CHAPTER 1: Measurement, Units & Conversion

Size: px
Start display at page:

Download "CHAPTER 1: Measurement, Units & Conversion"

Transcription

1 . What is MEASUREMENT? CHAPTER : Measurement, Units & Conversion Measurement is the job of science and very specifically, it is the job of Physics. In very simple words, to measure something means to find out how much of something is available. But we need to have a more accurate definition for measurement. The simplest and yet the most profound way of defining measure is as follows. Measurement is the process of comparing an unknown quantity with a known quantity so that we know how much of the unknown quantity is available. What does this mean? It means that we take an unknown item that we want to measure (say, like a bag of rice) and then we compare it with something that we already know (like an iron weight that is kg). We do this by placing both on either side of a weighing pan. We then check which is heavier. If the packet is heavier, then we add more known masses (like 500g or 200g or 00g) along with the kg till both the bag of rice and the iron weights are on the same horizontal level and then we know for sure that both weigh the same. You see this every day in shops and markets (now of course we don t need to balance it with weights, digital balances are a lot more accurate and convenient). Did you notice what we did? We took an unknown quantity (the bag of rice) and compared it with a few known quantities (iron weights). We have therefore, MEASURED the mass of the bag of rice. Physics by itself is crippled. But with the help of mathematics, it becomes awesome! In the paragraph above, we talked about measurement being comparison of an unknown quantity and a known quantity. In mathematics, to compare one quantity with another quantity means to divide one with the other. Take the above example itself. How do we compare the unknown quantity (bag of rice) with the known quantity (weights)? When the weighing pan balances (physics), we divide the two quantities (mathematics), i.e..75 kg kg =.75 kg kg =.75 Unknown Quantity Known Quantity = "How much? " OR ( cross multiplying ).75 kg =.75 kg Unknown Quantity = How Much? OF Known Quantity It should be noted that ALL measurements are like this, it is comparison (physics) of two quantities which mathematically means to divide the two. 2. What is a PHYSICAL QUANTITY? A quantity that can be measured is called a physical quantity: e.g. length, mass, weight, time, speed, force, pressure etc. To really understand what this means, we should compare it with non-physical quantities, or that which CANNOT be measured. I don t want to tell you examples of these. Why don t you think of it and tell me? Can you think of some non - physical quantities or quantities that CANNOT be measured? As in all sciences, physics too has classifications. Now that we have learnt what a physical quantity is, we need to know that physical quantities is classified into two types. Page of 3

2 (A) FUNDAMENTAL QUANTITIES: Quantities that DO NOT depend on any other physical quantity for their definition is called fundamental quantities. In physics, there are 7 fundamental quantities. (i) Length (ii) Mass (iii) Time (iv) Electric Current (v) Temperature (vi) Amount of Substance (vii) Luminous Intensity You will surely be familiar with the first 5 in the list while not so much with the last 2. For now, we will only worry about the first three, length mass and time. (B) DERIVED QUANTITIES: Quantities that depends on fundamental quantities for their definition is called derived quantities. There are many derived quantities; area, volume, speed, force, pressure to name some. These units are derived from the fundamental quantities. For e.g., Area is Width Breadth where Width and Breath are lengths. Or speed is distance time. We will come back to more on derived units later. 3. What is a UNIT? There are many physical quantities (quantities that we can measure). Once we measure them, how do we differentiate them from each other? For instance, 5 units in mass and 5 units in length are not the same. They are two different types of quantities and so two different kinds of measurement using different instruments. In order address this problem and to establish a standard for all physical quantities, we use UNITS. A unit is a definite magnitude of a quantity that is used as a standard for measurement. You remember the first discussion on how measurement is the comparison of one quantity with another and in that we had a known quantity? That KNOWN QUANTITY is the unit of what we are measuring. It is a standard accepted all throughout the world so that kg or km will mean the same India and in Africa! Taking the first example of the bag of rice, we have,.75 kg =.75 kg Unknown Quantity = How Much OF Known Quantity Unknown Quantity = MAGNITUDE UNIT You see, unit IS the known quantity! However, a given physical quantity, say length, may have many units. Meter, inch, feet and yard are all known units of length but the world accepts only one standard unit per physical quantity. The system that contains all the standard units is called the SI system (French: Système International d'unités, SI) and we call them the SI units of measurement. The table alongside shows the SI units of the seven fundamental quantities and once we know these seven, all the units for derived quantities can be derived easily from these seven. So now we are almost ready to continue into the journey of physics with these basic ideas. But before that, let us do some simple exercise to find the units of derived quantities # Fundamental Quantity Fundamental Unit [symbol] Length meter [m] 2 Mass kilogram [kg] 3 Time second [s] 4 Electric Current Ampere [A] 5 Temperature Kelvin [K] 6 7 Amount of Substance Luminous Intensity mole [mol] candela [cd] Page 2 of 3

3 4. Finding Units for Derived Quantities # Derived Quantities General Formula Fundamental SI Unit Combination Derived SI Unit Area A = Length Breadth A = l b 2 Volume V = Area Height V = A h 3 Density ρ = Mass Volume ρ = m V 4 Speed s = change in Distance Time s = Δd t 5 Acceleration a = change in Velocity Time a = Δv t 6 Momentum p = Mass Velocity p = m v 7 Force F = Mass Acceleration F = m a 8 Pressure p = Force Area p = F A 9 Work W = Force Displacement W = F d 0 Power Power = Work Time P = W t Specific Heat Capacity c = change in Heat Energy Mass Temperature c = ΔH m T Page 3 of 3

4 5. Conversion of Units ***** [VERY, VERY IMPORTANT] ***** # STEPS EXAMPLE (easy) EXAMPLE 2 (less easy) EXAMPLE 3 (needs you to be very careful) 2 Read the question (or assess the situation) carefully and identify the quantity that needs to be converted. Write down the quantity to be converted followed by = and a question mark (?) followed by the unit to which the quantity has to be converted. Convert 567g to kilogram Convert 72 km/hr to m/s Convert 3.6g/cc to kg/m g =? kg 72 km/hr =? m/s 3.6g/cc (= 3.6g/cm 3 ) =? kg/m 3 3 Write the quantity to be converted along with the unit, put the = sign and split the quantity into magnitude and unit. 567g = 567 g 72km/hr = 72 km/hr = 72 km hr 3.6g/cm 3 = 3.6 g/cm 3 = 3.6 g cm 3 = 3.6 g cm cm cm 4 Write the relation between the two units in question. This relation you may already or will be given in the question. We know that 000g = kg So, g = 000 kg We know that km = 000m hr = 60 60s We know that 000g = kg & m = 00cm So, g = kg & cm = m 5 Write down step 3 again and substitute the relation into step. 567g = 567 g 567g = { kg} 72km/hr = 72 km hr 72km/hr = { m s } g 3.6 cm cm cm = 3.6 { 000 kg 00 m 00 m } 00 m 6 Again, split the unit from the magnitude. Now the magnitude will change as the unit has changed. Put the new magnitude in brackets 567g = ( km ) kg 72 hr 000 = ( ) m s 3.6 ( 000 kg ) [ m m m ] 00 7 CAREFULLY simplify the numbers in the bracket. Break it into several steps if that helps to avoid errors. Also combine the units when required. 567g = ( ) kg 567g = (0.567) kg 72 km 000 = (72 hr ) m s 72 km hr = ( ) m s = 20 m s ( ) [ kg 000 m 3] 3.6 ( 06 kg kg 03) = 3.6 (000) [ m3 m 3] 8 Write final answer clearly alongside the question. 567g = 0.567kg 72km/hr = 20m/s 3.6g/cm 3 = 3,600 kg/m 3 Page 4 of 3

5 EXERCISE : WORK OUT THE FOLLOWING CONVERSIONS IN YOUR NOTE BOOK. (Do not skip steps. Keep it elaborate as shown in previous page. We are studying the process) (i).m 2 cm 2 (vi) 5. km m (xi) 4.89 m km (ii) 6 ms - kmh - (vii) 24 min hours (xii) 8 hour min (iii) 7,600 kgm -3 gcm -3 (iv).08 gcm -3 kgm -3 (viii) 20 kmh - ms - (ix) 2678 cm 2 m 2 (xiii) 5.6 m 3 mm 3 (xiv) 2km hr -2 ms -2 (v) 5.34 kg ms -2 g cms -2 (x) 4382 g cms -2 kg ms -2 (xv) s days EXERCISE 2: FILL IN THE MISSING RELATIONS Given below are some commonly used units. You do NOT need to by heart any of these relations. If asked in the exam, the conversion factor will be given in the question. Physical Quantity Unit Symbol Relation to known units Relations to Other units Inch in in = 2.54 cm - Length Feet ft ft = cm ft = 2 in Miles mi mi =.6 km - Square Feet ft 2 m 2 = ft 2 - Area Square inches in 2 in 2 = cm 2 - Ground ground ground = 2400ft 2 ground = m 2 Litre L L = 000cm 3 - Volume Milliliter ml ml = cc (or cm 3 ) Gallon gallon m 3 = 264 gallon gallon = 3.8L Mass Pound lb 2.2 lb = kg - Ounce oz oz = g 6oz = lb Page 5 of 3

6 EXERCISE 3: WRITE THE FOLLOWING FIGURE IS SCIENTIFIC NOTATION Example: Age of Universe = 3,700,000,000 years = = years. Size of a paper = 0.000,02m = 2. Radius of Hydrogen = 0.000,000,000,053 m = 3. Length of a football field = 380 m = 4. Age of the earth = 4,700,000,000 years = 5. One day = 86,400 s = 6. One year = 3,536,000s = EXERCISE 4: EVALUATE THE FOLLOWING EXPONENTS Page 6 of 3

7 6. Instruments and Least Count We need to know a few things about using instrument to measuring physical quantities. There are very simple instruments like the metre scale (length), a stop watch (time) or a bathroom scale (weight) and there are not so simple instruments like voltmeters (voltage), ammeters (current) and spectrometers (angle). All instrument whether they are simple ones or complex ones have two things in common. They are all used for measurements and they all have what is called a Least Count (LC). Least Count is the smallest value of the physical quantity that can be measured with an instrument. It tells you how accurate an instrument is while it is used for measurement. Lower the least count, the more accurate the instrument. For example, the LC of a 5cm scale that you keep in your stationary box is mm or 0.cm. This means that the smallest measurement I can make with this scale is only mm. Not smaller than that. But do we need to make measurements smaller than that? Sure! Why not? How about to find the thickness of hair or the thickness of a thin copper wire? We need instruments with more accuracy (lower least count). And there are instruments that do that. Vernier Calipers and Screw Gauge are instruments used to measure length with accuracy better than mm. Here is a table with some instruments found in our physics lab, what they measure and their least count. # Used to Measure Instrument Metre Scale 2 Vernier Calipers Length 3 Screw Gauge 4 Travelling Microscope 5 Physical Balance Mass 6 Digital Balance 7 Pendulum Time 8 Digital stop clock Least Count cm 0 0. cm cm cm cm cm cm cm 0 g 0. g 000 g 0.00g Depends on its length 00 s 0.0 s 9 Protractor Angle 0 Spectrometer ( 60 ) Voltage Voltmeter 2 Current Ammeter 20 V 0.05 V 50 A 0.02 A Page 7 of 3

8 7. Prefix for SI Units Sometimes when numbers are very large, we use the scientific notation to represent these numbers. For example, the age of the universe is 3.75 billion years which can be written as 3,750,000,000. This may cause considerable confusion especially in counting the number of zeros (remember the number of molecules in 8ml of water is about ! So you will come across very large numbers often). This becomes particularly difficult when the numbers are very small. For instance, the radius of a hydrogen atom is 0.000,000,000,053m! Writing such small number or very large numbers, is confusing so scientific notation is very convenient. This number can be written as m. And the age of the universe can be written as years. This is called the scientific notation form. In physics, the powers of ten (in this case 0 9 ) has nick names. You are already familiar with some of these nick names. They are added as prefix to the unit name. Look at the table alongside and look at the prefixes used in physics. Table : SI Prefixes and Symbols Factor Decimal Representation Prefix Symbol 0 8,000,000,000,000,000,000 exa E 0 5,000,000,000,000,000 peta P 0 2,000,000,000,000 tera T 0 9,000,000,000 giga G 0 6,000,000 mega M 0 3,000 kilo k hecto h 0 0 deka da deci d centi c milli m micro μ nano n pico p femto f atto a 0.000,000,000,053m = ,000,000,000 m = m = m = m = m = m = m = 53 pico metre = 53 pm EXERCISES 5: Write the following measurements replacing the scientific form with prefix on the unit. # Measurement without prefix Measurement with prefix # Measurement without prefix 2,500 g 0.000,000,825 m Measurement with prefix 2 3,400,000,000 m g s ,000,000,729 m 4 5 m ,67 g 5 6,000,000 V ,78 s m ,053,4 m 7 4,000 g/cc 7 35 mm m/s pg 9 35Gg μs 0 7.6Es mm Page 8 of 3

9 8. Significant Figures When we do an experiment, we can measure the physical quantities with an accuracy that depends on the least count of the instrument. For example, with a meter scale which has a least count of mm (= 0.cm) we can calculate values like 7.7cm, 65.3 cm etc. It will be INCORRECT to write 47.65cm or 89.92cm as the instrument (the meter scale) only has a least count of 0.cm and can only measure to an accuracy of 47.6 or 89.9 and note more than that. Therefore writing a value that is more accurate than its least count is scientifically incorrect! However, very often we come across a situation where we have to take the average of several readings. For example, say we measure the thickness of a wooden rod. We take several measurements and we get the values 2.4cm, 2.5cm, 2.4cm. We have to take the average of the three readings and we get Average Thickness = ( ) cm = ( 7.3 ) cm = cm 3 3 The answer is cm. However, logically speaking, we cannot write this as the answer because the scale that you used to measure cannot give you an accuracy of more than 0.cm. Therefore, we have to round off this to the first decimal place. Therefore the answer will be 2.4cm. We say that the reading has 2 SIGNIFICANT FIGURES. Note that all the readings have only 2 significant figures and so the final answer must also have only 2 significant figures. If we do operations such as addition, subtraction, multiplication or division, of several numbers, the final answer will have the number of significant figures of the least accurate number. A basic rule in determining the number of significant figures that can be claimed is as follows: When multiplying several quantities, the number of significant figures in the final answer is the same as the number of significant figures in the least accurate of the quantities being multiplied, where least accurate means having the lowest number of significant figures. The same rule applies to division, addition and subtraction also. For example, suppose we have to multiply length 6.3 cm and breadth 5.4 cm to find the area of a surface, we get the mathematical answer 34.02cm 2. However, we can only write 34cm 2. The logic behind this, I will explain in class. A good rule to find the number of significant figures is as follows The number of significant figures in a given measurement will equal the number of figures you are sure of, plus one (the very next) figure that you are NOT sure of. The least count of the instrument can help finding the sure and unsure figures. Always note that the significance of a digit is different from the surety of the digit. We may not be sure of that last digit (3) of the number However, it IS significant. On the other hand, 4, 5 and 9 are both significant and sure. Page 9 of 3

10 9. General Rules for Finding the Number of Significant Figures DEFINITION OF SIGNIFICANT FIGURES: The number of significant figures (SF) in a given number is equal to the number of figures that you are sure of plus one (the very next) figure that you are NOT sure of.. ALL non-zero figures are significant. So one has to only watch out for zeros! 2. Zeros may or may not be significant figures (SF). 3. Zeroes that come in between non-zero figures ARE significant. e.g.,00 (4 SF), 0.570,003,4 (7 SF), 20,008 (6 SF), 4, (7 SF) 4. Zeroes that come after the decimal point for numbers greater than ARE significant. e.g (6 SF), (7 SF), 3,253.0 (5 SF) 5. Zeroes that come before non-zero figures in numbers greater than are NOT significant. e.g. 0,00,800 (5 SF), 000,00,000 (5 SF) 6. Zeroes that come after non-zero figures in numbers greater than are NOT significant. e.g.,300 (2 SF), 4,560,000(3 SF), 7,000,000( SF), 0( SF), 4,005,000 (4 SF) 7. Zeroes that come after non-zero figures in numbers less than ARE significant. e.g. 0.20,000 (6 SF), 0.00,00 (5 SF), 0.20,038,000 (9 SF), 0.0 (2 SF) 8. Zeros that come before non-zero figures in numbers less than are NOT significant. e.g ( SF) and 0.007,5 (2 SF), 0.000,006,749 (4 SF). As mentioned earlier, they are used to position the decimal point in such numbers. However, the best thing to avoid confusion is to rewrite these numbers in scientific notation as 3 0 2, and respectively. Here, 0 2, 0 3 & 0 6 only indicates the position of the decimal point and are therefore not significant. The above rules are not for by hearting but to be understood and applied. You may have to apply more than one rule at a time to find the number of significant figures. Exercise: Find the number of significant figures in the following numbers ) ) ) ) 6,700,006 5) ) ) 2,000,000 8) ) 7 0) 00 ) ) ) ) ) ) ) ) ) ) Page 0 of 3

11 0. Graphs In physics, we often record and save data for reference in the future. It is from this data that we see patterns and then use those patterns to predict something that will happen in the future. For example, as I told you in class, Galileo is known as the father of physics as he was the first person to actually try out experiments to see if an idea commonly known among people is actually true. During his time, it was a commonly accepted idea that if you drop two objects, the heavier one will hit the ground first. This view was held to be true for about two thousand years till Galileo actually did experiments and shown that the idea was wrong! Irrespective of the mass, all objects fall side by side together always. Watch this amazing video: One of the other things Galileo did after he invented the telescope is to look at the moon every night and draw its shape. After doing this for several months, he found a pattern! Every 28 days, the moon looks the same. The cycle repeats itself every 28 days! It was important to record this data down in order to study it. Now, let us look at a very useful way of representing data that we have. We can do many experiments and record the data. Very often this data is represented in a pictorial form. Data represented in a pictorial form, showing the relationship between two variables is called a Graph. You are all familiar with it as we come across graphs every day. But do you understand these graphs? Our purpose for the last part of this chapter is to learn all that we can about graphs. Let us consider the example of the population of India for a few years. Once we find the population, we can represent it in a table form as shown. The same data can also be represented graphically for a pictorial representation that has a lot of advantages. # Year Population (in millions) Population of India (in millions) A quick look at the graph will tell you that there is generally a steady increase in the population except between 200 and 202 where something a little different happened. This little different thing that happened cannot be noticed from the table very easily. We have to see it on a graph. There are several other things like this for which the graph can be used which cannot be done with the data represented in a table. In order to study all this, let us learn about all the different aspects of a graph. (a) (b) (c) Title of the graph: The graph needs to have a title. You can name it appropriately. Selection of axes and origin: Two perpendicular lines, one horizontal (called X axis) and one vertical (called Y axis) are drawn. The place where the X and Y axes meet is called the origin. Labelling the axis: In the above graph, why did we choose year to be on the X axis and population to be on the Y axis? If we had done it the other way round, we would have surely found it more difficult to interpret the graph. All data that we have to plot have two variables. (i) The independent variable (the one that we Page of 3

12 choose) and (ii) the dependant variable (the one that we get as data from the experiment). We ALWAYS put the independent variable on the X axis and the dependant variable on the Y axis. (d) Selection of Scale: This is often one of the most confusing parts in plotting graphs for a student. Always look at the range of values and then you may use this formula. Scale for axis = Range of values for the variable on the axis Available number of columns on the axis The value that you get for this need not be a cute whole number. So you are allowed to round off the scale to the nearest convenient whole number greater than itself. If you round it off to a number smaller, you will not be able to plot all the points in the graph. This means that while you can make the graph smaller and smaller, there is a limit to which you can make it big. (e) (f) (g) Plotting the points: Using a sharp pencil, plot every point carefully and if need be, you may write the (x,y) values of that point neat by the point. Plotting the line of best fit: Often graphs represent a trend. Meaning how the y variable will change when the x variable changes. This is represented by a line or curve of best fit. For now, you only need to learn about line of best fit. A line of best fit is such a line that is drawn equidistant to all the plotted points. Sometimes, the line can be easily drawn through the plotted points but it is more important that the line is equidistant to all the plotted points such that it NEED NOT pass any of the plotted points. Slope of a Graph: In a graph, you can find the slop of the graph which as the name itself suggest, is literally how much the graph (the line or the curve) slopes to the x axis. This has very important significance in science. So let us define slope of a graph. Slope of a graph = Rise change in y coordinate = Run change in x coordinate = Δy Δx When we say it, we say slope is the rise over the run. Very often, this parameter is also referred to as the rate of change of y with respect to x. Now what does this mean? When you find the slope, we are finding out how fast the y value changes when the x value changes. We will soon see that this has tremendous significance in physics. In the case of an experiment you have done in the lab, you may find the slope of the line of best fit. We do this by taking any two NEW points (not plotted from the data) ON the line and then finding the corresponding x and y values and then finding Δy. As a general Δx example, suppose the points that we have are (x, y ) & (x 2, y 2 ) then the slope of the graph will be Slope = Δy Δx = y 2 y x 2 x When we plot the data on a graph, we may get one straight line, a combination of straight lines or a curve. For a straight line graph, the slope of the line represents the proportionality constant between the two variables y and x. (h) Area under the graph: One other thing that you can do in the graph is to find the area under the graph. As opposed to slope, area will be Area = Δy Δx Page 2 of 3

13 Let us now look at another example that is more common in physics. The following data shows the distance travelled by a car. As we did earlier, the data is given in a table and the graph is plotted alongside. # Time [s] Distance [m] Distance [m] Time [s] It becomes extremely important that we read the graph correctly and that we are able to understand what happens at every point of time. The graph shows a car moving. In general, we see that as time goes by, the car goes farther away from where it started. Between every 0 second interval (as given in the table), we see that the distance is more than the previous except between 60s and 70s where it moves back a little. Let us now study the slope of the graph between every interval of 0 seconds. Analysing the slope of the graph Between 00s and 0s, slope is positive or sloping up! 2. Between 0s and 20s, the slope is the same. 3. Between 20s and 30s also, the slope continues to remains the same. 4. Between 30s and 40s, the slope is more than the previous. 5. Between 40s and 60s, there is no slope or slope is zero as the line is horizontal. 6. Between 60s and 70s, slope is negative (going back in distance) 7. Between 70s and 80s, slope is highest 8. Between 80s and 90s, slope reduces. 9. Between 90s and 00s, slope reduces even further. All this is very good. But what PHYSICAL QUANTITY does the SLOPE represent? It represents the rate of change of distance. change in y Slope = change in x = [ ] = [ ]!!!!!!!! [ ] Now go back to the analysis of the slope of the graph and replace the word slope with the word and read the 9 steps again and see how it sounds. Suppose that we have a velocity time graph. Then, Slope of v t graph = change in y change in x = [ ] [ ] = [ ]!!!! Area of v t graph = change in y change in x = Page 3 of 3

Chapter 5 Measurements and Calculations Objectives

Chapter 5 Measurements and Calculations Objectives Objectives 1. To show how very large or very small numbers can be expressed in scientific notation 2. To learn the English, metric, and SI systems of measurement 3. To use the metric system to measure

More information

Section 5.1 Scientific Notation and Units Objectives

Section 5.1 Scientific Notation and Units Objectives Objectives 1. To show how very large or very small numbers can be expressed in scientific notation 2. To learn the English, metric, and SI systems of measurement 3. To use the metric system to measure

More information

UNIT 1 - STANDARDS AND THEIR MEASUREMENT: Units of Measurement: Base and derived units: Multiple and submultiples of the units: 1

UNIT 1 - STANDARDS AND THEIR MEASUREMENT: Units of Measurement: Base and derived units: Multiple and submultiples of the units: 1 AS Physics 9702 unit 1: Standards and their Measurements 1 UNIT 1 - STANDARDS AND THEIR MEASUREMENT: This unit includes topic 1 and 2 from the CIE syllabus for AS course. Units of Measurement: Measuring

More information

Unit 1. Scientific activity

Unit 1. Scientific activity Index Unit 1. Scientific activity 1. The scientific method...2 2.- Measurement...4 2.1 Unit transformation...4 2.2. Scientific notation...6 3. Working in the lab...7 Practice exam...9 Page 1 of 11 1. The

More information

Number vs. Quantity. Quantity - number + unit UNITS MATTER!! for a measurement to be useful, must include both a number and unit

Number vs. Quantity. Quantity - number + unit UNITS MATTER!! for a measurement to be useful, must include both a number and unit Measurement Data UNITS MATTER!! Number vs. Quantity Quantity - number + unit for a measurement to be useful, must include both a number and unit Measurements We make measurements every day: buying products,

More information

Worksheet 1 Units, Signifiant Figures, Dimensional Analysis, & Density

Worksheet 1 Units, Signifiant Figures, Dimensional Analysis, & Density Name: Name: Name: Name: Worksheet 1 Units, Signifiant Figures, Dimensional Analysis, & Density Objeitives To recognize and use both S.I. and English units correctly. To be able to record a measurement

More information

Worksheet 2 Units, Signifiant Figures, Dimensional Analysis, & Density

Worksheet 2 Units, Signifiant Figures, Dimensional Analysis, & Density Name: Name: Name: Name: Worksheet 2 Units, Signifiant Figures, Dimensional Analysis, & Density Objeitives To recognize and use both S.I. and English units correctly. To be able to record a measurement

More information

Everyday Conversion: Money

Everyday Conversion: Money Everyday Conversion: Money Everyday Measurement: Water Everyday Measurement: Water Everyday Accuracy: Weighing Scales The need to measure correctly and convert! Some Interesting Quantities Length Volume

More information

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Units and Measurement - Metrics A. The International System of Units

More information

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Units and Measurement - Metrics A. The International System of Units

More information

GCE Physics Transition Work

GCE Physics Transition Work GCE Physics Transition Work Mr Spafford: Mathematics and Waves Name: NB: Thanks go to the other physics teachers over the years, from whose work this booklet has been compiled. Unfortunately, the source

More information

TY Physics Measurement Module 1

TY Physics Measurement Module 1 TY Physics Measurement Module 1 Introduction Units of measure were among the earliest tools invented by humans, they were needed for many tasks, such as constructing dwellings, fashioning clothes, or bartering

More information

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING Measurements: Our Starting Point! Why should we begin our study of chemistry with the topic of measurement?! Much of the laboratory work in this course is

More information

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s)

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Chapter 2 Measurements & Calculations Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Measurements can be expressed in a variety of units: Example: length(cm,

More information

General Chemistry I Introductory Concepts. Units, dimensions, and mathematics for problem solving

General Chemistry I Introductory Concepts. Units, dimensions, and mathematics for problem solving General Chemistry I Introductory Concepts Units, dimensions, and mathematics for problem solving Unit Conversion What is the value of S in cm per second? S = 5x10 3 furlongs fortnight Conversion Factor:

More information

Objective -> Students will: 1. identify SI units that we will use for various measurements. 2. perform calculations involving SI prefixes.

Objective -> Students will: 1. identify SI units that we will use for various measurements. 2. perform calculations involving SI prefixes. Objective -> Students will:. identify SI units that we will use for various measurements. 2. perform calculations involving SI prefixes. Warm-up: Use the english system of units (the same ones we use in

More information

Pre-Lab 0.2 Reading: Measurement

Pre-Lab 0.2 Reading: Measurement Name Block Pre-Lab 0.2 Reading: Measurement section 1 Description and Measurement Before You Read Weight, height, and length are common measurements. List at least five things you can measure. What You

More information

Physics 10 Scientific Measurement Workbook Mr. Proctor

Physics 10 Scientific Measurement Workbook Mr. Proctor Physics 10 Scientific Measurement Workbook Mr. Proctor Name: MEASUREMENT OF MATTER - Science 10 textbook reference pages 344-351 The Seven Fundamental Measurements (with units) in Physics are: meter (m)

More information

Scientific Measurement

Scientific Measurement A measurement is a quantity that has both a number and a unit Some numbers encountered in science can be either very large or very small We use scientific notation to make those numbers easier to work

More information

Year 12 Physics INDUCTION WORK XKCD. Student. Class 12 A / B / C / D / E Form

Year 12 Physics INDUCTION WORK XKCD. Student. Class 12 A / B / C / D / E Form Year 12 Physics 2018-19 INDUCTION WORK XKCD Student Class 12 A / B / C / D / E Form DYP 2018 1. Physical Quantities Maths and Physics have an important but overlooked distinction by students. Numbers in

More information

Today is Thursday, February 11 th, 2016

Today is Thursday, February 11 th, 2016 In This Lesson: Scientific Notation and Unit Analysis (Lesson 4 of 6) Today is Thursday, February 11 th, 2016 Stuff You Need: Calculator Paper Towel Pre-Class: By now you ve probably heard of scientific

More information

Chapter 3 - Measurements

Chapter 3 - Measurements Chapter 3 - Measurements You ll learn it in the summer, If not, it ll be a bummer. You ll need to know conversions, For units, Euro version. Metrics are powers of ten, And you might cry when, You re forced

More information

What is Physics? It is a Science

What is Physics? It is a Science It is a Science What is Physics? (What is science?) Physics is a physical science (as compared to earth or life science). Physics is the study of motion and energy. Science is a study Science How is science

More information

Example 1: The mass of the earth is 5.98 x kg. What is its order of magnitude? What is the order of magnitude for 400?

Example 1: The mass of the earth is 5.98 x kg. What is its order of magnitude? What is the order of magnitude for 400? Physics 11 Realms of Physics Physics attempts to model the behavior of the universe from the very large scale (entire universe, 10 52 kg, 10 26 m, 10 19 s) to the very small (components of a proton, 10-28

More information

Dimensional Analysis

Dimensional Analysis Ch01 Dimensional Analysis Measurements include both a value and unit of measurement. Dimensional Analysis is the process we ll use to manage units in our calculations. version 1.5 Nick DeMello, PhD. 2007-2014

More information

Methods and Tools of Physics

Methods and Tools of Physics Methods and Tools of Physics Order of Magnitude Estimation: Essential idea: Scientists aim towards designing experiments that can give a true value from their measurements, but due to the limited precision

More information

In chemistry we use metric units (called SI units after the French term for Systeme internationale.

In chemistry we use metric units (called SI units after the French term for Systeme internationale. Metric system / SI units: In chemistry we use metric units (called SI units after the French term for Systeme internationale. SI units: The SI units we ll be primarily concerned with are shown here: Base

More information

Chemistry I Chapter 3 Scientific Measurement

Chemistry I Chapter 3 Scientific Measurement Chemistry I Chapter 3 Scientific Measurement Learning Goals: 1. Students will understand how to use scientific measurement as a method of quantifying matter. 2. Students will be able to represent measurements

More information

PHYSICS. Chapter 1 Review. Rounding Scientific Notation Factor Label Conversions

PHYSICS. Chapter 1 Review. Rounding Scientific Notation Factor Label Conversions PHYSICS Chapter 1 Review Rounding Scientific Notation Factor Label Conversions The Tools Of PHYSICS Metric Prefixes Prefix Symbol Meaning Kilo K 1000 Deci d tenth Centi c hundreth Milli m thousandth Prefix

More information

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1)

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Conversion factor Density Uncertainty Significant digits/figures Precision Accuracy Percent error September 2017 Page 1 of 32 Scientific

More information

MEASUREMENTS. Significant Figures

MEASUREMENTS. Significant Figures SIGNIFICANT FIGURES MEASUREMENTS Significant Figures Every measured value, that you record on paper, reflects the precision of the measuring device used to obtain that value. Every calculated value that

More information

Chemistry 11. Unit 2 : Introduction to Chemistry

Chemistry 11. Unit 2 : Introduction to Chemistry Chemistry 11 Unit 2 : Introduction to Chemistry 1 2 1. Unit conversion In Chemistry 11 and 12, a mathematical method called Unit Conversions will be used extensively. This method uses CONVERSION FACTORS

More information

Appendix B: Skills Handbook

Appendix B: Skills Handbook Appendix B: Skills Handbook Effective communication is an important part of science. To avoid confusion when measuring and doing mathematical calculations, there are accepted conventions and practices

More information

Introduction to Chemistry

Introduction to Chemistry Introduction to Chemistry A. Unit Conversions 1. In Chemistry 11 and 12, a mathematical method called Unit Conversions will be used extensively. This method uses CONVERSION FACTORS to convert or change

More information

2 Standards of Measurement

2 Standards of Measurement What You ll Learn the SI units and symbols for length, volume, mass, density, time, and temperature how to convert related SI units 2 Standards of Measurement (A), 2(D), 2(C), 2(E) Before You Read If someone

More information

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet.

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet. Note Packet # 1 1 Chemistry: the study of matter. Chemistry Basic Science Concepts Matter: anything that has mass and occupies space. Observations: are recorded using the senses. Examples: the paper is

More information

Name: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry.

Name: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry. Chemistry Name: Section ANALYZE DATA KEY Date: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry. Most, but not all,

More information

CHEM 100 Principles Of Chemistry. Chapter 2 - Quantitative Science

CHEM 100 Principles Of Chemistry. Chapter 2 - Quantitative Science CHEM 100 Principles Of Chemistry Chapter 2 - Quantitative Science 2.1 Quantitative Science Much of the power of science comes from its quantitative aspects From observations that Coke sinks in water and

More information

SCIENTIFIC MEASUREMENT C H A P T E R 3

SCIENTIFIC MEASUREMENT C H A P T E R 3 SCIENTIFIC MEASUREMENT C H A P T E R 3 WHAT IS MEASUREMENT? Comparing one object to a standard In science, we use SI Units meters, o C, grams NOT o F, pounds, ounces etc. TWO TYPES OF MEASUREMENTS 1.

More information

Bio 105 Lab 1: Metric System, Dimensional Analysis, and Measuring

Bio 105 Lab 1: Metric System, Dimensional Analysis, and Measuring 1 BIO 105 Summer 2013 Name Bio 105 Lab 1: Metric System, Dimensional Analysis, and Measuring The word measure means to determine the size, capacity, extent, volume, or quantity of anything, especially

More information

CHEM 2: An Introduction to Inorganic Chemistry

CHEM 2: An Introduction to Inorganic Chemistry Dimensional Analysis: Numbers and Units: The English System of units The Metric System of units (SI) Prefixes (kilo-, centi-, milli-, etc.) A systematic method for performing unit conversions Formulating

More information

International System of Units (SI)

International System of Units (SI) Measurement International System of Units (SI) revised metric system proposed in 1960 widely used in science 7 base units SI Base Units Length Meter m Mass Kilogram kg Time Second s or sec Electrical current

More information

Advanced Physics Summer Assignment.

Advanced Physics Summer Assignment. Advanced Physics Summer Assignment. Part 1 - Review /Read through the notes provided. Part 2 Assignment: Complete the math assignment sections that follow the notes. Metric Units & Conversion Multiplier

More information

see page 8 of these notes )

see page 8 of these notes ) UNIT 1 Note Packet INTRODUCTION TO CHEMISTRY Name: METRICS AND MEASUREMENT In the chemistry classroom and lab, the metric system of measurement is used, so it is important to know what you are measuring,

More information

Today is Tuesday, February 13 th, 2018

Today is Tuesday, February 13 th, 2018 In This Lesson: Scientific Notation and Unit Analysis (Lesson 4 of 6) Today is Tuesday, February 13 th, 2018 Stuff You Need: Calculator Pre-Class: By now you ve probably heard of scientific notation. What

More information

QUANITY NAME OF UNIT ABBREVIATION length meter m mass kilogram kg time second s

QUANITY NAME OF UNIT ABBREVIATION length meter m mass kilogram kg time second s Mathematics Review Sheet AP Physics 1 Systems of Units Physics involves an objective description of the world, so measurement is a crucial tool. In measuring, we make use of a group of standard units comprising

More information

Physics 11. Unit 1 Mathematical Toolkits

Physics 11. Unit 1 Mathematical Toolkits Physics 11 Unit 1 Mathematical Toolkits 1 1.1 Measurement and scientific notations Système International d Unités (SI Units) The base units for measurement of fundamental quantities. Other units can be

More information

Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E.

Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E. Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E. Using sig figs in arithmetic operations F. The metric system G. Problem solving

More information

Welcome to the World of Chemistry. Mrs. Panzarella Rm. 351

Welcome to the World of Chemistry. Mrs. Panzarella Rm. 351 Welcome to the World of Chemistry c Mrs. Panzarella Rm. 351 The Central Science Astronomy Nuclear Chemistry Health and Medicine Biology Physics Geology Chemistry Biology Plant Sciences Biochemistry Environmental

More information

The Metric System, Measurements, and Scientific Inquiry (Chapter 23)

The Metric System, Measurements, and Scientific Inquiry (Chapter 23) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: The Metric System, Measurements, and Scientific Inquiry (Chapter 23) For this assignment, you will require: a calculator & a metric ruler. Objectives:

More information

The Nature of Science

The Nature of Science chapter 1 The Nature of Science section 2 Standards of Measurement Before You Read If someone asked you how wide your desk is, how would you measure it? Would you measure using inches, centimeters, feet,

More information

Collecting and Reporting Data

Collecting and Reporting Data Types of Data Data can be classified as qualitative or quantitative: Qualitative data Are observed rather than measured Include written descriptions, videos, photographs, or live observations Examples

More information

Phys 2401: Lecture 1 Chapt. 1: Measurement

Phys 2401: Lecture 1 Chapt. 1: Measurement Phys 2401: Lecture 1 Chapt. 1: Measurement Martha Casquete Physics and Geology Department Agenda Units Conversion of Units Dimensional analysis Question/Observation of the Week Quizz Introduction Brief

More information

Physics 151, Sections: Physics for Engineers - I

Physics 151, Sections: Physics for Engineers - I Physics 151, Sections: 01-05 Physics for Engineers - I Professor Niloy Dutta E-mail: nkd@phys.uconn.edu Physics 151: Lecture 1, Pg 1 Lecture 1 Agenda for Today : Course Introduction Scope of the course

More information

I. Qualit a Qualit t a ive iv vs. Quantit Quan a tit tiv a e tiv Measurements

I. Qualit a Qualit t a ive iv vs. Quantit Quan a tit tiv a e tiv Measurements I. Qualitative vs. Quantitative Measurements Qualitative Measurement 1) Qualitative measurement = a measurement that gives descriptive, NONnumeric results a)ex: Jillian ran a fast race. b)ex: The light

More information

Measuring Time, Space, and Matter. Units of Measurement

Measuring Time, Space, and Matter. Units of Measurement Measuring Time, Space, and Matter Physics is an experimental science. To understand physics we must be able to connect our theoretical description of nature with our experimental observations of nature.

More information

In recording measurements, it is necessary to understand 1. SIGNIFICANCE of numbers 2. importance of UNITS.

In recording measurements, it is necessary to understand 1. SIGNIFICANCE of numbers 2. importance of UNITS. CHEMISTRY IS LARGELY A QUANTITATIVE SCIENCE Theories and ideas are tested by measurement Measurements are usually quantitative have numbers Science is built on a foundation of mathematics. In recording

More information

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart PREFIXES AND SYMBOLS SI Prefixes you need to know by heart Prefix Symbol In 10 n in Decimal Forms Giga G 10 9 1,000,000,000 Mega M 10 6 1,000,000 kilo k 10 3 1,000 deci d 10 1 0.1 centi c 10 2 0.01 milli

More information

Scientific notation is used to express very large or small numbers.

Scientific notation is used to express very large or small numbers. Scientific Notation Scientific notation is used to express very large or small numbers. Ex. 6.02 x 10 23 The decimal goes The exponent (or power of 10) show after the first number shows how far the decimal

More information

PHYSICS. Complete Study Material and 1000 Objective bits Useful for all SSC, RRB & Group Exams METRE

PHYSICS. Complete Study Material and 1000 Objective bits Useful for all SSC, RRB & Group Exams METRE PHYSICS Complete Study Material and 1000 Objective bits Useful for all SSC, RRB & Group Exams PHYSICAL QUANTITIES The quantities like length, mass, time, temperature, area, volume and density, etc. which

More information

Co Curricular Data Analysis Review

Co Curricular Data Analysis Review Chapter Vocabulary Co Curricular Data Analysis Review Base Unit Second (s) Meter (m) Kilogram (kg) Kelvin (K) Derived unit Liter Density Scientific notation Dimensional analysis (Equality) not in book

More information

Review of Fundamental Mathematics, Measurement & Graphing Techniques

Review of Fundamental Mathematics, Measurement & Graphing Techniques Honors Physics Review of Fundamental Mathematics, Measurement & Graphing Techniques Introduction: One of the coolest concepts concerning science is that all of it is tied together by a few fundamental

More information

Scientific Problem Solving

Scientific Problem Solving Scientific Problem Solving Measurement and Scientific Tools Description and Explanation Suppose you work for a company that tests how cars perform during crashes. You might use various scientific tools

More information

These variables have specific names and I will be using these names. You need to do this as well.

These variables have specific names and I will be using these names. You need to do this as well. Greek Letters In Physics, we use variables to denote a variety of unknowns and concepts. Many of these variables are letters of the Greek alphabet. If you are not familiar with these letters, you should

More information

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY 3.1 MEASUREMENTS AND THEIR UNCERTAINTY Section Review Objectives Convert measurements to scientific notation Distinguish among the accuracy, precision, and error of a measurement Identify the number of

More information

Example 3: 4000: 1 significant digit Example 4: : 4 significant digits

Example 3: 4000: 1 significant digit Example 4: : 4 significant digits Notes: Measurement and Math 1 Accuracy and Precision Precision depends on the precision of the measuring device o For example a device that can measure to the ten thousands place (1.6829 grams) is a more

More information

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3 INTRODUCTION AND KINEMATICS Physics Unit 1 Chapters 1-3 This Slideshow was developed to accompany the textbook OpenStax Physics Available for free at https://openstaxcollege.org/textbooks/college-physics

More information

Measurements and Calculations. Chapter 2

Measurements and Calculations. Chapter 2 Measurements and Calculations Chapter 2 Qualitative Observations: General types of observations. Easy to determine. Not necessarily precise. I have many fingers, the speed limit is fast, class is long,

More information

Table One. Mass of a small package using three different measurement methods

Table One. Mass of a small package using three different measurement methods MS20 Laboratory Scientific Measurements and the Metric System Objectives To understand how to make measurements utilizing various instruments To learn how to use the metric system To convert between the

More information

Chapter 3 - Scientific measurement. Using and expressing measurements

Chapter 3 - Scientific measurement. Using and expressing measurements Chapter 3 - Scientific measurement Using and expressing measurements How far off was Usain Bolt from winning gold in the 100m last weekend? What is a measurement? How do scientists make reporting measurement

More information

Lecture notes on * Measurement and Error * Least Square Fitting

Lecture notes on * Measurement and Error * Least Square Fitting Lecture notes on * Measurement and Error * Least Square Fitting Department of Optical Engineering University of Gaziantep Oct 2016 Sayfa 1 PART I Measurement and Error Sayfa 2 System of Units Physics is

More information

Reference Guide. Science Reference 9/25/ Copyright 1996 Gary Lewis Revisions 2007 by John Pratte

Reference Guide. Science Reference 9/25/ Copyright 1996 Gary Lewis Revisions 2007 by John Pratte Reference Guide Contents...1 1. General Scientific Terminology...2 2. Types of Errors...3 3. Scientific Notation...4 4. Significant Figures...6 5. Graphs...7 6. Making Measurements...8 7. Units...9 8.

More information

Introduction. The Scientific Method and Measurement

Introduction. The Scientific Method and Measurement Introduction The Scientific Method and Measurement Defining How We Look At The Universe Observation: seeing an event or process in nature we wish to explain Hypothesis: a tentative explanation based on

More information

Chapter 2: Measurements and Problem Solving

Chapter 2: Measurements and Problem Solving C h 2 : M e a s u r e m e n t s a n d P r o b l e m S o l v i n g P a g e 1 Chapter 2: Measurements and Problem Solving Read Chapter 2, work problems. Look over the lab assignments before the lab. Keep

More information

AP Physics Math Review Packet

AP Physics Math Review Packet AP Physics Math Review Packet The science of physics was developed to help explain the physics environment around us. Many of the subjects covered in this class will help you understand the physical world

More information

AP PHYSICS 1 SUMMER PREVIEW

AP PHYSICS 1 SUMMER PREVIEW AP PHYSICS 1 SUMMER PREVIEW Name: Your summer homework assignment is to read through this summer preview, completing the practice problems, and completing TASK 1 and Task 2. It is important that you read

More information

International System of Units (SI)

International System of Units (SI) Measurement International System of Units (SI) revised metric system proposed in 1960 widely used in science 7 base units SI Base Units Length Meter m Mass Kilogram kg Time Electrical current Second Ampere

More information

W4 NUMBERS AND UNITS

W4 NUMBERS AND UNITS W4 NUMBERS AND UNITS SI Base Units In almost all cases, reporting numerical results requires that the units are specified. If sports reporters announce a new world record of 9.79 s for the 100 m sprint,

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

PHYS 1441 Section 001 Lecture #2 Tuesday, June 7, 2016

PHYS 1441 Section 001 Lecture #2 Tuesday, June 7, 2016 PHYS 1441 Section 001 Lecture #2 Tuesday, June 7, 2016 Brief history of physics Some basics Chapter 21 Static Electricity and Charge Conservation Charges in Atom, Insulators and Conductors & Induced Charge

More information

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart PREFIXES AND SYMBOLS SI Prefixes you need to know by heart Prefix Symbol In 10 n in Decimal Forms Giga G 10 9 1,000,000,000 Mega M 10 6 1,000,000 kilo k 10 3 1,000 deci d 10 1 0.1 centi c 10 2 0.01 milli

More information

WELCOME TO 1104 PERIOD 1

WELCOME TO 1104 PERIOD 1 WELCOME TO 1104 PERIOD 1 Today: You will complete Activity Sheet 1 during class and turn it in at the end of class. Next Tues/Weds: Turn in Homework Exercise 1 at the beginning of class. Read chapter 2.

More information

Chapter 1 (Part 2) Measurements in Chemistry 1.6 Physical Quantities

Chapter 1 (Part 2) Measurements in Chemistry 1.6 Physical Quantities Chapter 1 (Part 2) Measurements in Chemistry 1.6 Physical Quantities This is a property that can by physically measured. It consists of a number and a unit of measure. (e.g. ) Units Units are very important.

More information

Chemistry Day 39. Friday, December 14 th Monday, December 17 th, 2018

Chemistry Day 39. Friday, December 14 th Monday, December 17 th, 2018 Chemistry Day 39 Friday, December 14 th Monday, December 17 th, 2018 Do-Now: Reactions Quiz Do-Now 1. Write down today s FLT 2. Copy: KCl + H 2 O à? 3. Identify the type of reaction in #2. 4. Predict the

More information

Chapter 2 Measurements and Solving Problems

Chapter 2 Measurements and Solving Problems History of Measurement Chapter 2 Measurements and Solving Problems Humans once used handy items as standards or reference tools for measurement. Ex: foot, cubit, hand, yard. English System the one we use.

More information

1.1 - Scientific Theory

1.1 - Scientific Theory 1.1 - Scientific Theory Babylonians/Egyptians Observation for the practical Religious Agriculture Pseudosciences (science + nonscience) Alchemy Astrology, etc. Greeks Good Theoreticians (knowledge for

More information

Basic math skills you should already have

Basic math skills you should already have Basic math skills you should already have Physics 102 Goderya Why Measurements? A basic scientific activity Measure is to gain information. Measurements allow us to compare Example: A body temperature

More information

Physics 207, Lecture 2, Sept. 8

Physics 207, Lecture 2, Sept. 8 Physics 207, Lecture 2, Sept. 8 Goals: (Highlights of Chaps. 1 & 2.1-2.4) 2.4) Units and scales, order of magnitude calculations, significant digits (on your own for the most part) Distinguish between

More information

CHEM 1105 January 10, 2014

CHEM 1105 January 10, 2014 CHEM 1105 January 10, 2014 Today: Measurements and Problem solving (Chapter 1, sections 1.6-1.8) SI units and prefixes Converting units Temperature, Volume, Density Significant figures More unit conversion

More information

Regents Chemistry NOTE PACKET

Regents Chemistry NOTE PACKET *STUDENT* *STUDENT* Regents Chemistry NOTE PACKET Unit 1: Measurement 1 Co py ri g ht 2015 Tim Dol g os *STUDENT* *STUDENT* Name: Date: Period: Unit 1: Measurement Unit Vocabulary: 1. S.I. unit 9. Significant

More information

8/17/2016. Summary. Summary. Summary. Chapter 1 Quantities and Units. Passive Components. SI Fundamental Units. Some Important Electrical Units

8/17/2016. Summary. Summary. Summary. Chapter 1 Quantities and Units. Passive Components. SI Fundamental Units. Some Important Electrical Units Passive Components Chapter 1 Quantities and Units Welcome to the Principles of Electric Circuits. You will study important ideas that are used in electronics. You may already be familiar with a few of

More information

Chemical Principles 50:160:115. Fall understand, not just memorize. remember things from one chapter to the next

Chemical Principles 50:160:115. Fall understand, not just memorize. remember things from one chapter to the next Chemical Principles 50:160:115 Fall 2016 Chemistry is easy IF: don t fall behind understand, not just memorize do problems remember things from one chapter to the next Proficient in: Explanations at the

More information

Measurement and Calculations

Measurement and Calculations Measurement and Calculations Quantitative Observation How much? Need Measurement Measurement is the comparison of a physical quantity to be measured with a unit of measurement-that is a fixed standard

More information

links: the world's smallest billboard at What is chemistry? A working definition

links: the world's smallest billboard at   What is chemistry? A working definition 1 of 8 links: the world's smallest billboard at http://www.almaden.ibm.com/vis/stm/atomo.html I. The study of chemistry What is chemistry? A working definition Chemistry is the study of things made up

More information

Math for CH 301 Workshop

Math for CH 301 Workshop Welcome to the Math for Chemistry workshop! We are going to cover some mathrelated topics that you are expected to be proficient in for your first semester chemistry course. We will often refer to your

More information

Chapter 2: Measurements & Calculations

Chapter 2: Measurements & Calculations Chapter 2: Measurements & Calculations LA-PRIVATE:sg:sg.02_Measurements_and_Calculations.docx (9/1/14) Chemistry Measurements & Calculations p.1 TABLE OF CONTENTS I. SCIENTIFIC METHOD... 2 II. METRIC UNITS

More information

Chapter 1: The Science of Physics. Physics 1-2 Mr. Chumbley

Chapter 1: The Science of Physics. Physics 1-2 Mr. Chumbley Chapter 1: The Science of Physics Physics 1-2 Mr. Chumbley The Topics of Physics The origin of the word physics comes from the ancient Greek word phusika meaning natural things The types of fields of

More information

Chemistry and Measurement

Chemistry and Measurement Chemistry and Measurement What Is Chemistry? Chemistry is the study of the composition, structure, and properties of matter and energy and changes that matter undergoes. Matter is anything that occupies

More information

James Chickos Room B435. Introductory Chemistry 1111

James Chickos Room B435. Introductory Chemistry 1111 James Chickos Room B435 Introductory Chemistry 1111 What is Chemistry? Chemistry is the study of substances in terms of Composition of Matter What a material it made of Structure of Matter How the elementary

More information

PHYSICS 149: Lecture 2

PHYSICS 149: Lecture 2 PHYSICS 149: Lecture 2 Chapter 1 1.1 Why study physics? 1.2 Talking physics 1.3 The Use of Mathematics 1.4 Scientific Notation and Significant Figures 15Units 1.5 1.6 Dimensional Analysis 1.7 Problem-Solving

More information