPER Abstract We prove the infinite q-binomial theorem as a consequence of the finite q-binomial theorem 1 The Finite q-binomial Theorem

More information

THE INVERSE OPERATION IN GROUPS

THE INVERSE OPERATION IN GROUPS THE INVERSE OPERATION IN GROUPS HARRY FURSTENBERG 1. Introduction. In the theory of groups, the product ab~l occurs frequently in connection with the definition of subgroups and cosets. This suggests that

More information

To make this point clear, let us rewrite the integral in a way that emphasizes its dependence on the momentum variable p:

To make this point clear, let us rewrite the integral in a way that emphasizes its dependence on the momentum variable p: 3.2 Construction of the path integral 101 To make this point clear, let us rewrite the integral in a way that emphasizes its dependence on the momentum variable p: q f e iĥt/ q i = Dq e i t 0 dt V (q)

More information

BY A. EINSTEIN and N. ROSEN.

BY A. EINSTEIN and N. ROSEN. / ON GRAVITATIONAL WAVES. BY A. EINSTEIN and N. ROSEN. ABSTRACT. The rigorous solution for cylindrical gravitational waves is given. For the convenience of the reader the theory of gravitational waves

More information

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017 Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics Properties of Vector Spaces Unit vectors ~xi form a basis which spans the space and which are orthonormal ( if i = j ~xi

More information

By. 0. VEBLEN. the differential equations. d2xi dxa dx- 0 (1.1) ds2 a7d ds. ri = rsa (1.2) dti+ riaf dx= 0 (2.1) ds+ ds ds ds

By. 0. VEBLEN. the differential equations. d2xi dxa dx- 0 (1.1) ds2 a7d ds. ri = rsa (1.2) dti+ riaf dx= 0 (2.1) ds+ ds ds ds 192 MA THEMA TICS: 0. VEBLEN PROC. N. A. S. NORMAL COORDINATES FOR THE GEOMETRY OF PATHS By. 0. VEBLEN DVPARrMANT of MATHEMATICS, PRINCETON UNIVURSITY Read before the Academy April 25, 1922 1. The normal

More information

GROUPS WHICH ADMIT FIVE-EIGHTHS A UTOMORPHISMS. those which admit two-thirds automorphisms. In the present article

GROUPS WHICH ADMIT FIVE-EIGHTHS A UTOMORPHISMS. those which admit two-thirds automorphisms. In the present article VOL. 17, 1931 MA THEMA TICS: G. A. MILLER 39 I have also had several stimulating discussions with Dr. Clarence Zener. 1 This work was begun while the writer was a National Research Fellow at the Institute

More information

NON-NEWTONIAN GRAVITATIONAL FIELDS

NON-NEWTONIAN GRAVITATIONAL FIELDS SOVIET PHYSICS JETP VOLUME 21, NUMBER 5 NOVEMBER, 1965 NON-NEWTONIAN GRAVITATIONAL FIELDS H. KERES Institute of Physics and Astronomy, Academy of Sciences, Estonian S.S.R. Submitted to JETP editor October

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS

A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS C. A. SWANSON1 Clark and the author [2] recently obtained a generalization of the Hartman-Wintner comparison theorem [4] for a pair of self-adjoint

More information

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Many interesting physics systems describe systems of particles on which many forces are acting. Some of these forces are immediately

More information

A WEAK VERSION OF ROLLE S THEOREM

A WEAK VERSION OF ROLLE S THEOREM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 11, November 1997, Pages 3147 3153 S 0002-9939(97)03910-5 A WEAK VERSION OF ROLLE S THEOREM THOMAS C. CRAVEN (Communicated by Wolmer

More information

T(R) = R. THEOREM 3.4: If T(M) C M is a continuous transformation of a compact

T(R) = R. THEOREM 3.4: If T(M) C M is a continuous transformation of a compact 194 MA THEMA TICS: CO URA NT AND DA VIDS PROC. N. A. S. with respect to the property of being the product of continua of type P, where a continuum C is said to be of type P provided the closure of the

More information

forces.* Walter's, and according to which the line of apsides always advances when

forces.* Walter's, and according to which the line of apsides always advances when 468 ASTRONOMY: T. E. STERNE THE GRA VITA TIONAL MOTION OF A PAIR OF RIGID BODIES By THEODORE EUGENE STERNE HARVARD COLLEGE OBSERVATORY Communicated August 10, 1939 1. In a paper' on eclipsing binary stars,

More information

FIBONACCI SEARCH WITH ARBITRARY FIRST EVALUATION ABSTKACT

FIBONACCI SEARCH WITH ARBITRARY FIRST EVALUATION ABSTKACT FIBONACCI SEARCH WITH ARBITRARY FIRST EVALUATION CHRISTOPHWITZGALL Mathematics Research Laboratory, Boeing Scientific Research Laboratory ABSTKACT The Fibonacci search technique for maximizing a unimodal

More information

The Lorentz Transformation from Light-Speed Invariance Alone

The Lorentz Transformation from Light-Speed Invariance Alone The Lorentz Transformation from Light-Speed Invariance Alone Steven Kenneth Kauffmann Abstract The derivation of the Lorentz transformation normally rests on two a priori demands namely that reversing

More information

Linear Hyperbolic Systems

Linear Hyperbolic Systems Linear Hyperbolic Systems Professor Dr E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro October 8, 2014 1 / 56 We study some basic

More information

Hamilton-Jacobi theory

Hamilton-Jacobi theory Hamilton-Jacobi theory November 9, 04 We conclude with the crowning theorem of Hamiltonian dynamics: a proof that for any Hamiltonian dynamical system there exists a canonical transformation to a set of

More information

2. Linear recursions, different cases We discern amongst 5 different cases with respect to the behaviour of the series C(x) (see (. 3)). Let R be the

2. Linear recursions, different cases We discern amongst 5 different cases with respect to the behaviour of the series C(x) (see (. 3)). Let R be the MATHEMATICS SOME LINEAR AND SOME QUADRATIC RECURSION FORMULAS. I BY N. G. DE BRUIJN AND P. ERDÖS (Communicated by Prow. H. D. KLOOSTERMAN at the meeting ow Novemver 24, 95). Introduction We shall mainly

More information

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes Applications of Eigenvalues and Eigenvectors 22.2 Introduction Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes, eigenvectors. Control theory, vibration

More information

Why quantum field theory?

Why quantum field theory? Why quantum field theory? It is often said that quantum field theory is the natural marriage of Einstein s special theory of relativity and the quantum theory. The point of this section will be to motivate

More information

On Polynomial Pairs of Integers

On Polynomial Pairs of Integers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5 On Polynomial Pairs of Integers Martianus Frederic Ezerman Division of Mathematical Sciences School of Physical and Mathematical

More information

Introduction to First Order Equations Sections

Introduction to First Order Equations Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Introduction to First Order Equations Sections 2.1-2.3 Dr. John Ehrke Department of Mathematics Fall 2012 Course Goals The

More information

Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. What for x = 1.2?

Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. What for x = 1.2? Applied Numerical Analysis Interpolation Lecturer: Emad Fatemizadeh Interpolation Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. 0 1 4 1-3 3 9 What for x = 1.? Interpolation

More information

Department of Mathematics Indian Institute of Technology Hauz Khas, New Delhi India

Department of Mathematics Indian Institute of Technology Hauz Khas, New Delhi India . Internat. Math. & Math. Sci. VOL. 18 NO. 4 (1995) 681-688 A NOTE ON K(THE-TOEPLITZ DUALS OF CERTAIN SEQUENCE SPACES AND THEIR MATRIX TRANSFORMATIONS 681 B. CHOUDHARY and S.K. MISHRA Department of Mathematics

More information

2. Let S stand for an increasing sequence of distinct positive integers In ;}

2. Let S stand for an increasing sequence of distinct positive integers In ;} APPROXIMATION BY POLYNOMIALS By J. A. CLARKSON AND P. ERDÖS 1. Let In ;) be a set of distinct positive integers. According to a theorem of Müntz and Szász, the condition En -.' = - is necessary and sufficient

More information

Feynman s path integral approach to quantum physics and its relativistic generalization

Feynman s path integral approach to quantum physics and its relativistic generalization Feynman s path integral approach to quantum physics and its relativistic generalization Jürgen Struckmeier j.struckmeier@gsi.de, www.gsi.de/ struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

NOTE ON GREEN'S THEOREM.

NOTE ON GREEN'S THEOREM. 1915.] NOTE ON GREEN'S THEOREM. 17 NOTE ON GREEN'S THEOREM. BY MR. C. A. EPPERSON. (Read before the American Mathematical Society April 24, 1915.) 1. Introduction, We wish in this paper to extend Green's

More information

2. Intersection Multiplicities

2. Intersection Multiplicities 2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

More information

Slow Manifold of a Neuronal Bursting Model

Slow Manifold of a Neuronal Bursting Model Slow Manifold of a Neuronal Bursting Model Jean-Marc Ginoux 1 and Bruno Rossetto 2 1 PROTEE Laboratory, Université du Sud, B.P. 2132, 83957, La Garde Cedex, France, ginoux@univ-tln.fr 2 PROTEE Laboratory,

More information

(Received March 30, 1953)

(Received March 30, 1953) MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A V ol. XXVIII, Mathematics No. 1, 1953. On the Evaluation of the Derivatives of Solutions of y"=-f (x, y, y'). By Taro YOSHIZAWA (Received

More information

H2 MATHS SET D PAPER 1

H2 MATHS SET D PAPER 1 H Maths Set D Paper H MATHS Exam papers with worked solutions SET D PAPER Compiled by THE MATHS CAFE P a g e b The curve y ax c x 3 points, and, H Maths Set D Paper has a stationary point at x 3. It also

More information

Mathematics 256 a course in differential equations for engineering students

Mathematics 256 a course in differential equations for engineering students Mathematics 256 a course in differential equations for engineering students Chapter 1. How things cool off One physical system in which many important phenomena occur is that where an initial uneven temperature

More information

briefly consider in connection with the differential equations of the type G catenaries, (5) the co I

briefly consider in connection with the differential equations of the type G catenaries, (5) the co I VOL. 28, 1942 MA THEMA TICS: E. KA SNER 333 Kasner, "Transformation Theory of Isothermal Families and Certain Related Trajectories," Revista de Matematica, 2, 17-24 (1941). De Cicco, "The Two Conformal

More information

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values Lecture 6 Four postulates of quantum mechanics The eigenvalue equation Momentum and energy operators Dirac delta function Expectation values Objectives Learn about eigenvalue equations and operators. Learn

More information

A Two-dimensional Mapping with a Strange Attractor

A Two-dimensional Mapping with a Strange Attractor Commun. math. Phys. 50, 69 77 (1976) Communications in Mathematical Physics by Springer-Verlag 1976 A Two-dimensional Mapping with a Strange Attractor M. Henon Observatoire de Nice, F-06300 Nice, France

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - 4 (Alberto Bressan, Spring 27) Review of complex numbers In this chapter we shall need to work with complex numbers z C These can be written in the form z = a+ib,

More information

Repeated Eigenvalues and Symmetric Matrices

Repeated Eigenvalues and Symmetric Matrices Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information