Tomoko Matsuo s collaborators

Size: px
Start display at page:

Download "Tomoko Matsuo s collaborators"

Transcription

1 Tomoko Matsuo s collaborators Thermosphere-Ionosphere GCM Modeling A. Richmond (NCAR-HAO) T. Fuller-Rowell and M. Codrescu (NOAA) Polar Ionosphere Data Assimilation A. Richmond, G. Lu, and B. Emery (NCAR-HAO) D. Lummerzheim (U of Alaska) M. Hairston (U of Texas, Dallas) Spatial Statistics D. Nychka (NCAR-IMAGe) D. Paul (U of California, Davis) Middle Atmosphere Data Assimilation J. Anderson (NCAR-IMAGe) D. Marsh and A. Smith (NCAR-ACD) Advisory Panel Meeting, Apr 27, 26

2 Sun-Earth Connection GRL 98 Cover Page

3 Multi-resolution Based Nonstationary Covariance Modeling: Monte-Carlo EM approach Tomoko Matsuo in collaboration with Doug Nychka & Debashis Paul (UC, Davis) Advisory Panel Meeting, Apr 27, 26

4 Surface Ozone standard deviation latitude standard deviation longitude O 3 is one of six common pollutants EPA s national air quality standards (8 ppb) 1997 Data Set 364 locations on grid 184 days from May to Oct

5 Motivation and Goal Motivation: Flexible Nonstationary Covariance Model Gaussian Model in Spatial Statistics Kriging (geostatistics) [e.g., Higdon et al., 1999; Fuentes, 21; Fuentes and Smith, 21; Nychka et al., 23; Sampson and Guttorp, 1992; Anderes and Stein, 25] Variational and OI methods (data assimilation) [e.g., Purser et al., 25; Gaspari et al., 26] Goal and Challenges: Computational efficiency Irregularly distributed observational data Large data set

6 Nonparametric Model Σ = WH 2 W T [Nychka, Wikle, and Royle, 23] [ ] [ ] H H 1 H H = H 1 H 11 H1 where H is thresholded and H 1 = diag(h 11 ) Enforced sparsity in H wavelet coefficient wavelet coefficient wavelet coefficient wavelet coefficient

7 Covariance Estimator Gaussian Model: f = ( f 1 f 2 ) N (, Σ θ ) where Σ θ = W H 2 (θ)w T.

8 Covariance Estimator Gaussian Model: f = ( f 1 f 2 ) N (, Σ θ ) where Σ θ = W H 2 (θ)w T. Monte-Carlo EM [e.g., Wei and Tanner, 199]: Q(θ, θ ) = E[L(f, θ) f 1, θ ] 1 N L 1 N n=1 f (n) 2, θ MC sampling: f (n) 2 [ f 2 f 1, W H 2 (θ )W T ]

9 Covariance Estimator Gaussian Model: f = ( f 1 f 2 ) N (, Σ θ ) where Σ θ = W H 2 (θ)w T. Monte-Carlo EM [e.g., Wei and Tanner, 199]: Q(θ, θ ) = E[L(f, θ) f 1, θ ] 1 N L 1 N n=1 f (n) 2, θ MC sampling: f (n) 2 [ f 2 f 1, W H 2 (θ )W T ] Smoothed MC EM [e.g., Silverman et al., 199]: Q(θ, θ ) + p(θ)

10 Different thresholding in H Lev 2, 86.8% (545) Lev 3, 98% (8363) (a) (b) (a) (b) (c) (d) (c) (d)

11 Validation Sample v.s. Modeled Correlation.5..5 sample correlation modeled correlation.5.5. modeled correlation.5..5 modeled correlation (c) lev 3 98% (2 iteration) 1. (b) lev 2 86%, smoothed 1. (a) Stationary.5..5 sample correlation sample correlation 1.

12 Summary and Future Work To be submitted to JASA or JRSS-B Flexible nonstationary covariance model W H 2 W T Theory to support sparsity in H Practical estimator (Monte-Carlo EM) to handle the incomplete data Examples using surface ozone data

13 Summary and Future Work To be submitted to JASA or JRSS-B Flexible nonstationary covariance model W H 2 W T Theory to support sparsity in H Practical estimator (Monte-Carlo EM) to handle the incomplete data Examples using surface ozone data Another ozone application in collaboration with Eric Gilleland (NCAR-RAL)

14 Summary and Future Work To be submitted to JASA or JRSS-B Flexible nonstationary covariance model W H 2 W T Theory to support sparsity in H Practical estimator (Monte-Carlo EM) to handle the incomplete data Examples using surface ozone data Another ozone application in collaboration with Eric Gilleland (NCAR-RAL) Application to the Polar Ionosphere Aurora image data ( 1K) Prior covariance for ionospheric data assimilation

The Matrix Reloaded: Computations for large spatial data sets

The Matrix Reloaded: Computations for large spatial data sets The Matrix Reloaded: Computations for large spatial data sets Doug Nychka National Center for Atmospheric Research The spatial model Solving linear systems Matrix multiplication Creating sparsity Sparsity,

More information

The Matrix Reloaded: Computations for large spatial data sets

The Matrix Reloaded: Computations for large spatial data sets The Matrix Reloaded: Computations for large spatial data sets The spatial model Solving linear systems Matrix multiplication Creating sparsity Doug Nychka National Center for Atmospheric Research Sparsity,

More information

UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS

UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS Monday, June 27, 2011 CEDAR-GEM joint workshop: DA tutorial 1 UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS Tomoko Matsuo University of Colorado, Boulder Space

More information

Statistical Models for Monitoring and Regulating Ground-level Ozone. Abstract

Statistical Models for Monitoring and Regulating Ground-level Ozone. Abstract Statistical Models for Monitoring and Regulating Ground-level Ozone Eric Gilleland 1 and Douglas Nychka 2 Abstract The application of statistical techniques to environmental problems often involves a tradeoff

More information

A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES

A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES JOHN STEPHENSON 1, CHRIS HOLMES, KERRY GALLAGHER 1 and ALEXANDRE PINTORE 1 Dept. Earth Science and Engineering, Imperial College,

More information

Overview of Geophysical Statistics Project and NCAR

Overview of Geophysical Statistics Project and NCAR Overview of Geophysical Statistics Project and NCAR Douglas Nychka Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Outline NCAR,

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

Statistical Sciences Symposium, 2014

Statistical Sciences Symposium, 2014 College of Letters and Science Department of Statistics UC Davis Statistical Sciences Symposium, 2014 Spatial-Temporal Statistics: Methods and Applications SATURDAY April 26 8:30 a.m. 5:15 p.m. Mathematical

More information

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Models for models Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Outline Statistical models and tools Spatial fields (Wavelets) Climate regimes (Regression and clustering)

More information

Spatial Extremes in Atmospheric Problems

Spatial Extremes in Atmospheric Problems Spatial Extremes in Atmospheric Problems Eric Gilleland Research Applications Laboratory (RAL) National Center for Atmospheric Research (NCAR), Boulder, Colorado, U.S.A. http://www.ral.ucar.edu/staff/ericg

More information

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Matthias Katzfuß Advisor: Dr. Noel Cressie Department of Statistics The Ohio State University

More information

Extremes and Atmospheric Data

Extremes and Atmospheric Data Extremes and Atmospheric Data Eric Gilleland Research Applications Laboratory National Center for Atmospheric Research 2007-08 Program on Risk Analysis, Extreme Events and Decision Theory, opening workshop

More information

Multi-resolution models for large data sets

Multi-resolution models for large data sets Multi-resolution models for large data sets Douglas Nychka, National Center for Atmospheric Research National Science Foundation Iowa State March, 2013 Credits Steve Sain, Tamra Greasby, NCAR Tia LeRud,

More information

VARIANCE ESTIMATION AND KRIGING PREDICTION FOR A CLASS OF NON-STATIONARY SPATIAL MODELS

VARIANCE ESTIMATION AND KRIGING PREDICTION FOR A CLASS OF NON-STATIONARY SPATIAL MODELS Statistica Sinica 25 (2015), 135-149 doi:http://dx.doi.org/10.5705/ss.2013.205w VARIANCE ESTIMATION AND KRIGING PREDICTION FOR A CLASS OF NON-STATIONARY SPATIAL MODELS Shu Yang and Zhengyuan Zhu Iowa State

More information

What s for today. Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model

What s for today. Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model What s for today Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model c Mikyoung Jun (Texas A&M) Stat647 Lecture 11 October 2, 2012 1 / 23 Nonstationary

More information

Multi-resolution models for large data sets

Multi-resolution models for large data sets Multi-resolution models for large data sets Douglas Nychka, National Center for Atmospheric Research National Science Foundation NORDSTAT, Umeå, June, 2012 Credits Steve Sain, NCAR Tia LeRud, UC Davis

More information

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS Eric Gilleland Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Supported

More information

Global-scale Observations of the Limb and Disk (GOLD)

Global-scale Observations of the Limb and Disk (GOLD) 5 Jan 2007 Chapman Conference 2007 1 Global-scale Observations of the (GOLD) R. Eastes, W. McClintock, A. Aksnes, D. Anderson, L. Andersson, S. Budzien, A. Burns, M. Codrescu, R. Daniell, K. Dymond, F.

More information

Impact of the altitudinal Joule heating distribution on the thermosphere

Impact of the altitudinal Joule heating distribution on the thermosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja016019, 2011 Impact of the altitudinal Joule heating distribution on the thermosphere Yue Deng, 1 Timothy J. Fuller Rowell, 2,3 Rashid A. Akmaev,

More information

Perspectives on Ionospheric Electrodynamics Arthur D. Richmond, NCAR-HAO and collaborators

Perspectives on Ionospheric Electrodynamics Arthur D. Richmond, NCAR-HAO and collaborators Perspectives on Ionospheric Electrodynamics Arthur D. Richmond, NCAR-HAO and collaborators Ionospheric dynamo modeling Disturbance dynamo Assimilative Mapping of Ionospheric Electrodynamics (AMIE) Interactions

More information

A Fused Lasso Approach to Nonstationary Spatial Covariance Estimation

A Fused Lasso Approach to Nonstationary Spatial Covariance Estimation Supplementary materials for this article are available at 10.1007/s13253-016-0251-8. A Fused Lasso Approach to Nonstationary Spatial Covariance Estimation Ryan J. Parker, Brian J. Reich,andJoEidsvik Spatial

More information

Electron impact ionization: A new parameterization for 100 ev to 1 MeV electrons

Electron impact ionization: A new parameterization for 100 ev to 1 MeV electrons JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013384, 2008 Electron impact ionization: A new parameterization for 100 ev to 1 MeV electrons Xiaohua Fang, 1 Cora E. Randall, 1 Dirk Lummerzheim,

More information

Some Topics in Convolution-Based Spatial Modeling

Some Topics in Convolution-Based Spatial Modeling Some Topics in Convolution-Based Spatial Modeling Catherine A. Calder 1 and Noel Cressie Department of Statistics The Ohio State University 1958 Neil Ave. Columbus, OH 43210 USA Appears in the Proceedings

More information

Bayesian hierarchical modelling for data assimilation of past observations and numerical model forecasts

Bayesian hierarchical modelling for data assimilation of past observations and numerical model forecasts Bayesian hierarchical modelling for data assimilation of past observations and numerical model forecasts Stan Yip Exeter Climate Systems, University of Exeter c.y.yip@ex.ac.uk Joint work with Sujit Sahu

More information

NRCSE. Misalignment and use of deterministic models

NRCSE. Misalignment and use of deterministic models NRCSE Misalignment and use of deterministic models Work with Veronica Berrocal Peter Craigmile Wendy Meiring Paul Sampson Gregory Nikulin The choice of spatial scale some questions 1. Which spatial scale

More information

Enabling system science: Ionospheric conductivity

Enabling system science: Ionospheric conductivity Enabling system science: Ionospheric conductivity Ryan McGranaghan Thayer School of Engineering Dartmouth College Delores Knipp, Tomoko Matsuo CU Boulder, NCAR HAO Assimilative approach Bring diverse data

More information

Localization and Correlation in Ensemble Kalman Filters

Localization and Correlation in Ensemble Kalman Filters Localization and Correlation in Ensemble Kalman Filters Jeff Anderson NCAR Data Assimilation Research Section The National Center for Atmospheric Research is sponsored by the National Science Foundation.

More information

Dynamical coupling between the middle atmosphere and lower thermosphere

Dynamical coupling between the middle atmosphere and lower thermosphere Dynamical coupling between the middle atmosphere and lower thermosphere Anne Smith, Dan Marsh, Nick Pedatella NCAR* Tomoko Matsuo CIRES/NOAA NCAR is sponsored by the National Science Foundation Model runs

More information

BAYESIAN HIERARCHICAL MODELS FOR EXTREME EVENT ATTRIBUTION

BAYESIAN HIERARCHICAL MODELS FOR EXTREME EVENT ATTRIBUTION BAYESIAN HIERARCHICAL MODELS FOR EXTREME EVENT ATTRIBUTION Richard L Smith University of North Carolina and SAMSI (Joint with Michael Wehner, Lawrence Berkeley Lab) IDAG Meeting Boulder, February 1-3,

More information

Climate Change: the Uncertainty of Certainty

Climate Change: the Uncertainty of Certainty Climate Change: the Uncertainty of Certainty Reinhard Furrer, UZH JSS, Geneva Oct. 30, 2009 Collaboration with: Stephan Sain - NCAR Reto Knutti - ETHZ Claudia Tebaldi - Climate Central Ryan Ford, Doug

More information

Cross-covariance Functions for Tangent Vector Fields on the Sphere

Cross-covariance Functions for Tangent Vector Fields on the Sphere Cross-covariance Functions for Tangent Vector Fields on the Sphere Minjie Fan 1 Tomoko Matsuo 2 1 Department of Statistics University of California, Davis 2 Cooperative Institute for Research in Environmental

More information

Estimation of non-stationary spatial covariance structure

Estimation of non-stationary spatial covariance structure Estimation of non-stationary spatial covariance structure DAVID J NOTT Department of Statistics, University of New South Wales, Sydney 2052, Australia djn@mathsunsweduau WILLIAM T M DUNSMUIR Division of

More information

COE CST Fourth Annual Technical Meeting: Mitigating threats through space environment modeling/prediction

COE CST Fourth Annual Technical Meeting: Mitigating threats through space environment modeling/prediction COE CST Fourth Annual Technical Meeting: Mitigating threats through space environment modeling/prediction PI: Tim Fuller-Rowell Student: Catalin Negrea Washington, DC Overview Team Members Motivation Task

More information

Concepts and Applications of Kriging. Eric Krause

Concepts and Applications of Kriging. Eric Krause Concepts and Applications of Kriging Eric Krause Sessions of note Tuesday ArcGIS Geostatistical Analyst - An Introduction 8:30-9:45 Room 14 A Concepts and Applications of Kriging 10:15-11:30 Room 15 A

More information

arxiv: v4 [stat.me] 14 Sep 2015

arxiv: v4 [stat.me] 14 Sep 2015 Does non-stationary spatial data always require non-stationary random fields? Geir-Arne Fuglstad 1, Daniel Simpson 1, Finn Lindgren 2, and Håvard Rue 1 1 Department of Mathematical Sciences, NTNU, Norway

More information

Simple example of analysis on spatial-temporal data set

Simple example of analysis on spatial-temporal data set Simple example of analysis on spatial-temporal data set I used the ground level ozone data in North Carolina (from Suhasini Subba Rao s website) The original data consists of 920 days of data over 72 locations

More information

A class of nonseparable and nonstationary. spatial temporal covariance functions

A class of nonseparable and nonstationary. spatial temporal covariance functions A class of nonseparable and nonstationary spatial temporal covariance functions Montserrat Fuentes, Li Chen, and Jerry M. Davis Spectral methods are powerful tools to study and model the dependency structure

More information

A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes

A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes Anandamayee Majumdar, Debashis Paul and Dianne Bautista Department of Mathematics and Statistics, Arizona State University,

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

On Gaussian Process Models for High-Dimensional Geostatistical Datasets

On Gaussian Process Models for High-Dimensional Geostatistical Datasets On Gaussian Process Models for High-Dimensional Geostatistical Datasets Sudipto Banerjee Joint work with Abhirup Datta, Andrew O. Finley and Alan E. Gelfand University of California, Los Angeles, USA May

More information

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Chris Paciorek March 11, 2005 Department of Biostatistics Harvard School of

More information

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu AMS Committee on Probability and Statistics

More information

NONSTATIONARY GAUSSIAN PROCESSES FOR REGRESSION AND SPATIAL MODELLING

NONSTATIONARY GAUSSIAN PROCESSES FOR REGRESSION AND SPATIAL MODELLING CARNEGIE MELLON UNIVERSITY NONSTATIONARY GAUSSIAN PROCESSES FOR REGRESSION AND SPATIAL MODELLING A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree

More information

A Gaussian state-space model for wind fields in the North-East Atlantic

A Gaussian state-space model for wind fields in the North-East Atlantic A Gaussian state-space model for wind fields in the North-East Atlantic Julie BESSAC - Université de Rennes 1 with Pierre AILLIOT and Valï 1 rie MONBET 2 Juillet 2013 Plan Motivations 1 Motivations 2 Context

More information

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19 What s for today Introduction to Space-time models c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, 2012 1 / 19 Space-time Data So far we looked at the data that vary over space Now we add another

More information

Parameterization of monoenergetic electron impact ionization

Parameterization of monoenergetic electron impact ionization GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl045406, 2010 Parameteriation of monoenergetic electron impact ioniation Xiaohua Fang, 1 Cora E. Randall, 1 Dirk Lummerheim, 2 Wenbin Wang, 3 Gang

More information

Ground-based GPS observation of SED-associated irregularities over CONUS

Ground-based GPS observation of SED-associated irregularities over CONUS JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 2478 2489, doi:10.1029/2012ja018103, 2013 Ground-based GPS observation of SED-associated irregularities over CONUS Yang-Yi Sun, 1,2,3 Tomoko Matsuo,

More information

Spatial smoothing using Gaussian processes

Spatial smoothing using Gaussian processes Spatial smoothing using Gaussian processes Chris Paciorek paciorek@hsph.harvard.edu August 5, 2004 1 OUTLINE Spatial smoothing and Gaussian processes Covariance modelling Nonstationary covariance modelling

More information

A Spatio-Temporal Downscaler for Output From Numerical Models

A Spatio-Temporal Downscaler for Output From Numerical Models Supplementary materials for this article are available at 10.1007/s13253-009-0004-z. A Spatio-Temporal Downscaler for Output From Numerical Models Veronica J. BERROCAL,AlanE.GELFAND, and David M. HOLLAND

More information

Concepts and Applications of Kriging

Concepts and Applications of Kriging Esri International User Conference San Diego, California Technical Workshops July 24, 2012 Concepts and Applications of Kriging Konstantin Krivoruchko Eric Krause Outline Intro to interpolation Exploratory

More information

A test for stationarity of spatio-temporal random fields on planar and spherical domains

A test for stationarity of spatio-temporal random fields on planar and spherical domains A test for stationarity of spatio-temporal random fields on planar and spherical domains Mikyoung Jun and Marc G. Genton 1 June 13, 2010 ABSTRACT: A formal test for weak stationarity of spatial and spatio-temporal

More information

Groundwater permeability

Groundwater permeability Groundwater permeability Easy to solve the forward problem: flow of groundwater given permeability of aquifer Inverse problem: determine permeability from flow (usually of tracers With some models enough

More information

WACCM X Updates. CESM Workshop, June, 2017, Boulder, Colorado

WACCM X Updates. CESM Workshop, June, 2017, Boulder, Colorado WACCM X Updates Han Li Liu and WACCM X Team NCAR/HAO: Ben Foster, Jing Liu, Gang Lu, Astrid Maute, Joe McInerney, Nick Pedatella, Liying Qian, Art Richmond, Stan Solomon, Wenbin Wang NCAR/ACOM: Chuck Bardeen,

More information

Anomaly Detection and Removal Using Non-Stationary Gaussian Processes

Anomaly Detection and Removal Using Non-Stationary Gaussian Processes Anomaly Detection and Removal Using Non-Stationary Gaussian ocesses Steven Reece Roman Garnett, Michael Osborne and Stephen Roberts Robotics Research Group Dept Engineering Science Oford University, UK

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Flexible Gaussian Processes via Convolution

Flexible Gaussian Processes via Convolution Flexible Gaussian Processes via Convolution Herbert K. H. Lee, Christopher H. Holloman, Catherine A. Calder, and Dave M. Higdon Duke University (and LANL) June 21, 2002 Abstract Spatial and spatio-temporal

More information

A multi-resolution Gaussian process model for the analysis of large spatial data sets.

A multi-resolution Gaussian process model for the analysis of large spatial data sets. National Science Foundation A multi-resolution Gaussian process model for the analysis of large spatial data sets. Doug Nychka Soutir Bandyopadhyay Dorit Hammerling Finn Lindgren Stephen Sain NCAR/TN-504+STR

More information

Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA

Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA BY MIKYOUNG JUN AND MICHAEL L. STEIN Presented by Sungkyu Jung April, 2009 Outline 1 Introduction 2 Covariance Models 3 Application: Level

More information

Some Areas of Recent Research

Some Areas of Recent Research University of Chicago Department Retreat, October 2012 Funders & Collaborators NSF (STATMOS), US Department of Energy Faculty: Mihai Anitescu, Liz Moyer Postdocs: Jie Chen, Bill Leeds, Ying Sun Grad students:

More information

Development and Validation of WACCM-X Thermosphere and Ionosphere

Development and Validation of WACCM-X Thermosphere and Ionosphere Development and Validation of WACCM-X Thermosphere and Ionosphere Han-Li Liu and WACCM-X Team NCAR/HAO: Ben Foster, Jing Liu, Gang Lu, Astrid Maute, Joe McInerney, Nick Pedatella, Liying Qian, Art Richmond,

More information

A BAYESIAN SPATIO-TEMPORAL GEOSTATISTICAL MODEL WITH AN AUXILIARY LATTICE FOR LARGE DATASETS

A BAYESIAN SPATIO-TEMPORAL GEOSTATISTICAL MODEL WITH AN AUXILIARY LATTICE FOR LARGE DATASETS Statistica Sinica 25 (2015), 61-79 doi:http://dx.doi.org/10.5705/ss.2013.085w A BAYESIAN SPATIO-TEMPORAL GEOSTATISTICAL MODEL WITH AN AUXILIARY LATTICE FOR LARGE DATASETS Ganggang Xu 1, Faming Liang 1

More information

Concepts and Applications of Kriging. Eric Krause Konstantin Krivoruchko

Concepts and Applications of Kriging. Eric Krause Konstantin Krivoruchko Concepts and Applications of Kriging Eric Krause Konstantin Krivoruchko Outline Introduction to interpolation Exploratory spatial data analysis (ESDA) Using the Geostatistical Wizard Validating interpolation

More information

A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes

A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes Anandamayee Majumdar, Debashis Paul and Dianne Bautista Department of Mathematics and Statistics, Arizona State University,

More information

Spatially Varying Autoregressive Processes

Spatially Varying Autoregressive Processes Spatially Varying Autoregressive Processes Aline A. Nobre, Bruno Sansó and Alexandra M. Schmidt Abstract We develop a class of models for processes indexed in time and space that are based on autoregressive

More information

Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets

Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets Sudipto Banerjee University of California, Los Angeles, USA Based upon projects involving: Abhirup Datta (Johns Hopkins University)

More information

dans les modèles à vraisemblance non explicite par des algorithmes gradient-proximaux perturbés

dans les modèles à vraisemblance non explicite par des algorithmes gradient-proximaux perturbés Inférence pénalisée dans les modèles à vraisemblance non explicite par des algorithmes gradient-proximaux perturbés Gersende Fort Institut de Mathématiques de Toulouse, CNRS and Univ. Paul Sabatier Toulouse,

More information

Isotropic Covariance Functions on Spheres: Some Properties and Modeling Considerations

Isotropic Covariance Functions on Spheres: Some Properties and Modeling Considerations Isotropic Covariance Functions on Spheres: Some Properties and Modeling Considerations Joseph Guinness a, Montserrat Fuentes a a NC State University, Department of Statistics Abstract Introducing flexible

More information

Accomplishments and Plans for NCAR Data Assimilation Initiative J. Anderson, D. Nychka, C. Snyder, J. Tribbia 21 October, 2003

Accomplishments and Plans for NCAR Data Assimilation Initiative J. Anderson, D. Nychka, C. Snyder, J. Tribbia 21 October, 2003 Accomplishments and Plans for NCAR Data Assimilation Initiative J. Anderson, D. Nychka, C. Snyder, J. Tribbia 21 October, 2003 1.1 Introduction: Rationale for Initiative Data assimilation is the term used

More information

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Jeffrey N. Rouder Francis Tuerlinckx Paul L. Speckman Jun Lu & Pablo Gomez May 4 008 1 The Weibull regression model

More information

Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X): Model Overview

Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X): Model Overview Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X): Model Overview Han-Li Liu and WACCM-X Team NCAR/HAO: Ben Foster, Jing Liu, Gang Lu, Astrid Maute, Joe McInerney,

More information

Extreme Values on Spatial Fields p. 1/1

Extreme Values on Spatial Fields p. 1/1 Extreme Values on Spatial Fields Daniel Cooley Department of Applied Mathematics, University of Colorado at Boulder Geophysical Statistics Project, National Center for Atmospheric Research Philippe Naveau

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

A Gaussian Mixture Model Approach to

A Gaussian Mixture Model Approach to A Gaussian Mixture Model Approach to A Parametric, Feature-Based Method Valliappa 1,2 John Kain 2 1 Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma 2 Radar Research and

More information

Boulder, CO spot.colorado.edu/~matsuot

Boulder, CO spot.colorado.edu/~matsuot TOMOKO MATSUO Boulder, CO 80309-0429 303-735-7144 tomoko.matsuo@colorado.edu spot.colorado.edu/~matsuot ASSISTANT PROFESSOR Tomoko Matsuo, PhD is a leading data assimilation researcher in space science.

More information

Data Assimilation Working Group

Data Assimilation Working Group Data Assimilation Working Group Dylan Jones (U. Toronto) Kevin Bowman (JPL) Daven Henze (CU Boulder) IGC7 4 May 2015 1 Chemical Data Assimilation Methodology State optimization: x is the model state (e.g.,

More information

An Additive Gaussian Process Approximation for Large Spatio-Temporal Data

An Additive Gaussian Process Approximation for Large Spatio-Temporal Data An Additive Gaussian Process Approximation for Large Spatio-Temporal Data arxiv:1801.00319v2 [stat.me] 31 Oct 2018 Pulong Ma Statistical and Applied Mathematical Sciences Institute and Duke University

More information

B008 COMPARISON OF METHODS FOR DOWNSCALING OF COARSE SCALE PERMEABILITY ESTIMATES

B008 COMPARISON OF METHODS FOR DOWNSCALING OF COARSE SCALE PERMEABILITY ESTIMATES 1 B8 COMPARISON OF METHODS FOR DOWNSCALING OF COARSE SCALE PERMEABILITY ESTIMATES Alv-Arne Grimstad 1 and Trond Mannseth 1,2 1 RF-Rogaland Research 2 Now with CIPR - Centre for Integrated Petroleum Research,

More information

Spatially-Varying Covariance Functions for Nonstationary Spatial Process Modeling

Spatially-Varying Covariance Functions for Nonstationary Spatial Process Modeling Spatially-Varying Covariance Functions for Nonstationary Spatial Process Modeling Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School

More information

Accepted author version posted online: 19 Sep 2012.

Accepted author version posted online: 19 Sep 2012. This article was downloaded by: [EPFL Bibliothèque] On: 13 December 2012, At: 06:38 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Andreas Rhodin, Harald Anlauf German Weather Service (DWD) Workshop on Flow-dependent aspects of data assimilation,

More information

Shape and Chemical Diagnostics of the Polar Vortices in WACCM

Shape and Chemical Diagnostics of the Polar Vortices in WACCM Shape and Chemical Diagnostics of the Polar Vortices in WACCM V. Lynn Harvey, Cora Randall, Jeff France, Laura Holt, Katelynn Greer Richard Collins Dan Marsh, Doug Kinnison Laboratory for Atmospheric and

More information

A comparison of U.S. precipitation extremes under two climate change scenarios

A comparison of U.S. precipitation extremes under two climate change scenarios A comparison of U.S. precipitation extremes under two climate change scenarios Miranda Fix 1 Dan Cooley 1 Steve Sain 2 Claudia Tebaldi 3 1 Department of Statistics, Colorado State University 2 The Climate

More information

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008 Regularized Estimation of High Dimensional Covariance Matrices Peter Bickel Cambridge January, 2008 With Thanks to E. Levina (Joint collaboration, slides) I. M. Johnstone (Slides) Choongsoon Bae (Slides)

More information

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Chris Paciorek Department of Biostatistics Harvard School of Public Health application joint

More information

Luke B Smith and Brian J Reich North Carolina State University May 21, 2013

Luke B Smith and Brian J Reich North Carolina State University May 21, 2013 BSquare: An R package for Bayesian simultaneous quantile regression Luke B Smith and Brian J Reich North Carolina State University May 21, 2013 BSquare in an R package to conduct Bayesian quantile regression

More information

A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS

A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS Statistica Sinica 22 (2012), 1737-1764 doi:http://dx.doi.org/10.5705/ss.2010.251 A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS Mikyoung Jun and Marc G. Genton

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

A Bayesian Spatio-Temporal Geostatistical Model with an Auxiliary Lattice for Large Datasets

A Bayesian Spatio-Temporal Geostatistical Model with an Auxiliary Lattice for Large Datasets Statistica Sinica (2013): Preprint 1 A Bayesian Spatio-Temporal Geostatistical Model with an Auxiliary Lattice for Large Datasets Ganggang Xu 1, Faming Liang 1 and Marc G. Genton 2 1 Texas A&M University

More information

Boulder, CO spot.colorado.edu/~matsuot

Boulder, CO spot.colorado.edu/~matsuot TOMOKO MATSUO Boulder, CO 80309-0429 303-735-7144 tomoko.matsuo@colorado.edu spot.colorado.edu/~matsuot ASSISTANT PROFESSOR Tomoko Matsuo s main research interest is the design and development of statistical

More information

False Discovery Control in Spatial Multiple Testing

False Discovery Control in Spatial Multiple Testing False Discovery Control in Spatial Multiple Testing WSun 1,BReich 2,TCai 3, M Guindani 4, and A. Schwartzman 2 WNAR, June, 2012 1 University of Southern California 2 North Carolina State University 3 University

More information

Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations Annales Geophysicae () : 9 SRef-ID: -7/ag/--9 European Geosciences Union Annales Geophysicae Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

More information

Models for Spatial Extremes. Dan Cooley Department of Statistics Colorado State University. Work supported in part by NSF-DMS

Models for Spatial Extremes. Dan Cooley Department of Statistics Colorado State University. Work supported in part by NSF-DMS Models for Spatial Extremes Dan Cooley Department of Statistics Colorado State University Work supported in part by NSF-DMS 0905315 Outline 1. Introduction Statistics for Extremes Climate and Weather 2.

More information

Space-time downscaling under error in computer model output

Space-time downscaling under error in computer model output Space-time downscaling under error in computer model output University of Michigan Department of Biostatistics joint work with Alan E. Gelfand, David M. Holland, Peter Guttorp and Peter Craigmile Introduction

More information

Simulation Based Aircraft Trajectories Design for Air Traffic Management

Simulation Based Aircraft Trajectories Design for Air Traffic Management Simulation Based Aircraft Trajectories Design for Air Traffic Management N. Kantas 1 A. Lecchini-Visintini 2 J. M. Maciejowski 1 1 Cambridge University Engineering Dept., UK 2 Dept. of Engineering, University

More information

Paul Sampson Doris Damian Peter Guttorp NRCSE. T e c h n i c a l R e p o r t S e r i e s. NRCSE-TRS No January 18, 2001

Paul Sampson Doris Damian Peter Guttorp NRCSE. T e c h n i c a l R e p o r t S e r i e s. NRCSE-TRS No January 18, 2001 Advances in Modeling and Inference for Environmental Processes with Nonstationary Spatial Covariance Paul Sampson Doris Damian Peter Guttorp NRCSE T e c h n i c a l R e p o r t S e r i e s NRCSE-TRS No.

More information

Joule heating patterns as a function of polar cap index

Joule heating patterns as a function of polar cap index JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A7, 1119, 10.1029/2001JA000246, 2002 Joule heating patterns as a function of polar cap index Francis K. Chun, Delores J. Knipp, Matthew G. McHarg, and James

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

Concepts and Applications of Kriging

Concepts and Applications of Kriging 2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop Concepts and Applications of Kriging Eric Krause Konstantin Krivoruchko Outline Intro to interpolation Exploratory

More information

Model Selection for Geostatistical Models

Model Selection for Geostatistical Models Model Selection for Geostatistical Models Richard A. Davis Colorado State University http://www.stat.colostate.edu/~rdavis/lectures Joint work with: Jennifer A. Hoeting, Colorado State University Andrew

More information