MATERIAL REDUCTION & SYMMETRY PLANES

Size: px
Start display at page:

Download "MATERIAL REDUCTION & SYMMETRY PLANES"

Transcription

1 MATERIAL REDUCTION & SYMMETRY PLANES ISSUES IN SIMULATING A CONNECTING ROD

2 LIMITATIONS ON THE ANALYSES Recall from previous lectures that, in static stress analysis that we are subjecting the component to constraints and loads in such a way that the displacements, strains and stresses do not go beyond the linear scope. The engineer is interested in ensuring that the material provides the required service without failing. Keeping within the linear scope ensures that the assumptions of the governing equations remain valid. If these are exceeded, the results, no matter how beautiful the graphics you present, are invalid.

3 THE THREE QUANTITIES Recall that the Finite Element Analysis package already KNOWS the governing equations. It is however YOUR responsibility that the conditions stipulated by those equations remain valid to ensure reliability of your results. You specify constraints, loading and other conditions including contacts. You are looking for three things: Displacement vector, Strain tensor, Stress Tensor. The results provide you with these if you know where to look.

4 EQUIVALENT STRESSES & STRAINS Tensors are characterized by three scalars: the Principal invariants. Once these are known, any other information or components in any reference frame is a matter of easy computation; the heavy lifting is already done. For ductile materials such as steel, aluminium, etc, the second principal invariant of the deviatoric stress and strains, called Von-Mises equivalent stresses and strains are of pivotal importance.

5 COMPUTATION FORMULAE Stress as well as strains are second-order tensors; Here are the computation formulae for the principal Invariants of any second-order tensor T J 1 = tr T J 2 = tr T c = 1 2 tr2 T tr T 2 J 3 = det T Now the Von Mises stress, T VM = 3 J 2 is concerned about the second invariant of the deviatoric stress tensor. This tensor is traceless. Hence, tr 2 T = 0, so that only the second term matters. Next slide shows the contents of a Mathematica file that does this computation for Cartesian coordinates:

6

7 VON MISES From here we can see that 3 times the second Invariant gives us, σ 2 x + σ 2 y + σ 2 z σ x σ y σ y σ z σ z σ x σ x σ y + 3τ 2 xy + 3τ 2 2 yz + 3τ zx The formula for the equivalent strain is similar.

8 We are going to examine the behavior of the shown connecting rod to the service condition of operation. Notice that the firing position of the piston sometimes puts transverse resultant forces on the connecting rod

9 PLANES OF SYMMETRY Our assumption here is that all forces acting on this component are restricted to the x-y plane. And, since this plane is also a plane of geometric symmetry, we can save computational cost by analyzing only half of the body since everything is repeated as a mirror image around that plane of symmetry. We therefore cut the body into two along that plane using the drop down Split bodies from the modify drop down, and we will proceed to hide half the body. Furthermore, we shall cut the big pin holder into two because we are not presently interested in that part of the connecting rod.

10

11 SYMMETRY CONSTRAINTS The symmetry constraint here is that there will be no displacement in the z-direction. The holding constraint for this stydy is that the big pin holder is fixed in space. We will apply forces 200 N longitudinally downwards to simulate the firing push on the rod while we apply the same force laterally at the small pin.

12 STRAINS

13 STRESSES

14 DISPLACEMENTS

15 TWO MORE ISSUES From the results we have, it appears that the connecting rod as designed is OK. You can see that the large part of the connecting rod has a hole. How did the original designers of this part arrive at that decision? Suppose we had made the connecting rod solid from the start, would there be a clear indicator that a hole may be a good way to reduce material usage and cost? How can we know unless we subject a whole connecting rod without this hole to the same stresses and loading.

16 SAFETY FACTOR REPORT The minimum safety factor in the full connecting rod is 3.65 compared with 3.28 in the case where we had a material reduction How do we decide if this extra safety factor is worth the cast? We will have to compare it to the cost of manufacture and material input. There are instances in which the cost of reducing the material input can be completely lost in manufacturing costs. There is always a tradeoff and this aspect is not an exact science requiring feedbacks from the several sections of the industry and time.

17 THERMAL STRESSES Once temperature effects are large enough for us to consider the stresses induced by them, there are major changes in the governing equations. The simplest are the quasi static thermoelastic equations that make a number of assumptions including that of linearity and material isotropy. (See Boley & Wiener, Theory of Thermal Stresses) The number of unknowns increases to include the scalar temperature θ distribution in the material and on its boundary. The additional equation needed for this extra variable, temperature θ is the steady state equation of heat conduction: div grad θ + 1 k Q = 0 where Q is the rate of heat flux (assumed known).

18 THERMAL STRAINS The stress strain relations can remain unchanged provided we add the spherical thermal strain tensor to the strain computation: In this case, the total strain E t, the sum of strains caused by the applied structural load and that caused by thermal expansion now becomes, E t = E + αθi = 1 2 grad u + gradt u + αθi if we ignore higher order terms. For the case of infinitesimal strains α is the coefficient of linear expansion, and the temperature function is a defined as a field in the Euclidean point space. (This simply means that it has a value for each defined point in the space).

19 THERMAL STRESSES The stress strain relation, T = λi tre + 2μE, can now be written in terms of total strain, as T = λi tr E t αθi + 2μ E t αθi = [λ tre t 3λ + 2μ αθ]i + 2μE t This means heating, with the prevention strain, will cause stresses in the body: E t = 0 T = [ 3λ + 2μ αθ]i leading to a spherical stress tensor. A simple example of this is shown below:

20 THERMAL STRESSES It can happen that the stresses building up in a member that has been prevented from expanding causes serious damage. For example, consider a short bar that has been heated but not allowed to expand. The prevention of that expansion creates the stress we have calculated above. This build-up of stresses can have disastrous consequences The picture below shows rail tracks in the USA (Wikipedia) that became warped and caused many derailments and deaths. That is why rail tracks are in bits to make room for expansion.

21

22 STRAIN COMPLETELY THERMAL What happens if in a thermoelastic situation, the total stresses equal to the thermal stresses? Will there still be any stresses in the system? In the equation, T = λi tr E t αθi + 2μ E t αθi E t = αθi This leads to T = 0. When the heated member is allowed to expand freely, there are no stresses as expected.

23 SOLVING THERMAL STRESS PROBLEMS Again, just like the elastostatics problems we have been looking at, the thermal stresses governing equations are already well known to your FEA solver. You duty as usual, is to ensure you can specify the constraints and boundary conditions correctly and can interpret the results appropriately. We will look at the same connecting rod problem again as an illustration of this problem and some of the peculiarities that arise:

24 THERMAL STRESSES IN THE CONNECTING ROD Furuhamma, S, Oya, Y and Sasaki, H, Temperature measurements of the connecting Rod, Piston pin and crank bearing pin of an automobile gasoline engine, JSME Vol 9, No 33, They report temperatures ranging from 115 to 140 at the small pin at rotational speeds of 1600 to 4500 rpm. 80 to 100 at the big pin in the crankshaft. Beginning with our now familiar sketch, we are in a position to simulate the simple connecting rod using the findings of Furuhamma et. al. as our guide:

25 THERMAL STRESSES IN THE CONNECTING ROD

26 SPLIT THE SINGLE BODY AT THE BIG PIN We extrude the three bodies and create a joining rather than a new body so that this figure gives us a single body. We take a z-x cutting plane and use the Modify menu to Split into two bodies after which we turn off the head of the connecting rod to obtain:

27 CONSTRAINTS & THERMAL LOADS We can now apply the constraints and thermal loads. In reality, we know that the thermal load here is sinusoidal as there is a firing once in 720 degrees of crank rotation. However, from the experiments quoted above, it is a good approximation to assume that the temperature at the small pin is about 140C and larger pin 90C. We assume an ambient of 60C in the engine. We fix the big pin end and simulate

28 THERMAL STRESS RESULTS

29 EQUIVALENT STRESS DISTRIBUTION

30 EQUIVALENT STRAINS

31 TOTAL DISPLACEMENT

32 BRAKE DISK ROTOR We will now work through the brake disk rotor simulation contained in the Autodesk example files. Samples section of your

33

34 THERMAL STRESSES In your simulation, select Thermal stresses. Unlike the Autodesk instructions, when you edit the units in this study, select SI units rather than than the suggested US Units. Proceed to simply the model if you have not already done this in the model environment. Material for this simulation is Iron, Gray Cast ASTM A48 Grade 20

35 SIMPLIFYING THE MODEL In simplify, select Split Body and here use the XY plane from the Origin inside the browser to select the XY plane as shown. This gives you two bodies. Hide one of them and obtain the next body that you will split using the ZX plane as splitting tool:

36 SPLIT

37 SIMPLIFYING THE MODEL In simplify, select Split Body and here use the XY plane from the Origin inside the browser to select the XY plane as shown. This gives you two bodies. Hide one of them and obtain the next body that you will split using the ZX plane as splitting tool:

38 SIMPLIFIED BODY As a result of the bodies that have been turned off, the simplified body shown in the adjoining picture results. We are now able to apply constraints and loads on our way to simulating the thermal stresses

39 STRUCTURAL CONSTRAINTS Fixed all the structural constraints by preventing motion in the directions perpendicular to each cut surface. For the cut surface elements perpendicular to the x- direction, activate only x- movements as fixed. Do the same for the other surfaces. It is essential you get this right!

40 THERMAL LOADING Now we apply thermal loads just the same way as we have been applying structural loads: Set the type to applied temperature and specify 330K to the bearing end and 530K to the mating surface for the brake pad.

41 MESHING In Manage reduce the model based size from 10% to 2% for a finer mesh while allowing for mesh scaling per part. If the precheck is still not giving you the gree light to go on at this stage, try an automatic contact for the simulation and you can go ahead and simulate in the cloud.

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

Final Analysis Report MIE 313 Design of Mechanical Components

Final Analysis Report MIE 313 Design of Mechanical Components Final Analysis Report MIE 313 Design of Mechanical Components Juliana Amado Charlene Nestor Peter Walsh Table of Contents Abstract:...iii Introduction:... 4 Procedure:... 5 Results:... 6 Reliability:...

More information

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL P.Palanivelu 1, R.Siva Prasad 2, 1 PG Scholar, Department of Mechanical Engineering, Gojan School of Business and Technology, Redhills, Chennai, India.

More information

Single Stop Transient Thermal Coupled with Structural Analysis and Repeated Braking Analysis with Convective Cooling for Ventilated Rotor

Single Stop Transient Thermal Coupled with Structural Analysis and Repeated Braking Analysis with Convective Cooling for Ventilated Rotor Single Stop Transient Thermal Coupled with Structural Analysis and Repeated Braking Analysis with Convective Cooling for Ventilated Rotor Tirth Sodagar 1, Avadhoot Ahire 2 1Tirth Sodagar, Student, School

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the 5. STRESS CONCENTRATIONS So far in this thesis, most of the formulas we have seen to calculate the stresses and strains in shafts apply only to solid and hollow circular shafts while they are in the elastic

More information

(48) CHAPTER 3: TORSION

(48) CHAPTER 3: TORSION (48) CHAPTER 3: TORSION Introduction: In this chapter structural members and machine parts that are in torsion will be considered. More specifically, you will analyze the stresses and strains in members

More information

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07)

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07) Tensor Transformations and the Maximum Shear Stress (Draft 1, 1/28/07) Introduction The order of a tensor is the number of subscripts it has. For each subscript it is multiplied by a direction cosine array

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

σ = F/A ε = L/L σ ε a σ = Eε

σ = F/A ε = L/L σ ε a σ = Eε Material and Property Information This chapter includes material from the book Practical Finite Element Analysis. It also has been reviewed and has additional material added by Sascha Beuermann. Hooke

More information

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations:

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations: 2004- v 10/16 2. The resultant external torque (the vector sum of all external torques) acting on the body must be zero about any origin. These conditions can be written as equations: F = 0 = 0 where the

More information

University of Sheffield The development of finite elements for 3D structural analysis in fire

University of Sheffield The development of finite elements for 3D structural analysis in fire The development of finite elements for 3D structural analysis in fire Chaoming Yu, I. W. Burgess, Z. Huang, R. J. Plank Department of Civil and Structural Engineering StiFF 05/09/2006 3D composite structures

More information

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13 ARC241 Structural Analysis I Lecture 10: MM1.3 MM1.13 MM1.4) Analysis and Design MM1.5) Axial Loading; Normal Stress MM1.6) Shearing Stress MM1.7) Bearing Stress in Connections MM1.9) Method of Problem

More information

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. http://preposterousuniverse.com/grnotes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been framed

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Gauss s Law. q 4. The Gaussian surfaces do not have to be spheres. Constant flux through any closed surface.

Gauss s Law. q 4. The Gaussian surfaces do not have to be spheres. Constant flux through any closed surface. The beauty of 1/R 2 Gauss s Law For a single point charge: The density of field lines signifies field strength, 1/R 2. Surface area 1/R 2. Constant flux of field lines through spheres, regardless of R.

More information

MAE 323: Lecture 1. Review

MAE 323: Lecture 1. Review This review is divided into two parts. The first part is a mini-review of statics and solid mechanics. The second part is a review of matrix/vector fundamentals. The first part is given as an refresher

More information

NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS

NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 2195-2204 2195 NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS by Ali BELHOCINE * Faculty of Mechanical Engineering,

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1 MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS

More information

Gauss s Law. q 4. The Gaussian surfaces do not have to be spheres. Constant flux through any closed surface.

Gauss s Law. q 4. The Gaussian surfaces do not have to be spheres. Constant flux through any closed surface. The beauty of 1/R 2 Gauss s Law For a single point charge: The density of field lines signifies field strength, 1/R 2. Surface area 1/R 2. Constant flux of field lines through spheres, regardless of R.

More information

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected

More information

Tushar R Banode, S B Patil. Abstract

Tushar R Banode, S B Patil. Abstract International Engineering Research Journal Experimental stress, Thermal analysis and Topology optimization of Disc brake using strain gauging technique and FEA Tushar R Banode, S B Patil Mechanical EngineeringDepartment,

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Effect of Temperature on Mechanical Properties and Dynamic Characteristics of the Rotor in High Acceleration Mei-Hui JIA a,*, Cheng-Lin WANG b

Effect of Temperature on Mechanical Properties and Dynamic Characteristics of the Rotor in High Acceleration Mei-Hui JIA a,*, Cheng-Lin WANG b 2016 International Conference on Mechanics Design, Manufacturing and Automation (MDM 2016) ISBN: 978-1-609-34-0 Effect of Temperature on Mechanical Properties and Dynamic Characteristics of the Rotor in

More information

PStress R Pulley Stress Analysis Software Users Manual*

PStress R Pulley Stress Analysis Software Users Manual* PStress R Pulley Stress Analysis Software Users Manual* Issued: October 7, 2014 *For PStress V3.5 CONVEYOR DYNAMICS, INC. 1111 West Holly St. Bellingham, WA, 98225 (USA) Phone: +1 (360) 671-2200 Contents

More information

CHAPTER 3 MODELING AND ANALYSIS

CHAPTER 3 MODELING AND ANALYSIS CHAPTER 3 MODELING AND ANALYSIS 3.1 BASICS OF MODELING AND ANALYSIS The main objective of this study was to explore weight and cost reduction opportunities for a production of connecting rod small end

More information

FE Modeling of H-SECTION Connecting Rod

FE Modeling of H-SECTION Connecting Rod FE Modeling of H-SECTION Connecting Rod Virendra Kumar Verma,Shailendra Kumar, Ashish Gupta P.G Student, Department of Mechanical Engineering, Babu Banarasi Das University, Lucknow, India P.G Student,

More information

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress Crack Tip Plastic Zone under Mode Loading and the Non-singular T -stress Yu.G. Matvienko Mechanical Engineering Research nstitute of the Russian Academy of Sciences Email: ygmatvienko@gmail.com Abstract:

More information

Concept Question Comment on the general features of the stress-strain response under this loading condition for both types of materials

Concept Question Comment on the general features of the stress-strain response under this loading condition for both types of materials Module 5 Material failure Learning Objectives review the basic characteristics of the uni-axial stress-strain curves of ductile and brittle materials understand the need to develop failure criteria for

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 1-21 September, 2017 Institute of Structural Engineering

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY

MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY PART A INTEGRATED CIRCUIT An integrated circuit can be thought of as a very complex maze of electronic components and metallic connectors. These connectors

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Lecture -1 Element of vector calculus: Scalar Field and its Gradient This is going to be about one

More information

Static Failure (pg 206)

Static Failure (pg 206) Static Failure (pg 06) All material followed Hookeʹs law which states that strain is proportional to stress applied, until it exceed the proportional limits. It will reach and exceed the elastic limit

More information

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

More information

New Facilities for Multiphysics Modelling in Opera-3d version 16 By Chris Riley

New Facilities for Multiphysics Modelling in Opera-3d version 16 By Chris Riley FEA ANALYSIS General-purpose multiphy sics design and analy sis softw are for a w ide range of applications OPTIMIZER A utomatically selects and manages multiple goalseeking algorithms INTEROPERABILITY

More information

Lab 4: Gauss Gun Conservation of Energy

Lab 4: Gauss Gun Conservation of Energy Lab 4: Gauss Gun Conservation of Energy Before coming to Lab Read the lab handout Complete the pre-lab assignment and hand in at the beginning of your lab section. The pre-lab is written into this weeks

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

Solution to Multi-axial Fatigue Life of Heterogenic Parts & Components Based on Ansys. Na Wang 1, Lei Wang 2

Solution to Multi-axial Fatigue Life of Heterogenic Parts & Components Based on Ansys. Na Wang 1, Lei Wang 2 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 215) Solution to Multi-axial Fatigue Life of Heterogenic Parts & Components Based on Ansys Na Wang 1, Lei Wang

More information

ANALYSIS AND SIMULATION OF AN AIRPLANE SEAT DURING VERTICAL IMPACTS

ANALYSIS AND SIMULATION OF AN AIRPLANE SEAT DURING VERTICAL IMPACTS ANALYSIS AND SIMULATION OF AN AIRPLANE SEAT DURING VERTICAL IMPACTS ABSTRACT Luís Carlos das Neves Ferreira luis.neves.ferreira@ist.utl.pt Instituto Superior Técnico, Universidade de Lisboa, Portugal December

More information

Part 8: Rigid Body Dynamics

Part 8: Rigid Body Dynamics Document that contains homework problems. Comment out the solutions when printing off for students. Part 8: Rigid Body Dynamics Problem 1. Inertia review Find the moment of inertia for a thin uniform rod

More information

Figure 1: Throwing arm dimensions

Figure 1: Throwing arm dimensions I. Overview The objective of this report is to review the design of the trebuchet model from an engineering standpoint. This study analyzes the dimensions and material selection using the COMSOL multiphisics

More information

Optimization of Connecting Rod on the basis of Static & Fatigue Analysis

Optimization of Connecting Rod on the basis of Static & Fatigue Analysis Optimization of Connecting Rod on the basis of Static & Fatigue Analysis Mr. Vikram A. Shedge 1, Prof. K. H. Munde 2 1 P. G. Student- ABMSP s Anantarao Pawar College of Engineering & Research, Parvati.

More information

UNIT - I. Review of the three laws of motion and vector algebra

UNIT - I. Review of the three laws of motion and vector algebra UNIT - I Review of the three laws of motion and vector algebra In this course on Engineering Mechanics, we shall be learning about mechanical interaction between bodies. That is we will learn how different

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 15 Conservation Equations in Fluid Flow Part III Good afternoon. I welcome you all

More information

EML4507 Finite Element Analysis and Design EXAM 1

EML4507 Finite Element Analysis and Design EXAM 1 2-17-15 Name (underline last name): EML4507 Finite Element Analysis and Design EXAM 1 In this exam you may not use any materials except a pencil or a pen, an 8.5x11 formula sheet, and a calculator. Whenever

More information

Stress Analysis Report

Stress Analysis Report Stress Analysis Report Analyzed File: Majakkarunko.iam Autodesk Inventor Version: 2013 SP2 (Build 170200200, 200) Creation Date: 29.5.2013, 7:01 Simulation Author: NJu Summary: Project Info (iproperties)

More information

ANSYS Mechanical Basic Structural Nonlinearities

ANSYS Mechanical Basic Structural Nonlinearities Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria

More information

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

More information

Using Thermal Boundary Conditions in SOLIDWORKS Simulation to Simulate a Press Fit Connection

Using Thermal Boundary Conditions in SOLIDWORKS Simulation to Simulate a Press Fit Connection Using Thermal Boundary Conditions in SOLIDWORKS Simulation to Simulate a Press Fit Connection Simulating a press fit condition in SOLIDWORKS Simulation can be very challenging when there is a large amount

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

My conrod model can be found on the CD enclosed with this assignment.

My conrod model can be found on the CD enclosed with this assignment. Introduction This assignment deals with the Finite Element Analysis (FEA) of the top half of a Connecting rod. By using the Ideas computer software I am to analyse and determine the position and magnitude

More information

Mathematical Modeling of Displacements and Thermal Stresses in Anisotropic Materials (Sapphire) in Cooling

Mathematical Modeling of Displacements and Thermal Stresses in Anisotropic Materials (Sapphire) in Cooling Mathematical Modeling of Displacements and Thermal Stresses in Anisotropic Materials (Sapphire) in Cooling Timo Tiihonen & Tero Tuovinen September 11, 2015 European Study Group with Industry, ESGI 112,

More information

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6.

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6. Delft University of Technology Faculty of Civil Engineering and Geosciences Structural Mechanics Section Write your name and study number at the top right-hand of your work. Exam CT4143 Shell Analysis

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

CE-570 Advanced Structural Mechanics - Arun Prakash

CE-570 Advanced Structural Mechanics - Arun Prakash Ch1-Intro Page 1 CE-570 Advanced Structural Mechanics - Arun Prakash The BIG Picture What is Mechanics? Mechanics is study of how things work: how anything works, how the world works! People ask: "Do you

More information

DESIGN & STATIC STRUCTURAL ANALYSIS OF CRANKSHAFT FOR HIGH PRESSURE PLUNGER PUMP

DESIGN & STATIC STRUCTURAL ANALYSIS OF CRANKSHAFT FOR HIGH PRESSURE PLUNGER PUMP DESIGN & STATIC STRUCTURAL ANALYSIS OF CRANKSHAFT FOR HIGH PRESSURE PLUNGER PUMP Kiran A. Raut 1 and Sachin S. Mestry 2 1 M.E Student, Department of Mechanical Engineering, Finolex Academy of Management

More information

Pressure Vessel Engineering Ltd. ASME Calculation CRN Services Finite Element Analysis Solid Modeling & Drafting

Pressure Vessel Engineering Ltd. ASME Calculation CRN Services Finite Element Analysis Solid Modeling & Drafting Pressure Vessel Engineering Ltd. ASME Calculation CRN Services Finite Element Analysis Solid Modeling & Drafting Design Conditions: Cust: Pressure Vessel Engineering Ltd. Code: ASME VIII-2 File: PVEfea-9128-1.0

More information

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. Rotational Motion Chapter 4 P. J. Grandinetti Chem. 4300 Sep. 1, 2017 P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. 1, 2017 1 / 76 Angular Momentum The angular momentum of a particle with respect

More information

L8. Basic concepts of stress and equilibrium

L8. Basic concepts of stress and equilibrium L8. Basic concepts of stress and equilibrium Duggafrågor 1) Show that the stress (considered as a second order tensor) can be represented in terms of the eigenbases m i n i n i. Make the geometrical representation

More information

DESIGN AND ANALYSIS OF LIGHT WEIGHT MOTOR VEHICLE FLYWHEEL M.LAVAKUMAR #1, R.PRASANNA SRINIVAS* 2

DESIGN AND ANALYSIS OF LIGHT WEIGHT MOTOR VEHICLE FLYWHEEL M.LAVAKUMAR #1, R.PRASANNA SRINIVAS* 2 International Journal of Computer Trends and Technology (IJCTT) volume 4 Issue 7 July 013 DESIGN AND ANALYSIS OF LIGHT WEIGHT MOTOR VEHICLE FLYWHEEL M.LAVAKUMAR #1, R.PRASANNA SRINIVAS* 1 Assistant Professor

More information

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then Linear Elasticity Objectives In this lab you will measure the Young s Modulus of a steel wire. In the process, you will gain an understanding of the concepts of stress and strain. Equipment Young s Modulus

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

Simple Stresses in Machine Parts

Simple Stresses in Machine Parts Simple Stresses in Machine Parts 87 C H A P T E R 4 Simple Stresses in Machine Parts 1. Introduction.. Load. 3. Stress. 4. Strain. 5. Tensile Stress and Strain. 6. Compressive Stress and Strain. 7. Young's

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Unit M1.5 Statically Indeterminate Systems

Unit M1.5 Statically Indeterminate Systems Unit M1.5 Statically Indeterminate Systems Readings: CDL 2.1, 2.3, 2.4, 2.7 16.001/002 -- Unified Engineering Department of Aeronautics and Astronautics Massachusetts Institute of Technology LEARNING OBJECTIVES

More information

Telescopic auto dimension measuring system

Telescopic auto dimension measuring system - 0 - Contents Chapter One: Brief introduction 2 Chapter Two: Safety cautions 3 Chapter Three: Spare parts list and name 4 Chapter Four: User manual 7 I. Distance between 250~1140mm (M3:250~900mm) II.

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

AQA Forces Review Can you? Scalar and vector quantities Contact and non-contact forces Resolving forces acting parallel to one another

AQA Forces Review Can you? Scalar and vector quantities   Contact and non-contact forces    Resolving forces acting parallel to one another Can you? Scalar and vector quantities Describe the difference between scalar and vector quantities and give examples. Scalar quantities have magnitude only. Vector quantities have magnitude and an associated

More information

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

More information

Principal Stresses, Yielding Criteria, wall structures

Principal Stresses, Yielding Criteria, wall structures Principal Stresses, Yielding Criteria, St i thi Stresses in thin wall structures Introduction The most general state of stress at a point may be represented by 6 components, x, y, z τ xy, τ yz, τ zx normal

More information

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric

More information

Lab #4 - Gyroscopic Motion of a Rigid Body

Lab #4 - Gyroscopic Motion of a Rigid Body Lab #4 - Gyroscopic Motion of a Rigid Body Last Updated: April 6, 2007 INTRODUCTION Gyroscope is a word used to describe a rigid body, usually with symmetry about an axis, that has a comparatively large

More information

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2 Lecture 8 Torque and Equilibrium Pre-reading: KJF 8.1 and 8.2 Archimedes Lever Rule At equilibrium (and with forces 90 to lever): r 1 F 1 = r 2 F 2 2 General Lever Rule For general angles r 1 F 1 sin θ

More information

1 Tensors and relativity

1 Tensors and relativity Physics 705 1 Tensors and relativity 1.1 History Physical laws should not depend on the reference frame used to describe them. This idea dates back to Galileo, who recognized projectile motion as free

More information

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,-2.4, 2.7, 3.1-3.8, 6.1, 6.2, 6.8, 7.1-7.4. Jaeger and Cook, Fundamentals of

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Module No. # 01 Lecture No. # 22 Adiabatic Invariance of Magnetic Moment and Mirror Confinement Today, we

More information

Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati

Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Module 7 Gantry Girders and Plate Girders Lecture - 3 Introduction to Plate girders

More information

Mechanics of materials is one of the first application-based engineering

Mechanics of materials is one of the first application-based engineering In This Chapter Chapter 1 Predicting Behavior with Mechanics of Materials Defining mechanics of materials Introducing stresses and strains Using mechanics of materials to aid in design Mechanics of materials

More information

Project of a scissor lift platform and concept of an extendable cabin

Project of a scissor lift platform and concept of an extendable cabin Project of a scissor lift platform and concept of an extendable cabin Ricardo Duarte Cabrita ricardo.ricab13@gmail.com Instituto Superior Técnico, Lisbon, Portugal May 2016 Abstract This report presents

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 11 Kinematics of Fluid Part - II Good afternoon, I welcome you all to this session

More information

Procedure for Performing Stress Analysis by Means of Finite Element Method (FEM)

Procedure for Performing Stress Analysis by Means of Finite Element Method (FEM) Procedure for Performing Stress Analysis by Means of Finite Element Method (FEM) Colaboração dos engºs Patrício e Ediberto da Petrobras 1. Objective This Technical Specification sets forth the minimum

More information

2. Mechanics of Materials: Strain. 3. Hookes's Law

2. Mechanics of Materials: Strain. 3. Hookes's Law Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

More information

BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test

BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test Objectives 1. To be familiar with the material testing machine(810le4) and provide a practical

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 8 Fluid Statics Part V

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 8 Fluid Statics Part V Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Fluid Statics Part V Good morning, I welcome you all to the session of fluid mechanics.

More information

Detailed objectives are given in each of the sections listed below. 1. Cartesian Space Coordinates. 2. Displacements, Forces, Velocities and Vectors

Detailed objectives are given in each of the sections listed below. 1. Cartesian Space Coordinates. 2. Displacements, Forces, Velocities and Vectors Unit 1 Vectors In this unit, we introduce vectors, vector operations, and equations of lines and planes. Note: Unit 1 is based on Chapter 12 of the textbook, Salas and Hille s Calculus: Several Variables,

More information

Failure analysis of serial pinned joints in composite materials

Failure analysis of serial pinned joints in composite materials Indian Journal of Engineering & Materials Sciences Vol. 18, April 2011, pp. 102-110 Failure analysis of serial pinned joints in composite materials Alaattin Aktaş* Department of Mechanical Engineering,

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Stress and Strain

More information

Physics 6303 Lecture 2 August 22, 2018

Physics 6303 Lecture 2 August 22, 2018 Physics 6303 Lecture 2 August 22, 2018 LAST TIME: Coordinate system construction, covariant and contravariant vector components, basics vector review, gradient, divergence, curl, and Laplacian operators

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 OUTCOME 3 BE ABLE TO DETERMINE RELATIVE AND RESULTANT VELOCITY IN ENGINEERING SYSTEMS Resultant

More information

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

More information

CHAPTER 8 CONSERVATION LAWS

CHAPTER 8 CONSERVATION LAWS CHAPTER 8 CONSERVATION LAWS Outlines 1. Charge and Energy 2. The Poynting s Theorem 3. Momentum 4. Angular Momentum 2 Conservation of charge and energy The net amount of charges in a volume V is given

More information