The Electric Field EM-L2-1

Size: px
Start display at page:

Download "The Electric Field EM-L2-1"

Transcription

1 The EM-L2-1

2 Review of Lecture 1 Electric charge is quantised and conserved in interactions The force between two charges is given by Coulomb s law Force F 1,2 exerted by a charge q 1 on another charge q 2 at distance r: F 1,2 = k q1 q 2 r 2 1,2 ˆr 1,2 where ˆr 1,2 = r 2 r 1 r 2 r 1 EM-L2-2

3 Overview of Lecture 2 Force from a system of charges The electric field: - motivation - definition Electric field lines Summary EM-L2-3

4 Forces by a system of charges The net force F j on a charge q j is the vector sum of all individual forces F i,j exerted by the other charges q i on q j. F j = i j F i,j = i j k q i q j r 2 i,j ˆr i,j Forces by a system of charges EM-L2-4

5 Example: net force Find the resultant force on charge q 0 Forces by a system of charges EM-L2-5

6 Example: net force ( ) 25 nc 20 nc cos 45 F 1,0 = k 8 m 2 sin 45 ( ) = cos 45 N sin 45 Find the resultant force on charge q 0 Forces by a system of charges EM-L2-6

7 Example: net force ( ) 25 nc 20 nc cos 45 F 1,0 = k 8 m 2 sin 45 ( ) = cos 45 N sin 45 ( 15 nc 20 nc 0 F 2,0 = k 4 m 2 1 = N ( 0 1 ) ) Find the resultant force on charge q 0 Forces by a system of charges EM-L2-7

8 Example: net force ( ) 25 nc 20 nc cos 45 F 1,0 = k 8 m 2 sin 45 ( ) = cos 45 N sin 45 ( 15 nc 20 nc 0 F 2,0 = k 4 m 2 1 = N ( 0 1 ) ) Find the resultant force on charge q 0 F net = F 1,0 + F ( 2, cos = 5.62 sin ( ) 3.97 = N ( = cos ( 34.9 N ) sin ( 34.9 ) ) 10 7 N ) Forces by a system of charges EM-L2-8

9 EM-L2-9

10 : Motivation Coulomb s law implies a mysterious interaction at a distance. F 1,2 = k q1 q 2 r 2 1,2 ˆr 1,2 Electromagnetic interactions are clearly not instantaneous. Changes propagate at speed of light c. c = m s Solution: Introduce an intermediary. A charge q j at r j interacts instantaneously with a field E( r j ). EM-L2-10

11 Electric field: definition Definition The Electric field E( r j ) at point r j generated by a charge q i at r i is defined as Measurement E( r j ) = k q i r 2 i,j ˆr i,j The total electric field can be found by measuring the force on a small positive test charge, q, and dividing by q. F E = lim q 0 q It is important that we take the limit q 0 so the test charge does not disturb the electric field (and, for example, move the other charges). EM-L2-11

12 System of point charges The electric field due to a system of point charges is the vector sum of the electric field due to each charge. For a system of point charges q i where each charge is the source of an electric field E i the total electric field at r j is E( r j ) = i E i ( r j ) = i kq i r 2 i,j ˆr i,j EM-L2-12

13 Example: electric dipole field Find the electric field on the x-axis at an arbitrary point x > a. EM-L2-13

14 Example: electric dipole field E = kq (x a) 2 î + k( q) (x + a) 2 î Find the electric field on the x-axis at an arbitrary point x > a. EM-L2-14

15 Example: electric dipole field kq E = (x a) 2 î + k( q) (x + a) 2 î [ 1 = kq (x a) 2 1 (x + a) 2 ] î Find the electric field on the x-axis at an arbitrary point x > a. EM-L2-15

16 Example: electric dipole field kq E = (x a) 2 î + k( q) (x + a) 2 î [ 1 = kq (x a) 2 1 (x + a) 2 [ (x + a) 2 (x a) 2 = kq (x a) 2 (x + a) 2 4ax = kq (x 2 a 2 ) 2 î ] ] î î Find the electric field on the x-axis at an arbitrary point x > a. EM-L2-16

17 Example: continued For q = 1nC and a = 1cm: For large distances x a: E = 4kqa x 3 î EM-L2-17

18 Drawing electric field lines The Rules: 1. Field lines begin on positive charges (or infinity) and end on negative charges (or infinity). 2. The number of lines entering or leaving a source is proportional to the magnitude of the charge on a source. 3. The density of lines at any point is proportional to the magnitude of the field at that point. 4. Field lines do not cross. EM-L2-18

19 Electric field lines for a single charge Left figure shows lines of force for a positive test charge. In the right figure the same lines show in bits of threads in oil (electric dipoles) with a charged object in the center. EM-L2-19

20 Example: Dipole field For simulations of electric fields, see: EM-L2-20

21 Summary EM-L2-21

22 Summary Superposition of Coulomb forces F j = i j F i,j Electric field Electric field lines E = i k q i r 2 i ˆr i Recommended reading: Tipler, sections 21-4 and 21-5 Next lecture: Tipler, sections 22-1, 23-1, 23-3 Summary EM-L2-22

Lecture 2 Electric Fields Ch. 22 Ed. 7

Lecture 2 Electric Fields Ch. 22 Ed. 7 1 2 Lecture 2 Electric Fields Ch. 22 Ed. 7 Cartoon - Analogous to gravitational field Topics Electric field = Force per unit Charge Electric Field Lines Electric field from more than 1 charge Electric

More information

Welcome Back to Physics Electric Fields. Micheal Faraday Physics 1308: General Physics II - Professor Jodi Cooley

Welcome Back to Physics Electric Fields. Micheal Faraday Physics 1308: General Physics II - Professor Jodi Cooley Welcome Back to Physics 1308 Electric Fields Micheal Faraday 1791-1867 Announcements Assignments for Thursday, August 30th: - Reading: Chapter 22.3-22.5 - Watch Video: https://youtu.be/wc79wv5klx4 Lecture

More information

Chapter 21 Electric Charge and the Electric Field

Chapter 21 Electric Charge and the Electric Field Chapter 21 Electric Charge and the Electric Field 1 Electric Charge Electrostatics is the study of charges when they are stationery. Figure 1: This is Fig. 21.1 and it shows how negatively charged objects

More information

The World According to Physics 121

The World According to Physics 121 The World According to Physics Objects Forces Specified by geometry and mass Gravity: F = G m m r m Others: Tension, Normal, Friction Space and Time uclidean with Galilean Invariance ordinary 3D space;;

More information

General Physics II Spring Electric Forces and Fields

General Physics II Spring Electric Forces and Fields General Physics II Spring 2008 Electric Forces and Fields 1 Coulomb s Law 2 The direction of the electric force is always along the line joining the two charges. Charges of the same sign repel; charges

More information

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References Phys102 Lecture 2 Phys102 Lecture 2-1 Coulomb s Law Key Points Coulomb s Law The electric field (E is a vector!) References SFU Ed: 21-5,6,7,8,9,10. 6 th Ed: 16-6,7,8,9,+. Phys102 Lecture 2 Phys102 Lecture

More information

Lecture 2 Electric Fields Chp. 22 Ed. 7

Lecture 2 Electric Fields Chp. 22 Ed. 7 Lecture Electric Fields Chp. Ed. 7 Cartoon - Analogous to gravitational field Warm-up problems, Physlet Topics Electric field Force per unit Charge Electric Field Lines Electric field from more than 1

More information

Phys122A-Lecture 2 Electric Field

Phys122A-Lecture 2 Electric Field Phys122A-Lecture 2 Electric Field Physics 122 Labs Sections begin on next week Before your section meets Get a copy of the lab manual at the UW Bookstore! Read the information on page iii as it has a lot

More information

2: What is the magnitude of the electric charge of an electron? 3: What is the law of conservation of electric charge?

2: What is the magnitude of the electric charge of an electron? 3: What is the law of conservation of electric charge? Chapter 18 Discussion January-03-15 8:58 PM Electric Forces and Electric Fields Reading Review 1: What is the SI unit of electric charge? 2: What is the magnitude of the electric charge of an electron?

More information

Electric Fields Part 1: Coulomb s Law

Electric Fields Part 1: Coulomb s Law Electric Fields Part 1: Coulomb s Law F F Last modified: 07/02/2018 Contents Links Electric Charge & Coulomb s Law Electric Charge Coulomb s Law Example 1: Coulomb s Law Electric Field Electric Field Vector

More information

Chapter 19 Electric Charges, Forces, and Fields

Chapter 19 Electric Charges, Forces, and Fields Chapter 19 Electric Charges, Forces, and Fields Outline 19-1 Electric Charge 19-2 Insulators and Conductors 19-3 Coulomb s Law 19-4 The Electric Field 19-5 Electric Field Lines 19-6 Shield and Charging

More information

Electric Fields of Charge Distributions

Electric Fields of Charge Distributions Welcome to Physics 308 Electric Fields of Charge Distributions Charles-Augustin de Coulomb 736-806 Physics 308: General Physics II - Professor Jodi Cooley Announcements Assignments for Tuesday, September

More information

Samples of solutions to conceptual problems from chapter 18 Cutnell & Johnson 7E

Samples of solutions to conceptual problems from chapter 18 Cutnell & Johnson 7E Samples of solutions to conceptual problems from chapter 8 Cutnell & Johnson. A metallic object is given a positive charge by the process of induction, as illustrated in Figure 8.8. (a) Does the mass of

More information

B Field Creation Detecting B fields. Magnetic Fields. PHYS David Blasing. Wednesday June 26th 1 / 26

B Field Creation Detecting B fields. Magnetic Fields. PHYS David Blasing. Wednesday June 26th 1 / 26 Magnetic Fields PHYS 272 - David Blasing Wednesday June 26th 1 / 26 Magnetic ( B) Fields This is a significant change, until now we have discussed just E fields. Now we are talking about a totally different

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 002 Lecture #6 Monday, Sept. 18, 2017 Chapter 21 Motion of a Charged Particle in an Electric Field Electric Dipoles Chapter 22 Electric Flux Gauss Law with many charges What is Gauss

More information

Conductors: External Electric Field 1/28/2018 1

Conductors: External Electric Field 1/28/2018 1 Conductors: External Electric Field 1/28/2018 1 Two Parallel Conducting Sheets Find the electric field to the left of the sheets, between the sheets and to the right of the sheets. 1/28/2018 2 Uniform

More information

BROCK UNIVERSITY. Test 1 Solutions

BROCK UNIVERSITY. Test 1 Solutions Examination date: 20 June 2013 Instructor: S. D Agostino BROCK UNIVERSITY Test 1 Solutions 1. A homemade capacitor is made of two parallel 35 cm by 35 cm sheets of aluminum foil separated by a 0.25 mm

More information

PH 222-3A Spring 2007

PH 222-3A Spring 2007 PH -3A Spring 7 ELECTRIC FIELDS Lectures,3 Chapter (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter Electric Fields In this chapter we will introduce the concept of an electric

More information

Experiment #3 Electric Fields Pre-lab Questions

Experiment #3 Electric Fields Pre-lab Questions Experiment #3 Electric Fields Pre-lab Questions ** Disclaimer: This pre-lab is not to be copied, in whole or in part, unless a proper reference is made as to the source. (It is strongly recommended that

More information

01. Introduction and Electric Field I

01. Introduction and Electric Field I University of Rhode Island DigitalCommons@URI PHY 204: lementary Physics II Physics Course Materials 2015 01. Introduction and lectric Field I Gerhard Müller University of Rhode Island, gmuller@uri.edu

More information

The Electric Field + + q 1 q 2. Coulomb s Law of Electro-static Force: How does q 1 know of the presence of q 2?

The Electric Field + + q 1 q 2. Coulomb s Law of Electro-static Force: How does q 1 know of the presence of q 2? The Electric ield 1 Coulomb s Law of Electro-static orce: k How does 1 know of the presence of? 1 r rˆ sets up an electric field in the space surrounding it. At any point the field has both a magnitude

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Phys 102 Lecture 3 The Electric field

Phys 102 Lecture 3 The Electric field Phys 102 Lecture 3 The Electric field 1 Today we will... Learn about the electric field Apply the superposition principle Ex: Dipole, line of charges, plane of charges Represent the E field using electric

More information

PHYS102 Previous Exam Problems. Electric Fields

PHYS102 Previous Exam Problems. Electric Fields PHYS102 Previous Exam Problems CHAPTER 22 Electric Fields Electric field Point charge in an electric field Electric dipole 1. Two identical charges, each of charge Q, are positioned at points A (5.0 m,

More information

Electric Charge and Electric Field AP Physics 4 Lecture Notes

Electric Charge and Electric Field AP Physics 4 Lecture Notes Electric Charge and Electric Field AP Physics 4 Lecture Notes Coulomb s Law The Electric Field Field Lines Electric Fields and Conductors Coulomb s law: Coulomb s Law Force (N) F F F k r F F F r Charge

More information

Intermission Page 343, Griffith

Intermission Page 343, Griffith Intermission Page 343, Griffith Chapter 8. Conservation Laws (Page 346, Griffith) Lecture : Electromagnetic Power Flow Flow of Electromagnetic Power Electromagnetic waves transport throughout space the

More information

Phys 102 Lecture 3 The Electric field

Phys 102 Lecture 3 The Electric field Phys 102 Lecture 3 The Electric field 1 Today we will... Learn about the electric field Apply the superposition principle Ex: Dipole, line of charges, plane of charges Represent the E field using electric

More information

LECTURE 13 ELECTRIC FIELDS. Instructor: Kazumi Tolich

LECTURE 13 ELECTRIC FIELDS. Instructor: Kazumi Tolich LECTURE 13 ELECTRIC FIELDS Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 19.4 to 19.5. Electric field Electric field lines Electric field 3 If a charge q " experiences an electric force F at a

More information

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website:

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website: Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Ling @ Fiona Website: http://yslphysics.weebly.com/ Chapter 1: Electrostatics The study of electric charges at rest, the forces between them and the

More information

Electric field Physics 122

Electric field Physics 122 Electric field Physics 122 9/3/13 Lecture II 1 Workshops start next week. The first homework assignment is due next week as well! Workshops 9/3/13 Lecture II 2 9/3/13 Lecture II 3 Concepts Primary concepts:

More information

CQ 1 What is alike when we say "two like charges?" Do they look, feel, or smell alike?

CQ 1 What is alike when we say two like charges? Do they look, feel, or smell alike? Ch20P Page 1 1P22/1P92 Problems (2011) Chapter 20 Electric Fields and Forces Sunday, January 09, 2011 4:50 PM CQ 1 What is alike when we say "two like charges?" Do they look, feel, or smell alike? CQ 3

More information

8/24/2018. Charge Polarization. Charge Polarization. Charge Polarization

8/24/2018. Charge Polarization. Charge Polarization. Charge Polarization Charge Polarization The figure shows how a charged rod held close to an electroscope causes the leaves to repel each other. How do charged objects of either sign exert an attractive force on a neutral

More information

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes General Physics - E&M (PHY 1308) Lecture Notes Lecture 004: Electric Fields and Their Effect on Matter SteveSekula, 9 January 011 (created 6 January 011) Goals of the Lecture no tags Discuss different

More information

20.3 Coulomb's Law 20.4 The Concept of the Electric Field.notebook March 05, 2018

20.3 Coulomb's Law 20.4 The Concept of the Electric Field.notebook March 05, 2018 Section 20.3 Coulomb s Law Text: p. 642 Coulomb s Law Coulomb s law describes the force between two charged particles. Coulomb s Law Coulomb s law looks much like Newton s gravity except the charge q can

More information

Physics Lab 202P-3. Electric Fields and Superposition: A Virtual Lab NAME: LAB PARTNERS:

Physics Lab 202P-3. Electric Fields and Superposition: A Virtual Lab NAME: LAB PARTNERS: Physics Lab 202P-3 Electric Fields and Superposition: A Virtual Lab NAME: LAB PARTNERS: LAB SECTION: LAB INSTRUCTOR: DATE: EMAIL ADDRESS: Penn State University Created by nitin samarth Physics Lab 202P-3

More information

Phys 102 Lecture 12 Currents & magnetic fields

Phys 102 Lecture 12 Currents & magnetic fields Phys 102 Lecture 12 Currents & magnetic fields 1 Today we will... Learn how magnetic fields are created by currents Use specific examples Long straight wire Current loop Solenoid Apply these concepts Electromagnets

More information

1. Four equal and positive charges +q are arranged as shown on figure 1.

1. Four equal and positive charges +q are arranged as shown on figure 1. AP Physics C Coulomb s Law Free Response Problems 1. Four equal and positive charges +q are arranged as shown on figure 1. a. Calculate the net electric field at the center of square. b. Calculate the

More information

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 21 Gauss s Law PowerPoint Lecture prepared by Richard Wolfson Slide 21-1 In this lecture you ll learn To represent electric fields using field-line diagrams

More information

Chapter 22 Electric Potential (Voltage)

Chapter 22 Electric Potential (Voltage) Chapter 22 Electric Potential (Voltage) Question 29.5 Work and Electric Potential I Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance

More information

Physics II (PH2223) Physics for Scientists and Engineers, with Modern Physics, 4th edition, Giancoli

Physics II (PH2223) Physics for Scientists and Engineers, with Modern Physics, 4th edition, Giancoli Physics II (PH2223) Physics for Scientists and Engineers, with Modern Physics, 4th edition, Giancoli Topics Covered Electric Charge & Electric Field Electric Potential Capacitance, Dielectric, Electric

More information

Electric Potential of Charged Rod

Electric Potential of Charged Rod Electric Potential of Charged Rod Charge per unit length: λ = Q/L y dq = λ d Charge on slice d: dq = λd dv d L Electric potential generated by slice d: dv = kdq = kλd Electric potential generated by charged

More information

Electric Force and Field Chapter Questions

Electric Force and Field Chapter Questions Electric Force and Field Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there?

More information

Chapter 17 & 18. Electric Field and Electric Potential

Chapter 17 & 18. Electric Field and Electric Potential Chapter 17 & 18 Electric Field and Electric Potential Electric Field Maxwell developed an approach to discussing fields An electric field is said to exist in the region of space around a charged object

More information

Notice that now the electric field is perpendicular to the x=axis. It has magnitude

Notice that now the electric field is perpendicular to the x=axis. It has magnitude home Physics 415: Lecture 3 Michael Fowler, UVa, 8/9/09 The Dipole Suppose now that in the previous example we replace the lower charge by Q: Q d x-axis -Q y-axis x r E total E = kqrˆ r upper charge Notice

More information

CHAPTER 11 RADIATION 4/13/2017. Outlines. 1. Electric Dipole radiation. 2. Magnetic Dipole Radiation. 3. Point Charge. 4. Synchrotron Radiation

CHAPTER 11 RADIATION 4/13/2017. Outlines. 1. Electric Dipole radiation. 2. Magnetic Dipole Radiation. 3. Point Charge. 4. Synchrotron Radiation CHAPTER 11 RADIATION Outlines 1. Electric Dipole radiation 2. Magnetic Dipole Radiation 3. Point Charge Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 4. Synchrotron Radiation

More information

Chapter 16. Properties of Electric Charge. Electric Charge. The Milikan Experiment. Properties of Electric Charge, continued

Chapter 16. Properties of Electric Charge. Electric Charge. The Milikan Experiment. Properties of Electric Charge, continued Properties of Electric Charge Electric Charge There are two kinds of electric charge. like charges repel unlike charges attract Electric charge is conserved. Positively charged particles are called protons.

More information

Lecture 2 [Chapter 21] Tuesday, Jan 17th

Lecture 2 [Chapter 21] Tuesday, Jan 17th Lecture 2 [Chapter 21] Tuesday, Jan 17th Administrative Items Assignments this week: read Ch 21 and Ch 22 in the textbook complete Pre-Lecture Ch22 HW assignment complete Ch 21 HW assignment [Pre-Lecture

More information

Coulomb s Law and Electric Fields

Coulomb s Law and Electric Fields Physics 102: Lecture 02 Coulomb s Law and Electric Fields Today we will get some practice using Coulomb s Law learn the concept of an Electric Field Physics 102: Lecture 2, Slide 1 4 m Coulomb Law practice:

More information

q C e C k (Equation 18.1) for the distance r, we obtain k (Equation 18.1), where Homework#1 3. REASONING

q C e C k (Equation 18.1) for the distance r, we obtain k (Equation 18.1), where Homework#1 3. REASONING Homework# 3. REASONING a. Since the objects are metallic and identical, the charges on each combine and produce a net charge that is shared equally by each object. Thus, each object ends up with one-fourth

More information

Chapter 21: Electric Charges and Forces

Chapter 21: Electric Charges and Forces Chapter 21: Electric Charges and Forces Electric Force The electric force is one of the fundamental forces of nature. Examples: Running a comb through hair Rubbing rubber/plastic/glass rods with fur and

More information

Near the surface of the earth, we agreed to call the force of gravity of constant.

Near the surface of the earth, we agreed to call the force of gravity of constant. Electric Fields 1. A field 2. Field lines 3. The Electric Field 4. Field from a dipole 5. Line charge 6. Other configurations Near the surface of the earth, we agreed to call the force of gravity of constant.

More information

(Please print full name, underlining family name.)

(Please print full name, underlining family name.) (2016) Nationality No. PHYSICS Name (Please print full name, underlining family name.) Marks. 1. Suppose a system of three objects: a book, a table, and the earth. Let W be the gravitational force acting

More information

APPLIED OPTICS POLARIZATION

APPLIED OPTICS POLARIZATION A. La Rosa Lecture Notes APPLIED OPTICS POLARIZATION Linearly-polarized light Description of linearly polarized light (using Real variables) Alternative description of linearly polarized light using phasors

More information

ELECTRIC FORCES AND ELECTRIC FIELDS

ELECTRIC FORCES AND ELECTRIC FIELDS CHATER 18 ELECTRIC FORCES AND ELECTRIC FIELDS CONCETUAL QUESTIONS 1. REASONING AND SOLUTION In Figure 18.9, the grounding wire is removed first, followed by the rod, and the sphere is left with a positive

More information

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16 The Direction of Magnetic Field Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 16 The Magnetic Field We introduced electric field to explain-away long-range electric

More information

Fields. Electric Field Strength Section 13.6

Fields. Electric Field Strength Section 13.6 Fields Electric Field Strength Section 13.6 Outcomes In this lesson you will : define electric field strength and use the definition to express the concept mathematically use Coulomb's Law to write a second

More information

Welcome. to Physics 2135.

Welcome. to Physics 2135. Welcome to Physics 2135. PHYSICS 2135 Engineering Physics II Dr. S. Thomas Vojta Instructor in charge Office: 204 Physics, Phone: 341-4793 vojtat@mst.edu www.mst.edu/~vojtat Office hours: Mon+ Wed 11am-12pm

More information

University Physics 227N/232N Old Dominion University. More Electrostatics 20:3 Electric Field and Forces

University Physics 227N/232N Old Dominion University. More Electrostatics 20:3 Electric Field and Forces University Physics 227N/232N Old Dominion University More Electrostatics 20:3 Electric Field and Forces Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu Wednesday,

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Week 4. Outline Review electric Forces Review electric Potential

Week 4. Outline Review electric Forces Review electric Potential Week 4 Outline Review electric Forces Review electric Potential Electric Charge - A property of matter Matter is made up of two kinds of electric charges (positive and negative). Like charges repel, unlike

More information

Downloaded from

Downloaded from Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Repulsive force of magnitude 6 10 3 N Charge on the first sphere, q

More information

27 the electric field

27 the electric field 27 the electric field With every point in space near the earth we can associate a gravitational field vector g (see Eq. 16-12). This is the gravitational acceleration that a test body, placed at that point

More information

PHYS 1444 Section 02. Lecture #3

PHYS 1444 Section 02. Lecture #3 PHYS 1444 Section 0 Chapter 1 Electric Fields Electric Dipoles Lecture #3 Tuesday Jan 5, 011 Dr. Andrew Brandt Homework on Ch 1 is due 9pm Thursday, Jan. 7 1 Angle: After calculating magnitudes, take x+y

More information

More Electric Fields. Physics 2415 Lecture 3. Michael Fowler, UVa

More Electric Fields. Physics 2415 Lecture 3. Michael Fowler, UVa More Electric Fields Physics 2415 Lecture 3 Michael Fowler, UVa Today s Topics Continuous charge distributions: line of charge Visualizing the field: lines of force Electron moving in a field Electric

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electric Charges There are two kinds of electric charges Called positive and negative Negative charges are the type possessed by electrons Positive charges are the type possessed

More information

Lecture 4 Electric Potential and/ Potential Energy Ch. 25

Lecture 4 Electric Potential and/ Potential Energy Ch. 25 Lecture 4 Electric Potential and/ Potential Energy Ch. 5 Review from Lecture 3 Cartoon - There is an electric energy associated with the position of a charge. Opening Demo - Warm-up problems Physlet Topics

More information

Two equally charges particles are 3 cm apart and repel each other with a force of 4 x10-5 N. Compute the charge on each particle.

Two equally charges particles are 3 cm apart and repel each other with a force of 4 x10-5 N. Compute the charge on each particle. Physics QOD 12.3 Two equally charges particles are 3 cm apart and repel each other with a force of 4 x10-5 N. Compute the charge on each particle. q 1 = q 2 = 2 x 10-9 C 12.3 ELECTRIC FIELDS Electric Fields

More information

General Physics Lab 1 Siena College

General Physics Lab 1 Siena College General Physics Lab 1 Siena College In 1686, Newton published the first quantitative description of the gravitational force between any two objects. He explained that the force of gravity is directly proportional

More information

PHYS 221 General Physics: Electricity, Light and Modern Physics. Lecture 1 Electric Charges & Coulomb s Law. Electric Charge.

PHYS 221 General Physics: Electricity, Light and Modern Physics. Lecture 1 Electric Charges & Coulomb s Law. Electric Charge. PHYS 1 General Phsics: Electricit, Light and Modern Phsics Lecture 1 Electric Charges & Coulomb s Law Phsics Department Home page: http://www.phsics.purdue.edu/ Course Home page: http://www.phsics.purdue.edu/phs1/

More information

PHYSICS 122D, Winter 2009, Version A Exam 2, PAGE 1

PHYSICS 122D, Winter 2009, Version A Exam 2, PAGE 1 NAME: Last, First STUDENT ID NUMBER 1. [6 points] Two small spheres, each with mass m = 5.0 g and charge q, are suspended from a point by threads of length L = 0.30 m. What is the charge on each sphere

More information

E&M. 1 Capacitors. January 2009

E&M. 1 Capacitors. January 2009 E&M January 2009 1 Capacitors Consider a spherical capacitor which has the space between its plates filled with a dielectric of permittivity ɛ. The inner sphere has radius r 1 and the outer sphere has

More information

Electrostatics. 4πε 2) + Q / 2 4) 4 Q

Electrostatics. 4πε 2) + Q / 2 4) 4 Q Two spheres A and B of radius a and b respectively are at the same potential The ratio of the surface charge density of A to B is: ) a / b ) b / a a / b b / a Two free protons are separated by a distance

More information

Module 2 : Electrostatics Lecture 9 : Electrostatic Potential

Module 2 : Electrostatics Lecture 9 : Electrostatic Potential Module 2 : Electrostatics Lecture 9 : Electrostatic Potential Objectives In this lecture you will learn the following Electric Dipole and field due to a dipole Torque on a dipole in an inhomogeneous electric

More information

Physics 213: General Physics Fall :30 AM Lecture

Physics 213: General Physics Fall :30 AM Lecture Physics 213: General Physics Fall 2004 9:30 AM Lecture Midterm I Solutions Tuesday, September 21, 2004 Chem-Phys 153 Name (print): Signature: Student Number: Your Seat Number (on back of chair): 1. Immediately

More information

Multipole moments. November 9, 2015

Multipole moments. November 9, 2015 Multipole moments November 9, 5 The far field expansion Suppose we have a localized charge distribution, confined to a region near the origin with r < R. Then for values of r > R, the electric field must

More information

Chapter 23. Electric Fields Properties of Electric Charges Coulomb s Law The Electric Field Electric Field Lines

Chapter 23. Electric Fields Properties of Electric Charges Coulomb s Law The Electric Field Electric Field Lines Chapter 23 Electric Fields 23.1 Properties of Electric Charges 23.3 Coulomb s Law 23.4 The Electric Field 23.6 Electric Field Lines 1 23.1 Properties of Electric Charges Experiments 1-After running a comb

More information

Electrostatics : Electric Field & Potential

Electrostatics : Electric Field & Potential Electrostatics : Electric Field & Potential Lecture 6: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay In the present module of Electrostatics, we will deal with properties

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. An electron orbits a nucleus which carries a charge of +9.6 x10-19 C. If the electron s orbital radius is 2.0 x10-10 m, what is its electric potential energy? A. -6.9 x10-18

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law Electric Flux Gauss s Law Units of Chapter 22 Applications of Gauss s Law Experimental Basis of Gauss s and Coulomb s Laws 22-1 Electric Flux Electric flux: Electric flux through

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

Chapter 11 Reference Frames

Chapter 11 Reference Frames Chapter 11 Reference Frames Chapter 11 Reference Frames... 2 11.1 Introduction... 2 11.2 Galilean Coordinate Transformations... 2 11.2.1 Relatively Inertial Reference Frames and the Principle of Relativity...

More information

Electric Force. A collection of 4 charges, each with +1e. equivalent to a charge with +4e. Given two objects with charges q 1 & q 2 : k e q 1 q 2

Electric Force. A collection of 4 charges, each with +1e. equivalent to a charge with +4e. Given two objects with charges q 1 & q 2 : k e q 1 q 2 19.4 19.6 Electrostatic Forces; Coulomb s Law Electrostatic Forces from multiple charges Electric Fields: point charges Electric Fields: multiple point charges, continuous charge distributions Electric

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electricity and Magnetism The laws of electricity and magnetism play a central role in the operation of many modern devices. The interatomic and intermolecular forces responsible

More information

Engineering Mechanics Statics

Engineering Mechanics Statics Mechanical Systems Engineering _ 2016 Engineering Mechanics Statics 7. Equilibrium of a Rigid Body Dr. Rami Zakaria Conditions for Rigid-Body Equilibrium Forces on a particle Forces on a rigid body The

More information

WEEK 8. CURVE SKETCHING. 1. Concavity

WEEK 8. CURVE SKETCHING. 1. Concavity WEEK 8. CURVE SKETCHING. Concavity Definition. (Concavity). The graph of a function y = f(x) is () concave up on an interval I if for any two points a, b I, the straight line connecting two points (a,

More information

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units.

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units. Chapter 9 THE MAGNETC FELD ntroduction Magnetic field due to a moving point charge Units Biot-Savart Law Gauss s Law for magnetism Ampère s Law Maxwell s equations for statics Summary NTRODUCTON Last lecture

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Physics 202, Lecture 12. Today s Topics

Physics 202, Lecture 12. Today s Topics Physics 202, Lecture 12 Today s Topics Magnetic orces (Ch. 27) Review: magnetic force, magnetic dipoles Motion of charge in uniform field: Applications: cyclotron, velocity selector, Hall effect Sources

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Warm Up. Do both balloons A and B have a charge? ntry

More information

Practice(final(Q2. q L. q R

Practice(final(Q2. q L. q R Final&review 1 Practice(final(Q2 2. [7 pts.] The figure shows two charges, q L and q R, of opposite sign. Charge q L has greater magnitude than charge q R. In which of the regions X (left of q L ), Y (between

More information

12/15/2015. Newton per Coulomb N/C. vector. A model of the mechanism for electrostatic interactions. The Electric Field

12/15/2015. Newton per Coulomb N/C. vector. A model of the mechanism for electrostatic interactions. The Electric Field Chapter 15 Lecture The Electric Field A model of the mechanism for electrostatic interactions A model for electric interactions, suggested by Michael Faraday, involves some sort of electric disturbance

More information

2. E A 3. E A 4. E A 5. E A

2. E A 3. E A 4. E A 5. E A west (mrw3223) HW 23 lyle (16001) 1 This print-out should have 32 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Reading assignment: Hecht

More information

Questions Chapter 22 Electric Fields

Questions Chapter 22 Electric Fields Questions Chapter 22 Electric Fields 22-1 What is Physics? 22-2 The Electric Field 22-3 Electric Field Lines 22-4 Electric Field due to a Point Charge 22-5 Electric Field due to an Electric Dipole 22-6

More information

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them?

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 92 3.10 Quick Questions 3.10 Quick Questions 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 0.89 N 90 N 173 N 15 N 2. The electric field inside an isolated conductor

More information

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge. Module 2: Electrostatics Lecture 6: Quantization of Charge Objectives In this lecture you will learn the following Quantization Of Charge and its measurement Coulomb's Law of force between electric charge

More information

Electrostatics and Electric Potential - Outline

Electrostatics and Electric Potential - Outline Electrostatics and Electric Potential - Outline 1. Understand the basic properties of electric charge, including conservation of charge and that charges are quantized. 2. Differentiate between conductors

More information

Chapter 23 Electric Potential (Voltage)

Chapter 23 Electric Potential (Voltage) Chapter 23 Electric Potential (Voltage) Electric potential energy Recall how a conservative force is related to the potential energy associated with that force: The electric potential energy: Change in

More information

ELECTROSTATICS - II : Electric Field

ELECTROSTATICS - II : Electric Field LCTROSTATICS II : lectric Field. lectric Field 2. lectric Field Intensity or lectric Field Strength 3. lectric Field Intensity due to a Point Charge 4. Superposition Principle 5. lectric Lines of Force

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Overview Force from a point charge Quantization of charge

More information