Model sets, Meyer sets and quasicrystals

Size: px
Start display at page:

Download "Model sets, Meyer sets and quasicrystals"

Transcription

1 Model sets, Meyer sets and quasicrystals Technische Fakultät Universität Bielefeld University of the Philippines Manila 27. Jan. 2014

2 Model sets, Meyer sets and quasicrystals Quasicrystals, cut-and-project sets and Meyer sets

3 Delone sets A point set in some metric space X is called a Delone set if There is R > 0 such that each ball of radius R contains at least one point of Λ There is r > 0 such that each ball of radius r contains at most one point of Λ In particular a Delone set is infinite (if X is unbounded)

4 Delone sets

5 Delone sets ordered point lattice crystallographic disordered random no symmetry at all

6 Delone sets ordered point lattice crystallographic disordered random no symmetry at all

7 Quasicrystals Delone sets that are not crystals, but showing a high degree of order: Quasicrystals. (Here a Penrose tiling. The vertices form a Delone set.)

8 Diffraction Physical diffraction experiment: Mathematical diffraction experiment: Tiling discrete point set Λ. 1 γ Λ = lim r vol B r δ x y. x,y Λ B r Fouriertransform γ Λ is the diffraction spectrum.

9 Crystal diffraction (physical experiment):

10 Crystal diffraction (mathematical computation):

11 Crystal diffraction: Noble prize 1914

12 Quasicrystal diffraction (mathematical: Penrose)

13 Quasicrystal diffraction (physical experiment: some metallic alloy)

14 Quasicrystal diffraction: Noble prize 2011 for Danny Shechtman

15

16

17 Mathematically, the diffraction is a measure. Thus it decomposes into three parts (by Lebesgue s decompostion theorem) γ = γ pp + γ sc + γ ac

18 Mathematically, the diffraction is a measure. Thus it decomposes into three parts (by Lebesgue s decompostion theorem) γ = γ pp + γ sc + γ ac For a perfect (mathematical, infinite) crystal by Poisson s summation formula: γ = γ pp = dens(λ) 2 δ Λ

19 Mathematically, the diffraction is a measure. Thus it decomposes into three parts (by Lebesgue s decompostion theorem) γ = γ pp + γ sc + γ ac For a perfect (mathematical, infinite) crystal by Poisson s summation formula: γ = γ pp = dens(λ) 2 δ Λ For a perfect (mathematical, infinite) quasicrystal (e.g. Penrose pattern): γ = γ pp

20 Today there is a well-developed theory of mathematical quasicrystals. (Even though there is no precise mathematical definition of quasicrystal ) Two central results:

21 Cut-and-project sets Theorem (debruijn 1981) The set of vertices of the Penrose tiling is a cut-and-project set. Theorem (Hof 1995, Schlottmann 2000) Each cut-and-project set is pure point diffractive.

22 Generalisation of lattices: cut-and-project sets. ( model sets ) (1,1) (l, l ) * 2 2

23 Generalisation of lattices: cut-and-project sets. ( model sets )

24 Generalisation of lattices: cut-and-project sets. ( model sets )

25 Generalisation of lattices: cut-and-project sets. ( model sets )

26

27 Generalisation of lattices: cut-and-project sets. ( model sets ) R d π 1 R d H π 2 H V Λ W Λ a lattice in R d H (i.e. cocompact discrete subgroup) π 1, π 2 projections π1 Λ injective π2 (Λ) dense W compact cl(int(w ))= W µ( (W )) = 0 Then V = {π 1 (x) x Λ, π 2 (x) W } is a (regular) cut-and-project set.

28 ...but the story started already in the 70s.

29 Meyer sets For a lattice Λ R d holds: Λ Λ = Λ (where Λ Λ = {x y x, y Λ}) In particular, Λ Λ is Delone.

30 Meyer sets For a lattice Λ R d holds: Λ Λ = Λ (where Λ Λ = {x y x, y Λ}) In particular, Λ Λ is Delone. Generalisation: A Meyer set is a Delone set Λ such that Λ Λ Λ + F for some finite F.

31 Theorem (Meyer 1972) Λ is a Meyer set iff Λ ε is relatively dense for all ε > 0. Λ ε := {k R d x Λ : e 2πix k 1 ε} Theorem (Meyer 1972) Λ is a Meyer set iff Λ is a subset of a cut-and-project set.

32 Theorem (Meyer 1972) Λ is a Meyer set iff Λ ε is relatively dense for all ε > 0. Λ ε := {k R d x Λ : e 2πix k 1 ε} Theorem (Meyer 1972) Λ is a Meyer set iff Λ is a subset of a cut-and-project set. Meyer studied cut-and-project sets already before 1972! Y. Meyer: Algebraic numbers and harmonic analysis (1972) Theorem (Lagarias 1995) Λ is a Meyer set iff Λ Λ is Delone.

33 Typical questions today: Q1: Is each Meyer set pure point diffractive? Q2: Is each pure point diffractive set Meyer / Delone?...

34 Q1: Is each Meyer set pure point diffractive? A: No. (Solomyak, Lee-Moody, F-Sing) Lattice substitution systems: Essentially coloured lattices, with no translational symmetry....

35 Theorem (Solomyak 1998, Lee-Moody 2002) Let L be a lattice substitution system. L is a cut-and-project set iff L is pure point diffractive (i.e., the red points are, the green points are...).

36 Factor 2

37 In F-Sing 2007 we used the Theorem of Lee-Moody-Solomyak to show that the vertex set of this tiling is not pure point diffractive.

38 Q2: Is each pure point diffractive point set Meyer / Delone? A: No. (Baake-Moody-Pleasants) Consider the visible lattice points of the square lattice.

39

40 The visible lattice points: V = {(n, m) n, m coprime} V has arbitrary large holes, so V is not Delone / Meyer! But Theorem (Baake-Moody-Pleasants) V is pure point diffractive.

41 The visible lattice points: V = {(n, m) n, m coprime} V has arbitrary large holes, so V is not Delone / Meyer! But Theorem (Baake-Moody-Pleasants) V is pure point diffractive. Thank you!

What is a Quasicrystal?

What is a Quasicrystal? July 23, 2013 Rotational symmetry An object with rotational symmetry is an object that looks the same after a certain amount of rotation. Rotational symmetry An object with rotational symmetry is an object

More information

Average lattices for quasicrystals

Average lattices for quasicrystals Technische Fakultät Universität Bielefeld 23. May 2017 joint work with Alexey Garber, Brownsville, Texas Plan: 1. Lattices, Delone sets, basic notions 2. Dimension one 3. Aperiodic patterns 4. 5. Weighted

More information

Introduction to mathematical quasicrystals

Introduction to mathematical quasicrystals Introduction to mathematical quasicrystals F S W Alan Haynes Topics to be covered Historical overview: aperiodic tilings of Euclidean space and quasicrystals Lattices, crystallographic point sets, and

More information

Aperiodic tilings (tutorial)

Aperiodic tilings (tutorial) Aperiodic tilings (tutorial) Boris Solomyak U Washington and Bar-Ilan February 12, 2015, ICERM Boris Solomyak (U Washington and Bar-Ilan) Aperiodic tilings February 12, 2015, ICERM 1 / 45 Plan of the talk

More information

arxiv: v1 [math.sp] 12 Oct 2012

arxiv: v1 [math.sp] 12 Oct 2012 Some Comments on the Inverse Problem of Pure Point Diffraction Venta Terauds and Michael Baake arxiv:0.360v [math.sp] Oct 0 Abstract In a recent paper [], Lenz and Moody presented a method for constructing

More information

VARIOUS MATHEMATICAL ASPECTS TILING SPACES. Jean BELLISSARD 1 2. Collaborations: Georgia Institute of Technology & Institut Universitaire de France

VARIOUS MATHEMATICAL ASPECTS TILING SPACES. Jean BELLISSARD 1 2. Collaborations: Georgia Institute of Technology & Institut Universitaire de France GaTech January 24 2005 1 VARIOUS MATHEMATICAL ASPECTS of TILING SPACES Jean BELLISSARD 1 2 Georgia Institute of Technology & Institut Universitaire de France Collaborations: D. SPEHNER (Essen, Germany)

More information

arxiv: v1 [math.ho] 16 Dec 2015

arxiv: v1 [math.ho] 16 Dec 2015 arxiv:5.5v [math.ho] 6 Dec 5 Crystals with their regular shape and pronounced faceting have fascinated humans for ages. About a century ago, the understanding of the internal structure increased considerably

More information

Discrete spectra generated by polynomials

Discrete spectra generated by polynomials Discrete spectra generated by polynomials Shigeki Akiyama (Niigata University, Japan) 27 May 2011 at Liège A joint work with Vilmos Komornik (Univ Strasbourg). Typeset by FoilTEX Typeset by FoilTEX 1 Mathematics

More information

Pisot conjecture and Tilings

Pisot conjecture and Tilings Pisot conjecture and Tilings Shigeki Akiyama (Niigata University, Japan) (, ) 6 July 2010 at Guangzhou Typeset by FoilTEX Typeset by FoilTEX 1 A Pisot number is an algebraic integer > 1 such that all conjugates

More information

arxiv: v1 [math-ph] 22 Feb 2008

arxiv: v1 [math-ph] 22 Feb 2008 APERIODIC ORDER AND PURE POINT DIFFRACTION arxiv:0802.3242v1 [math-ph] 22 Feb 2008 DANIEL LENZ Abstract. We give a leisurely introduction into mathematical diffraction theory with a focus on pure point

More information

PERFECT COLOURINGS OF CYCLOTOMIC INTEGERS. 1. Introduction

PERFECT COLOURINGS OF CYCLOTOMIC INTEGERS. 1. Introduction PERFECT COLOURINGS OF CYCLOTOMIC INTEGERS E.P. BUGARIN, M.L.A.N. DE LAS PEÑAS, AND D. FRETTLÖH Abstract. Perfect colourings of the rings of cyclotomic integers with class number one are studied. It is

More information

POSITIVE DEFINITE MEASURES WITH DISCRETE FOURIER TRANSFORM AND PURE POINT DIFFRACTION

POSITIVE DEFINITE MEASURES WITH DISCRETE FOURIER TRANSFORM AND PURE POINT DIFFRACTION POSITIVE DEFINITE MEASURES WITH DISCRETE FOURIER TRANSFORM AND PURE POINT DIFFRACTION NICOLAE STRUNGARU Abstract. In this paper we characterize the positive definite measures with discrete Fourier transform.

More information

The Topology of Tiling Spaces

The Topology of Tiling Spaces East Lansing October 16, 2009 1 The Topology of Tiling Spaces Jean BELLISSARD East Lansing October 16, 2009 2 East Lansing October 16, 2009 3 East Lansing October 16, 2009 4 The Topology of Tiling Spaces

More information

arxiv:math/ v2 [math.ds] 6 Jul 2018

arxiv:math/ v2 [math.ds] 6 Jul 2018 TILINGS, TILING SPACES AND TOPOLOGY LORENZO SADUN arxiv:math/0506054v2 [math.ds] 6 Jul 2018 Abstract. To understand an aperiodic tiling (or a quasicrystal modeled on an aperiodic tiling), we construct

More information

Point Sets and Dynamical Systems in the Autocorrelation Topology

Point Sets and Dynamical Systems in the Autocorrelation Topology Point Sets and Dynamical Systems in the Autocorrelation Topology Robert V. Moody and Nicolae Strungaru Department of Mathematical and Statistical Sciences University of Alberta, Edmonton Canada, T6G 2G1

More information

Aperiodic tilings and quasicrystals

Aperiodic tilings and quasicrystals Aperiodic tilings and quasicrystals Perleforedrag, NTNU Antoine Julien Nord universitet Levanger, Norway October 13 th, 2017 A. Julien (NordU) Aperiodic tilings and quasicrystals October 13 th, 2017 1

More information

THE TOPOLOGY of TILING SPACES

THE TOPOLOGY of TILING SPACES Seoul National University March20, 2014 1 THE TOPOLOGY of Sponsoring TILING SPACES This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962 Jean BELLISSARD Georgia

More information

BRAVAIS COLORINGS OF N-FOLD TILINGS

BRAVAIS COLORINGS OF N-FOLD TILINGS BRAVAIS COLORINGS OF N-FOLD TILINGS E.P. BUGARIN AND M.L.A. DE LAS PEÑAS Abstract. In this work, a theory of color symmetry is presented that extends the ideas of traditional theories of color symmetry

More information

Crystallographic Point Groups and Space Groups

Crystallographic Point Groups and Space Groups Crystallographic Point Groups and Space Groups Physics 251 Spring 2011 Matt Wittmann University of California Santa Cruz June 8, 2011 Mathematical description of a crystal Definition A Bravais lattice

More information

THE COMPUTATION OF OVERLAP COINCIDENCE IN TAYLOR SOCOLAR SUBSTITUTION TILING

THE COMPUTATION OF OVERLAP COINCIDENCE IN TAYLOR SOCOLAR SUBSTITUTION TILING Akiyama, S. and Lee, J.-Y. Osaka J. Math. 51 (2014), 597 607 THE COMPUTATION OF OVERLAP COINCIDENCE IN TAYLOR SOCOLAR SUBSTITUTION TILING SHIGEKI AKIYAMA and JEONG-YUP LEE (Received August 27, 2012, revised

More information

On Pisot Substitutions

On Pisot Substitutions On Pisot Substitutions Bernd Sing Department of Mathematics The Open University Walton Hall Milton Keynes, Buckinghamshire MK7 6AA UNITED KINGDOM b.sing@open.ac.uk Substitution Sequences Given: a finite

More information

A survey of results and problems in tiling dynamical systems

A survey of results and problems in tiling dynamical systems A survey of results and problems in tiling dynamical systems E. Arthur Robinson, Jr. Department of Mathematics George Washington University Washington, DC 20052 Lecture given at the Banff International

More information

Pure Point Dynamical and Diffraction Spectra

Pure Point Dynamical and Diffraction Spectra Ann. Henri Poincaré 3 (2002) 1 17 c Birkhäuser Verlag, Basel, 2002 1424-0637/02/0401-17 $ 1.50+0.20/0 Annales Henri Poincaré Pure Point Dynamical and Diffraction Spectra Jeong-Yup Lee, Robert V. Moody,

More information

Crystals, Quasicrystals and Shape

Crystals, Quasicrystals and Shape Crystals, Quasicrystals and Shape by Azura Newman Table of contents 1) Introduction 2)Diffraction Theory 3)Crystals 4)Parametric Density 5) Surface Energy and Wulff-Shape 6) Quasicrystals 7) The Bound

More information

Open Research Online The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs A radial analogue of Poisson s summation formula with applications to powder diffraction and pinwheel

More information

What is Pisot conjecture?

What is Pisot conjecture? What is Pisot conjecture? Shigeki Akiyama (Niigata University, Japan) 11 June 2010 at Leiden Typeset by FoilTEX Let (X, B, µ) be a probability space and T : X X be a measure preserving transformation.

More information

A Characterization of Model Multi-colour Sets

A Characterization of Model Multi-colour Sets arxiv:math/0510426v1 [math.mg] 20 Oct 2005 A Characterization of Model Multi-colour Sets February 2, 2008 Jeong-Yup Lee and Robert V. Moody Department of Mathematics and Statistics, University of Victoria,

More information

A NOTE ON AFFINELY REGULAR POLYGONS

A NOTE ON AFFINELY REGULAR POLYGONS A NOTE ON AFFINELY REGULAR POLYGONS CHRISTIAN HUCK Abstract. The affinely regular polygons in certain planar sets are characterized. It is also shown that the obtained results apply to cyclotomic model

More information

TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS

TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS Johannes Kellendonk To cite this version: Johannes Kellendonk. TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS. Article for the

More information

Beta-lattice multiresolution of quasicrystalline Bragg peaks

Beta-lattice multiresolution of quasicrystalline Bragg peaks Beta-lattice multiresolution of quasicrystalline Bragg peaks A. Elkharrat, J.P. Gazeau, and F. Dénoyer CRC701-Workshop Aspects of Aperiodic Order 3-5 July 2008, University of Bielefeld Proceedings of SPIE

More information

Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivale

Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivale Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivalence, and Dual Frames University of Maryland June 11, 2015 Overview Twisted Gap Labeling Outline Twisted Gap Labeling Physical Quasicrystals

More information

ISSN Article. Hexagonal Inflation Tilings and Planar Monotiles

ISSN Article. Hexagonal Inflation Tilings and Planar Monotiles Symmetry 2012, 4, 581-602; doi:10.3390/sym4040581 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Hexagonal Inflation Tilings and Planar Monotiles Michael Baake 1, Franz Gähler

More information

Generic Subsets in Spaces of Measures and Singular Continuous Spectrum

Generic Subsets in Spaces of Measures and Singular Continuous Spectrum Generic Subsets in Spaces of Measures and Singular Continuous Spectrum Daniel Lenz and Peter Stollmann Fakultät für Mathematik, Technische Universität, 09107 Chemnitz, Germany p.stollmann@mathematik.tu-chemnitz.de

More information

Aperiodic Substitution Tilings

Aperiodic Substitution Tilings Aperiodic Substitution Tilings Charles Starling January 4, 2011 Charles Starling () Aperiodic Substitution Tilings January 4, 2011 1 / 27 Overview We study tilings of R 2 which are aperiodic, but not completely

More information

APERIODIC ORDER AND QUASICRYSTALS: SPECTRAL PROPERTIES

APERIODIC ORDER AND QUASICRYSTALS: SPECTRAL PROPERTIES APERIODIC ORDER AND QUASICRYSTALS: SPECTRAL PROPERTIES DANIEL LENZ AND PETER STOLLMANN Abstract. We present spectral theoretic results for Hamiltonians associated with Delone sets. For a family of discrete

More information

Wednesday, April 12. Today:

Wednesday, April 12. Today: Wednesday, April 2 Last Time: - The solid state - atomic arrangement in solids - why do solids form: energetics - Lattices, translations, rotation, & other symmetry operations Today: Continue with lattices,

More information

Aperiodic Order and Quasicrystals: Spectral Properties

Aperiodic Order and Quasicrystals: Spectral Properties Ann. Henri Poincaré 4, Suppl. 2 (2003) S933 S942 c Birkhäuser Verlag, Basel, 2003 1424-0637/03/02S933-10 DOI 10.1007/s00023-003-0973-3 Annales Henri Poincaré Aperiodic Order and Quasicrystals: Spectral

More information

Pure point diffraction

Pure point diffraction Journal of Non-Crystalline Solids 334&335 (2004) 77 82 www.elsevier.com/locate/jnoncrysol Pure point diffraction Michael Baake a, *, Robert V. Moody b a Institut f ur Mathematik, Universit at Greifswald,

More information

Open Problems Column Edited by William Gasarch

Open Problems Column Edited by William Gasarch 1 This Issues Column! Open Problems Column Edited by William Gasarch This issue s Open Problem Column is by Stephen Fenner, Fred Green, and Steven Homer. It is titled: Fixed-Parameter Extrapolation and

More information

On orbit closure decompositions of tiling spaces by the generalized projection method

On orbit closure decompositions of tiling spaces by the generalized projection method Hiroshima Math. J. 30 (2000), 537±541 On orbit closure decompositions of tiling spaces by the generalized projection method (Received April 3, 2000) (Revised May 25, 2000) ABSTRACT. Let T E be the tiling

More information

TILINGS APERIODIC MEDIA

TILINGS APERIODIC MEDIA Duke February 28 2003 1 TILINGS APERIODIC MEDIA and their NONCOMMUTATIVE GEOMETRY Jean BELLISSARD 1 2 Georgia Institute of Technology & Institut Universitaire de France Collaborations: D. SPEHNER (Essen,

More information

Assignment #10 Morgan Schreffler 1 of 7

Assignment #10 Morgan Schreffler 1 of 7 Assignment #10 Morgan Schreffler 1 of 7 Lee, Chapter 4 Exercise 10 Let S be the square I I with the order topology generated by the dictionary topology. (a) Show that S has the least uppper bound property.

More information

Mid Term-1 : Practice problems

Mid Term-1 : Practice problems Mid Term-1 : Practice problems These problems are meant only to provide practice; they do not necessarily reflect the difficulty level of the problems in the exam. The actual exam problems are likely to

More information

Review of Last Class 1

Review of Last Class 1 Review of Last Class 1 X-Ray diffraction of crystals: the Bragg formulation Condition of diffraction peak: 2dd sin θθ = nnλλ Review of Last Class 2 X-Ray diffraction of crystals: the Von Laue formulation

More information

Solutions: Problem Set 4 Math 201B, Winter 2007

Solutions: Problem Set 4 Math 201B, Winter 2007 Solutions: Problem Set 4 Math 2B, Winter 27 Problem. (a Define f : by { x /2 if < x

More information

Degree of commutativity of infinite groups

Degree of commutativity of infinite groups Degree of commutativity of infinite groups... or how I learnt about rational growth and ends of groups Motiejus Valiunas University of Southampton Groups St Andrews 2017 11th August 2017 The concept of

More information

Tilings, Diffraction, and Quasicrystals

Tilings, Diffraction, and Quasicrystals Graphics Gallery Tilings, Diffraction, and Quasicrystals Nonperiodic tilings exhibit a remarkable range of order types between periodic and amorphous. The six tilings shown on these pages are a representative

More information

Mathematical Research Letters 10, (2003) THE FUGLEDE SPECTRAL CONJECTURE HOLDS FOR CONVEX PLANAR DOMAINS

Mathematical Research Letters 10, (2003) THE FUGLEDE SPECTRAL CONJECTURE HOLDS FOR CONVEX PLANAR DOMAINS Mathematical Research Letters 0, 559 569 (2003) THE FUGLEDE SPECTRAL CONJECTURE HOLDS FOR CONVEX PLANAR DOMAINS Alex Iosevich, Nets Katz, and Terence Tao Abstract. Let Ω be a compact convex domain in the

More information

MATHÉMATIQUES PURES & APPLIQUÉES

MATHÉMATIQUES PURES & APPLIQUÉES MATHÉMATIQUES PURES & APPLIQUÉES Rashomon Pavages et rotations Charles RADIN (University of Texas, Austin) W e have all seen how illuminating it can be to view something, even something one knows very

More information

Bloch Theory for 1D-FLC Aperiodic Media

Bloch Theory for 1D-FLC Aperiodic Media Sponsoring Bloch Theory for 1D-FLC Aperiodic Media CRC 701, Bielefeld, Germany Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

Combinatorial Variants of Lebesgue s Density Theorem

Combinatorial Variants of Lebesgue s Density Theorem Combinatorial Variants of Lebesgue s Density Theorem Philipp Schlicht joint with David Schrittesser, Sandra Uhlenbrock and Thilo Weinert September 6, 2017 Philipp Schlicht Variants of Lebesgue s Density

More information

5 Substitutions, Rauzy fractals, and tilings

5 Substitutions, Rauzy fractals, and tilings 5 Substitutions, Rauzy fractals, and tilings V. Berthé LIRMM - Université Montpelier II - CNRS UMR 5506 161 rue Ada, F-34392 Montpellier cedex 5, France A. Siegel CNRS - Université Rennes 1- INRIA, IRISA

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

The Arzelà-Ascoli Theorem

The Arzelà-Ascoli Theorem John Nachbar Washington University March 27, 2016 The Arzelà-Ascoli Theorem The Arzelà-Ascoli Theorem gives sufficient conditions for compactness in certain function spaces. Among other things, it helps

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

THE REAL NUMBERS Chapter #4

THE REAL NUMBERS Chapter #4 FOUNDATIONS OF ANALYSIS FALL 2008 TRUE/FALSE QUESTIONS THE REAL NUMBERS Chapter #4 (1) Every element in a field has a multiplicative inverse. (2) In a field the additive inverse of 1 is 0. (3) In a field

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

GELFAND S THEOREM. Christopher McMurdie. Advisor: Arlo Caine. Spring 2004

GELFAND S THEOREM. Christopher McMurdie. Advisor: Arlo Caine. Spring 2004 GELFAND S THEOREM Christopher McMurdie Advisor: Arlo Caine Super Advisor: Dr Doug Pickrell Spring 004 This paper is a proof of the first part of Gelfand s Theorem, which states the following: Every compact,

More information

NOTES ON DIOPHANTINE APPROXIMATION

NOTES ON DIOPHANTINE APPROXIMATION NOTES ON DIOPHANTINE APPROXIMATION Jan-Hendrik Evertse January 29, 200 9 p-adic Numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics

More information

Fourier analysis, measures, and distributions. Alan Haynes

Fourier analysis, measures, and distributions. Alan Haynes Fourier analysis, measures, and distributions Alan Haynes 1 Mathematics of diffraction Physical diffraction As a physical phenomenon, diffraction refers to interference of waves passing through some medium

More information

1 Adeles over Q. 1.1 Absolute values

1 Adeles over Q. 1.1 Absolute values 1 Adeles over Q 1.1 Absolute values Definition 1.1.1 (Absolute value) An absolute value on a field F is a nonnegative real valued function on F which satisfies the conditions: (i) x = 0 if and only if

More information

Selçuk Demir WS 2017 Functional Analysis Homework Sheet

Selçuk Demir WS 2017 Functional Analysis Homework Sheet Selçuk Demir WS 2017 Functional Analysis Homework Sheet 1. Let M be a metric space. If A M is non-empty, we say that A is bounded iff diam(a) = sup{d(x, y) : x.y A} exists. Show that A is bounded iff there

More information

Combinatorics of tilings

Combinatorics of tilings Combinatorics of tilings V. Berthé LIAFA-CNRS-Paris-France berthe@liafa.jussieu.fr http ://www.liafa.jussieu.fr/~berthe Substitutive tilings and fractal geometry-guangzhou-july 200 Tilings Definition Covering

More information

n 2 xi = x i. x i 2. r r ; i r 2 + V ( r) V ( r) = 0 r > 0. ( 1 1 ) a r n 1 ( 1 2) V( r) = b ln r + c n = 2 b r n 2 + c n 3 ( 1 3)

n 2 xi = x i. x i 2. r r ; i r 2 + V ( r) V ( r) = 0 r > 0. ( 1 1 ) a r n 1 ( 1 2) V( r) = b ln r + c n = 2 b r n 2 + c n 3 ( 1 3) Sep. 7 The L aplace/ P oisson Equations: Explicit Formulas In this lecture we study the properties of the Laplace equation and the Poisson equation with Dirichlet boundary conditions through explicit representations

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

Axioms for the Real Number System

Axioms for the Real Number System Axioms for the Real Number System Math 361 Fall 2003 Page 1 of 9 The Real Number System The real number system consists of four parts: 1. A set (R). We will call the elements of this set real numbers,

More information

Automata for arithmetic Meyer sets

Automata for arithmetic Meyer sets Author manuscript, published in "LATIN 4, Buenos-Aires : Argentine (24)" DOI : 1.17/978-3-54-24698-5_29 Automata for arithmetic Meyer sets Shigeki Akiyama 1, Frédérique Bassino 2, and Christiane Frougny

More information

1 Spaces and operations Continuity and metric spaces Topological spaces Compactness... 3

1 Spaces and operations Continuity and metric spaces Topological spaces Compactness... 3 Compact course notes Topology I Fall 2011 Professor: A. Penskoi transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Spaces and operations 2 1.1 Continuity and metric

More information

Real Analysis. Joe Patten August 12, 2018

Real Analysis. Joe Patten August 12, 2018 Real Analysis Joe Patten August 12, 2018 1 Relations and Functions 1.1 Relations A (binary) relation, R, from set A to set B is a subset of A B. Since R is a subset of A B, it is a set of ordered pairs.

More information

arxiv: v3 [math.ds] 10 May 2016

arxiv: v3 [math.ds] 10 May 2016 Dynamics on the graph of the torus parametrisation Gerhard Keller and Christoph Richard Department Mathematik, Universität Erlangen-Nürnberg arxiv:5.0637v3 [math.ds] 0 May 206 May, 206 Abstract Model sets

More information

Decagonal quasicrystals

Decagonal quasicrystals Decagonal quasicrystals higher dimensional description & structure determination Hiroyuki Takakura Division of Applied Physics, Faculty of Engineering, Hokkaido University 1 Disclaimer and copyright notice

More information

Periodic Approximant. Aperiodic Hamiltonians

Periodic Approximant. Aperiodic Hamiltonians Sponsoring Periodic Approximant to Aperiodic Hamiltonians CRC 701, Bielefeld, Germany Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

WANNIER TRANSFORM APERIODIC SOLIDS. for. Jean BELLISSARD. Collaboration:

WANNIER TRANSFORM APERIODIC SOLIDS. for. Jean BELLISSARD. Collaboration: WANNIER TRANSFORM for APERIODIC SOLIDS Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu Collaboration: G. DE NITTIS (SISSA,

More information

Kwack s theorem and its applications

Kwack s theorem and its applications Kwack s theorem and its applications Raymond van Bommel 23 January 2019 These are notes for a talk given in the seminar Algebraic properties of hyperbolic varieties held in Mainz, Germany, in winter 2018/2019.

More information

ATOMIC MOTION APERIODIC SOLIDS

ATOMIC MOTION APERIODIC SOLIDS ATOMIC MOTION Sponsoring in APERIODIC SOLIDS CRC 701, Bielefeld Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu Collaborations

More information

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2)

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Ewald Construction 2θ k out k in G Physics 460 F 2006 Lect 5 1 Recall from previous lectures Definition

More information

Proof: The coding of T (x) is the left shift of the coding of x. φ(t x) n = L if T n+1 (x) L

Proof: The coding of T (x) is the left shift of the coding of x. φ(t x) n = L if T n+1 (x) L Lecture 24: Defn: Topological conjugacy: Given Z + d (resp, Zd ), actions T, S a topological conjugacy from T to S is a homeomorphism φ : M N s.t. φ T = S φ i.e., φ T n = S n φ for all n Z + d (resp, Zd

More information

REAL ANALYSIS I HOMEWORK 4

REAL ANALYSIS I HOMEWORK 4 REAL ANALYSIS I HOMEWORK 4 CİHAN BAHRAN The questions are from Stein and Shakarchi s text, Chapter 2.. Given a collection of sets E, E 2,..., E n, construct another collection E, E 2,..., E N, with N =

More information

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t Analysis Comprehensive Exam Questions Fall 2. Let f L 2 (, ) be given. (a) Prove that ( x 2 f(t) dt) 2 x x t f(t) 2 dt. (b) Given part (a), prove that F L 2 (, ) 2 f L 2 (, ), where F(x) = x (a) Using

More information

Chapter II. Metric Spaces and the Topology of C

Chapter II. Metric Spaces and the Topology of C II.1. Definitions and Examples of Metric Spaces 1 Chapter II. Metric Spaces and the Topology of C Note. In this chapter we study, in a general setting, a space (really, just a set) in which we can measure

More information

Measures. Chapter Some prerequisites. 1.2 Introduction

Measures. Chapter Some prerequisites. 1.2 Introduction Lecture notes Course Analysis for PhD students Uppsala University, Spring 2018 Rostyslav Kozhan Chapter 1 Measures 1.1 Some prerequisites I will follow closely the textbook Real analysis: Modern Techniques

More information

Real Analysis Chapter 1 Solutions Jonathan Conder

Real Analysis Chapter 1 Solutions Jonathan Conder 3. (a) Let M be an infinite σ-algebra of subsets of some set X. There exists a countably infinite subcollection C M, and we may choose C to be closed under taking complements (adding in missing complements

More information

Some icosahedral patterns and their isometries

Some icosahedral patterns and their isometries Some icosahedral patterns and their isometries Nicolae Cotfas 1 Faculty of Physics, University of Bucharest, PO Box 76-54, Postal Office 76, Bucharest, Romania Radu Slobodeanu 2 Faculty of Physics, University

More information

MA677 Assignment #3 Morgan Schreffler Due 09/19/12 Exercise 1 Using Hölder s inequality, prove Minkowski s inequality for f, g L p (R d ), p 1:

MA677 Assignment #3 Morgan Schreffler Due 09/19/12 Exercise 1 Using Hölder s inequality, prove Minkowski s inequality for f, g L p (R d ), p 1: Exercise 1 Using Hölder s inequality, prove Minkowski s inequality for f, g L p (R d ), p 1: f + g p f p + g p. Proof. If f, g L p (R d ), then since f(x) + g(x) max {f(x), g(x)}, we have f(x) + g(x) p

More information

Substitutions, Rauzy fractals and Tilings

Substitutions, Rauzy fractals and Tilings Substitutions, Rauzy fractals and Tilings Anne Siegel CANT, 2009 Reminder... Pisot fractals: projection of the stair of a Pisot substitution Self-replicating substitution multiple tiling: replace faces

More information

A thesis. submitted in partial fulfillment. of the requirements for the degree of. Master of Science in Mathematics. Boise State University

A thesis. submitted in partial fulfillment. of the requirements for the degree of. Master of Science in Mathematics. Boise State University THE DENSITY TOPOLOGY ON THE REALS WITH ANALOGUES ON OTHER SPACES by Stuart Nygard A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mathematics Boise

More information

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a Solutions to Homework #6 1. Complete the proof of the backwards direction of Theorem 12.2 from class (which asserts the any interval in R is connected). Solution: Let X R be a closed interval. Case 1:

More information

Outline 1 Introduction Tiling definitions 2 Conway s Game of Life 3 The Projection Method

Outline 1 Introduction Tiling definitions 2 Conway s Game of Life 3 The Projection Method A Game of Life on Penrose Tilings Kathryn Lindsey Department of Mathematics Cornell University Olivetti Club, Sept. 1, 2009 Outline 1 Introduction Tiling definitions 2 Conway s Game of Life 3 The Projection

More information

Prototiles and Tilings from Voronoi and Delone cells of the Root

Prototiles and Tilings from Voronoi and Delone cells of the Root Prototiles and Tilings from Voronoi and Delone cells of the Root Lattice A n Nazife Ozdes Koca a), Abeer Al-Siyabi b) Department of Physics, College of Science, Sultan Qaboos University P.O. Box 36, Al-Khoud,

More information

SELF-DUAL TILINGS WITH RESPECT TO STAR-DUALITY. 1. Introduction

SELF-DUAL TILINGS WITH RESPECT TO STAR-DUALITY. 1. Introduction SELF-DUAL TILINGS WITH RESPECT TO STAR-DUALITY D FRETTLÖH Abstract The concept of star-duality is described for self-similar cut-and-project tilings in arbitrary dimensions This generalises Thurston s

More information

Lecture 5 - Hausdorff and Gromov-Hausdorff Distance

Lecture 5 - Hausdorff and Gromov-Hausdorff Distance Lecture 5 - Hausdorff and Gromov-Hausdorff Distance August 1, 2011 1 Definition and Basic Properties Given a metric space X, the set of closed sets of X supports a metric, the Hausdorff metric. If A is

More information

arxiv:math/ v2 [math.ca] 18 Dec 1999

arxiv:math/ v2 [math.ca] 18 Dec 1999 Illinois J. Math., to appear Non-symmetric convex domains have no basis of exponentials Mihail N. Kolountzakis 13 December 1998; revised October 1999 arxiv:math/9904064v [math.ca] 18 Dec 1999 Abstract

More information

A LITTLE REAL ANALYSIS AND TOPOLOGY

A LITTLE REAL ANALYSIS AND TOPOLOGY A LITTLE REAL ANALYSIS AND TOPOLOGY 1. NOTATION Before we begin some notational definitions are useful. (1) Z = {, 3, 2, 1, 0, 1, 2, 3, }is the set of integers. (2) Q = { a b : aεz, bεz {0}} is the set

More information

Theory of Aperiodic Solids:

Theory of Aperiodic Solids: Theory of Aperiodic Solids: Sponsoring from 1980 to present Jean BELLISSARD jeanbel@math.gatech.edu Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Content 1. Aperiodic

More information

Quasicrystals: algebraic, combinatorial and geometrical aspects

Quasicrystals: algebraic, combinatorial and geometrical aspects Book Title Book Editors IOS Press, 2003 1 Quasicrystals: algebraic, combinatorial and geometrical aspects arxiv:math-ph/0603065v1 26 Mar 2006 Edita Pelantová a,1, Zuzana Masáková a a Doppler Institute

More information

Self-dual tilings with respect to star-duality

Self-dual tilings with respect to star-duality Theoretical Computer Science 391 (2008) 39 50 wwwelseviercom/locate/tcs Self-dual tilings with respect to star-duality D Frettlöh Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501

More information

Recent developments in the mathematics of diffraction

Recent developments in the mathematics of diffraction Z. Kristallogr. 223 (2008) 795 800 / DOI 10.1524/zkri.2008.1084 795 # by Oldenbourg Wissenschaftsverlag, München Recent developments in the mathematics of diffraction Robert V. Moody* University of Victoria,

More information

On the cells in a stationary Poisson hyperplane mosaic

On the cells in a stationary Poisson hyperplane mosaic On the cells in a stationary Poisson hyperplane mosaic Matthias Reitzner and Rolf Schneider Abstract Let X be the mosaic generated by a stationary Poisson hyperplane process X in R d. Under some mild conditions

More information

Chapter 20. Countability The rationals and the reals. This chapter covers infinite sets and countability.

Chapter 20. Countability The rationals and the reals. This chapter covers infinite sets and countability. Chapter 20 Countability This chapter covers infinite sets and countability. 20.1 The rationals and the reals You re familiar with three basic sets of numbers: the integers, the rationals, and the reals.

More information