Cumulant-based LBM. Repetition: LBM and notation. Content. Computational Fluid Dynamics. 1. Repetition: LBM and notation Discretization SRT-equation

Size: px
Start display at page:

Download "Cumulant-based LBM. Repetition: LBM and notation. Content. Computational Fluid Dynamics. 1. Repetition: LBM and notation Discretization SRT-equation"

Transcription

1 Content Cumulant-based LBM Prof B Wohlmuth Markus Muhr 25 July epetition: LBM and notation Discretiation ST-equation 2 MT-model Basic idea Moments and moment-transformation 3 Cumulant-based LBM Basic idea and technical tools Derivation of the cumulants Cumulant-transformation Cumulant collision operator 4 Validation aka colorful pictures Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 1/60 Computational Fluid Dynamics Numerical simulation of flows epetition: LBM and notation Calculation of the velocity field Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 2/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 3/60

2 Computational Fluid Dynamics Discretiation Numerical simulation of flows In space Calculation of the velocity field In velocity (D2Q9-model) c 6 c 2 c 5 c 3 c 1 c 7 c 4 c 8 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 4/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 5/60 (Discrete) Boltmann-equation (Discrete) Boltmann-equation Considering probabilities of an encounter fi Considering probabilities of an encounter fi f 6 f 2 f 5 f 6 f 2 f 5 f 3 f 1 f 3 f 1 f 7 f 4 f 8 Derivation of a (discrete) transport-equation for the distributions f i : f i (t, x) t + c i x f i (t, x) = Q(f i ) 1 τ C (f i (t, x) f eq i (t, x) ) f 7 f 4 f 8 Derivation of a (discrete) transport-equation for the distributions f i : f i (t, x) t + c i x f i (t, x) = Q(f i ) 1 τ C (f i (t, x) f eq i (t, x) ) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 6/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 6/60

3 Equilibrium distributions f eq i ST-equation Maxwell-distribution as natural velocity-distribution of an ideal gas: ( ) ) m 3/2 m ξ u 2 M(ξ, ρ, u, T ) = ρ exp ( 2π k B T 2k B T Discretiation of the derivative by finite differences f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Interpretation as collision and streaming: Taylor expansion up to second order ξ = ci : ( f eq i = ρ ω i c i u c 2 3 u 2 2c ( ci c 4 u ) ) 2 f 6 f 3 f 2 f 5 f 1 f 7 f 4 f 8 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 7/60 ST-equation ST-equation Discretiation of the derivative by finite differences f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Discretiation of the derivative by finite differences f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Interpretation as collision and streaming: Interpretation as collision and streaming: f 6 f 2 f f 6 f 2 f f 3 f f 3 f f 7 f 4 f 8 f7 f4 f8 f 7 f 4 f 8 f7 f4 f8 f7 f4 f8 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 8/60

4 ST-equation In three dimensions Discretiation of the derivative by finite differences f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Interpretation as collision and streaming: Analogously in three dimensions (D3Q27-model) f 6 f 3 f 2 f 5 f f 7 f 4 f 8 f7 f4 f8 f7 f4 f y x Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 8/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 9/60 1 Notation Convenient notation by index-tupel: f 6 f 2 f 5 f 11 f 01 f 11 f 3 f 1 f 7 f 4 f 8 f 10 f 1 1 f 0 1 f 10 f 1 1 MT-model f i f ij with i, j { 1, 0, 1} Analogously in three dimensions: fi f ijk with i, j, k { 1, 0, 1} Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 10/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 11/60

5 Basic idea of MT (1) Basic idea of MT (1) The ST-equation reads: The ST-equation reads: f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Idea: Mix the relaxation terms Idea: Mix the relaxation terms f i (t + t, x + c i t) = f i (t, x) n V j=0 1 ( ) f j (t, x) f eq j (t, x) τ ij f i (t + t, x + c i t) = f i (t, x) n V j=0 1 ( ) f j (t, x) f eq j (t, x) τ ij In matrix-vector-form f i (t + t, x + c i t) = f i (t, x) S ( fi (t, x) f eq i (t, x) ) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 12/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 12/60 Basic idea of MT (1) Basic idea of MT (2) The ST-equation reads: f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) In matrix-vector-form f (t + t, x + c t) = f (t, x) S (f (t, x) f eq (t, x)) Idea: Mix the relaxation terms f i (t + t, x + c i t) = f i (t, x) n V j=0 1 ( ) f j (t, x) f eq j (t, x) τ ij Diagonalie the matrix S: f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) In matrix-vector-form f i (t + t, x + c i t) = f i (t, x) S ( fi (t, x) f eq i (t, x) ) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 12/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 13/60

6 Basic idea of MT (2) Basic idea of MT (2) In matrix-vector-form In matrix-vector-form f (t + t, x + c t) = f (t, x) S (f (t, x) f eq (t, x)) f (t + t, x + c t) = f (t, x) S (f (t, x) f eq (t, x)) Diagonalie the matrix S: f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) Diagonalie the matrix S: f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) Interpretation as transformation M : f m Interpretation as transformation M : f m f (t + t, x + c t) = f (t, x) M 1Ŝ (m(t, x) meq (t, x)) f (t + t, x + c t) = f (t, x) M 1Ŝ (m(t, x) meq (t, x)) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 13/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 13/60 Moments Moments Definition: (aw)-moments For α, β, γ = 0, 1, 2, one defined the (raw)-moments of order α + β + γ as follows: m αβγ = In matrix-vector-form (in 2D) m 00 m 10 m 01 m 20 m 02 m 11 m 21 m 12 m 22 = ( ) α ( ) β ( ) γ c ijk c ijk c ijk f ijk = x y i α j β k γ f ijk Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 14/60 f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 Definition: (aw)-moments For α, β, γ = 0, 1, 2, one defined the (raw)-moments of order α + β + γ as follows: m αβγ = In matrix-vector-form (in 2D) m 00 m 10 m 01 m 20 m 02 m 11 m 21 m 12 m 22 = ( ) α ( ) β ( ) γ c ijk c ijk c ijk f ijk = x y i α j β k γ f ijk Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 14/60 f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

7 Interpretation of the moments Interpretation of the moments The moments correspond to different physical quantities like: The moments correspond to different physical quantities like: m 00 = 1 i,j= 1 f ij = ρ density c 6 c 3 c 2 c 5 c 1 m 00 = 1 i,j= 1 f ij = ρ density c 6 c 3 c 2 c 5 c 1 m 10 = 1 ) (c ij i,j= 1 m01 = 1 i,j= 1 (c ij ) x y c 7 c 4 c 8 f ij = ρ u x x-momentum f ij = ρ u y y-momentum m 10 = 1 i,j= 1 m01 = 1 i,j= 1 (c ij ) (c ij ) x y c 7 c 4 c 8 f ij = ρ u x x-momentum f ij = ρ u y y-momentum Some moments have to be combined for a reasonable interpretation ( m20 + m 02 = 1 ( ) 2 ( ) ) 2 c ij + c ij f ij E kin x y i,j= 1 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 15/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 15/60 Interpretation of the moments Moment-transformation The moments correspond to different physical quantities like: m 00 = 1 i,j= 1 m 10 = 1 i,j= 1 m01 = 1 i,j= 1 f ij = ρ density (c ij ) (c ij ) x y c 6 c 3 c 2 c 5 c 1 c 7 c 4 c 8 f ij = ρ u x x-momentum f ij = ρ u y y-momentum Some moments have to be combined for a reasonable interpretation ( m20 + m 02 = 1 ( ) 2 ( ) ) 2 c ij + c ij f ij E kin x y i,j= 1 The respective linear combination of matrix-lines yields the moment-transformationmatrix M 0 M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 = m 00 m 10 m 01 m 20 + m 02 m 20 m 02 m 11 m 21 m 12 m 22 = Further linear combinations of (raw)-moments are possible as for example row-wise orthogonaliation f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 15/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 16/60

8 MT-algorithm MT-algorithm Transform the given distributions f into moments M = M f und M eq = M f eq Transform the given distributions f into moments M = M f und M eq = M f eq elax the moment Mi with frequencies ω i M 0 M 8 = ω 0 ω 8 M 0 M eq 0 M 8 M eq 8 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 17/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 17/60 MT-algorithm MT-algorithm Transform the given distributions f into moments M = M f und M eq = M f eq Transform the given distributions f into moments M = M f und M eq = M f eq elax the moment Mi with frequencies ω i elax the moment Mi with frequencies ω i M 0 M 8 = ω 0 ω 8 M 0 M eq 0 M 8 M eq 8 M 0 M 8 = ω 0 ω 8 M 0 M eq 0 M 8 M eq 8 Transform the relaxed moments back into distribution space = M 1 M Transform the relaxed moments back into distribution space = M 1 M Collision update and streaming step f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 17/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 17/60

9 MT-algorithm Pro/Con MT-model Transform the given distributions f into moments M = M f und M eq = M f eq elax the moment Mi with frequencies ω i M 0 M 8 = ω 0 ω 8 M 0 M eq 0 M 8 M eq 8 Transform the relaxed moments back into distribution space = M 1 M Collision update and streaming step f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) More tuning-parameter ωi as for ST Better insight into the model by identification with physical quantities Linear transformations statistical dependencies among the moments ( dependencies between ω i ) Physics gets lost by (wrong) variation of parameters How to choose them? Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 17/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 18/60 Pro/Con MT-model More tuning-parameter ωi as for ST Better insight into the model by identification with physical quantities Linear transformations statistical dependencies among the moments ( dependencies between ω i ) Physics gets lost by (wrong) variation of parameters How to choose them? Cumulant-based LBM Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 18/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 19/60

10 Basic idea of cumulant-based LBM Basic idea of cumulant-based LBM Goal: Find a transformation to statistically independent quantities C m Mathematically this is described by a factoriation of the probability-density f ijk = n V m=0 F m (C m ) Goal: Find a transformation to statistically independent quantities C m Mathematically this is described by a factoriation of the probability-density f ijk = n V m=0 F m (C m ) Efficient implementation of that (nonlinear) transformation Efficient implementation of that (nonlinear) transformation Main tools: Multivariate Taylor-expansion, Laplace-transformation and distribution-theory Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 20/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 20/60 Basic idea of cumulant-based LBM Goal: Find a transformation to statistically independent quantities C m Mathematically this is described by a factoriation of the probability-density f ijk = n V m=0 F m (C m ) Distributions ecall from measure theory: Lebesgue-space L 2 : L 2 () := { f : f (x) 2 dx < } Consider the following functional G : L 2 (), G(f ) := 1 1 f (x) dx Efficient implementation of that (nonlinear) transformation Main tools: Multivariate Taylor-expansion, Laplace-transformation and distribution-theory Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 20/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 21/60

11 Distributions ecall from measure theory: Lebesgue-space L 2 : L 2 () := { f : f (x) 2 dx < } Distributions ecall from measure theory: Lebesgue-space L 2 : L 2 () := { f : f (x) 2 dx < } Consider the following functional Consider the following functional G : L 2 (), G(f ) := 1 1 f (x) dx G : L 2 (), G(f ) := 1 1 f (x) dx One searches for a g L 2 () satisfying: G(f ) = g(x) f (x) dx f L 2 () Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 21/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 22/60 Distributions ecall from measure theory: Lebesgue-space L 2 : L 2 () := { f : f (x) 2 dx < } Distributions ecall from measure theory: Lebesgue-space L 2 : L 2 () := { f : f (x) 2 dx < } Consider the following functional Consider the following functional G : L 2 (), G(f ) := 1 1 f (x) dx G : L 2 (), G(f ) := 1 1 f (x) dx One searches for a g L 2 () satisfying: One searches for a g L 2 () satisfying: G(f ) = g(x) f (x) dx f L 2 () G(f ) = g(x) f (x) dx f L 2 () Solution: g(x) = 1[ 1,1] (x) Solution: g(x) = 1[ 1,1] (x) Interpretation of g as functional (ies representation theorem) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 22/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 22/60

12 Distributions ecall from measure theory: Lebesgue-space L 2 : L 2 () := { f : f (x) 2 dx < } Consider the following functional Dirac-sequence Interprete the functions gn (x) = n 2 1 [ 1 n, n] 1 (x), n N as functionals G : L 2 (), G(f ) := 1 1 f (x) dx One searches for a g L 2 () satisfying: G(f ) = g(x) f (x) dx f L 2 () Solution: g(x) = 1[ 1,1] (x) Interpretation of g as functional (ies representation theorem) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 22/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 23/60 Delta-distribution δ Delta-distribution δ For continuous functions f there holds: For continuous functions f there holds: g n (x) f (x) dx = n 2 1 n 1 n f (x) dx g n (x) f (x) dx = n 2 1 n 1 n f (x) dx = n 2 ( ( ) ( 1 F F 1 )) n n = n 2 ( ( ) ( 1 F F 1 )) n n ( ) = F 1 n F 2 1 n ( ) 1 n n F (0) = f (0) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 24/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 24/60

13 Delta-distribution δ Delta-distribution δ For continuous functions f there holds: For continuous functions f there holds: g n (x) f (x) dx = n 2 1 n 1 n f (x) dx g n (x) f (x) dx = n 2 1 n 1 n f (x) dx = n 2 ( ( ) ( 1 F F 1 )) n n = n 2 ( ( ) ( 1 F F 1 )) n n ( ) = F 1 n F 2 1 n ( ) 1 n n F (0) = f (0) ( ) = F 1 n F 2 1 n ( ) 1 n Define the delta-distribution δ(x) := lim g n(x) = g (x) n by: δ(x) f (x) dx = f (0) n F (0) = f (0) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 24/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 24/60 Delta-distribution δ Delta-function For continuous functions f there holds: g n (x) f (x) dx = n 2 = n 2 1 n 1 n f (x) dx ( ( ) ( 1 F F 1 )) n n ( ) = F 1 n F 2 1 n ( ) 1 n Define the delta-distribution δ(x) := lim g n(x) = g (x) n by: δ(x) f (x) dx = f (0) n F (0) = f (0) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 24/60 Considered as a function there holds: δ(x) = { 0 if x 0 if x = 0 Which often gets normed to: δ(x) = { 0 if x 0 1 if x = 0 What you should remember for sure: δ(x) f (x) dx = f (0) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 25/60

14 Delta-function epetition: Fourier-transform Considered as a function there holds: δ(x) = { 0 if x 0 if x = 0 Which often gets normed to: δ(x) = { 0 if x 0 1 if x = 0 The Fourier-transform of f : C is (modulo scaling) defined by: f (ω) = F[f (x)](ω) := f (x) e iωx dx f (ω) tells, how strong e iω is present in the frequency-spectrum of f What you should remember for sure: δ(x) f (x) dx = f (0) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 25/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 26/60 epetition: Fourier-transform Laplace-transformation The Fourier-transform of f : C is (modulo scaling) defined by: f (ω) = F[f (x)](ω) := f (x) e iωx dx f (ω) tells, how strong e iω is present in the frequency-spectrum of f δ(ω 1) δ(ω + 1) Example: F[sin(x)](ω) 2i Instead of projection onto oscillations {e iω } ω one projects onto damping-functions {e s } s + F (s) := L[f (x)](s) := 0 f (x) e sx dx Laplace-transformations of a few common functions: L[x n ](s) = n! s n+1 L[sin(ax)](s) = a s 2 +a 2 L[ln(ax)](s) = 1 s (ln(s/a) + γ) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 27/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 28/60

15 Laplace-transformation Laplace-transformation Instead of projection onto oscillations {e iω } ω one projects onto damping-functions {e s } s + F (s) := L[f (x)](s) := 0 f (x) e sx dx Instead of projection onto oscillations {e iω } ω one projects onto damping-functions {e s } s + F (s) := L[f (x)](s) := 0 f (x) e sx dx Laplace-transformations of a few common functions: L[x n ](s) = n! s n+1 L[sin(ax)](s) = a s 2 +a 2 L[ln(ax)](s) = 1 s (ln(s/a) + γ) Laplace-transformations of a few common functions: L[x n ](s) = n! s n+1 L[sin(ax)](s) = a s 2 +a 2 L[ln(ax)](s) = 1 s (ln(s/a) + γ) Certain features as for example the shift-property hold true: Certain features as for example the shift-property hold true: L[f (x a)](s) = e as F (s) L[f (x a)](s) = e as F (s) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 28/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 28/60 Laplace-transformation of the delta-distribution Laplace-transformation of the delta-distribution Apply the definition of the (two-sided) Laplace-transform: Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx L[δ(x)](s) = δ(x) e sx dx Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 29/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 29/60

16 Laplace-transformation of the delta-distribution Laplace-transformation of the delta-distribution Apply the definition of the (two-sided) Laplace-transform: Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx = e s 0 = 1 L[δ(x)](s) = δ(x) e sx dx = e s 0 = 1 Transformation of the shifted delta-distribution by the shift-property: L[δ(x a)](s) = e as L[δ(x)](s) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 30/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 30/60 Laplace-transformation of the delta-distribution Laplace-transformation of the delta-distribution Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx = e s 0 = 1 Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx = e s 0 = 1 Transformation of the shifted delta-distribution by the shift-property: L[δ(x a)](s) = e as L[δ(x)](s) Transformation of the shifted delta-distribution by the shift-property: L[δ(x a)](s) = e as L[δ(x)](s) = e as Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 30/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 31/60

17 Derivation of the cumulants (1) - Analytiation Derivation of the cumulants (1) - Analytiation Want to capture the discrete velocity-distributions analytically Want to capture the discrete velocity-distributions analytically f 11 f 01 f 11 f 11 f 01 f 11 f 10 f 10 f 10 f 10 f 1 1 f 0 1 f 1 1 f 1 1 f 0 1 f 1 1 This can be done by the peak-function f (ξ): This can be done by the peak-function f (ξ): f (ξ) = f (ξ x, ξ y, ξ ) = f ijk δ(ic ξ x ) δ(jc ξ y ) δ(kc ξ ) f (ξ) = f (ξ x, ξ y, ξ ) = f ijk δ(ic ξ x ) δ(jc ξ y ) δ(kc ξ ) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 32/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 32/60 Derivation of the cumulants (1) - Analytiation Derivation (2) - Laplace-transform Want to capture the discrete velocity-distributions analytically f 11 f 01 f 11 To increase regularity one performs the two-sided Laplace-transform of f (ξ): f 10 f 1 1 f 0 1 f 10 f 1 1 L[f (ξ)](ξ) = f ijk L[δ(ic ξ x )]L[δ(jc ξ y )]L[δ(kc ξ )] This can be done by the peak-function f (ξ): f (ξ) = f (ξ x, ξ y, ξ ) = f ijk δ(ic ξ x ) δ(jc ξ y ) δ(kc ξ ) = f ijk e Ξ x ic e Ξ y jc e Ξ kc =: F (Ξ) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 33/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 34/60

18 Derivation (2) - Laplace-transform Derivation (3) - statistical independence To increase regularity one performs the two-sided Laplace-transform of f (ξ): L[f (ξ)](ξ) = = f ijk L[δ(ic ξ x )]L[δ(jc ξ y )]L[δ(kc ξ )] f ijk e Ξ x ic e Ξ y jc e Ξ kc =: F (Ξ) Applying the statistical independence (which one aims to have) in the frequency space: And using the logarithm F (Ξ x, Ξ y, Ξ ) = ln (F (Ξ x, Ξ y, Ξ )) = n V m=0 n V m=0 F m (C m ) ln (F m (C m )) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 34/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 35/60 Derivation (4) - Taylor-expansion Derivation (4) - Taylor-expansion The multivariate Taylor-expansion of ln (F (Ξx, Ξ y, Ξ )) around Ξ = 0 is: α+β+γ ln(f (Ξ x, Ξ y, Ξ )) = α+β+γ 0 1 α!β!γ! Ξ α x Ξ β y Ξ γ ln(f (Ξ x, Ξ y, Ξ )) Definition: Cumulants For α, β, γ = 0, 1, 2, one defines the cumulants of order α + β + γ as follows: c αβγ := c (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ ln(f (Ξ x, Ξ y, Ξ )) Ξ α x Ξβ y Ξ γ The multivariate Taylor-expansion of ln (F (Ξx, Ξ y, Ξ )) around Ξ = 0 is: α+β+γ ln(f (Ξ x, Ξ y, Ξ )) = α+β+γ 0 1 α!β!γ! Ξ α x Ξ β y Ξ γ ln(f (Ξ x, Ξ y, Ξ )) Definition: Cumulants For α, β, γ = 0, 1, 2, one defines the cumulants of order α + β + γ as follows: c αβγ := c (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ ln(f (Ξ x, Ξ y, Ξ )) Ξ α x Ξβ y Ξ γ Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 36/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 36/60

19 Efficient calculation via moments Where the magic happens Conduct the Taylor-expansion without the logarithm: α+β+γ F (Ξ x, Ξ y, Ξ ) = α+β+γ 0 1 α!β!γ! Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ ) Analogously consider the coefficients: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ ) Ξ α x Ξ β y Ξ γ Explicit calculation of these coefficients yields: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ ) = = α+β+γ Ξ α x Ξ β y Ξ γ f ijk e Ξ x ic e Ξ y jc e Ξ kc f ijk ( ic) α e Ξ x ic ( jc) β e Ξ y jc ( kc) γ e Ξ kc Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 37/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 38/60 Where the magic happens Where the magic happens Explicit calculation of these coefficients yields: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ ) = = α+β+γ Ξ α x Ξ β y Ξ γ f ijk e Ξ x ic e Ξ y jc e Ξ kc f ijk ( ic) α e Ξ x ic ( jc) β e Ξ y jc ( kc) γ e Ξ kc = ( c) α+β+γ i α j β k γ f ijk Explicit calculation of these coefficients yields: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ ) = = α+β+γ Ξ α x Ξ β y Ξ γ f ijk e Ξ x ic e Ξ y jc e Ξ kc f ijk ( ic) α e Ξ x ic ( jc) β e Ξ y jc ( kc) γ e Ξ kc = ( c) α+β+γ i α j β k γ f ijk = ( c) α+β+γ m αβγ Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 38/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 38/60

20 Where the magic happens Cumulants vs Moments Explicit calculation of these coefficients yields: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ ) = α+β+γ Ξ α x Ξ β y Ξ γ f ijk e Ξ x ic e Ξ y jc e Ξ kc The (raw)-moments were shown to be: m αβγ = ( c) (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ ) = f ijk ( ic) α e Ξ x ic ( jc) β e Ξ y jc ( kc) γ e Ξ kc = ( c) α+β+γ = ( c) α+β+γ m αβγ i α j β k γ f ijk The cumulants: c αβγ = c (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ ln(f (Ξ x, Ξ y, Ξ )) Idea: By applying the chain rule one should be able to trace back the cumulants to the moments Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 38/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 39/60 Cumulants vs Moments Cumulant-transformation (1) The (raw)-moments were shown to be: m αβγ = ( c) (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ ) The cumulants: c αβγ = c (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ ln(f (Ξ x, Ξ y, Ξ )) We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ )) = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ ) Ξ 1 x Idea: By applying the chain rule one should be able to trace back the cumulants to the moments Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 39/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 40/60

21 Cumulant-transformation (1) Cumulant-transformation (1) We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ )) = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ ) Ξ 1 x = c 1 1 F (0, 0, 0) m 100 ( c) 1 = 1 F (0, 0, 0) m 100 We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ )) = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ ) Ξ 1 x = c 1 1 F (0, 0, 0) m 100 ( c) 1 = 1 F (0, 0, 0) m 100 With F (0, 0, 0) = f ijk e 0 e 0 e 0 = ρ also: c 100 = 1 ρ m 100 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 40/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 40/60 Cumulant-transformation (1) Cumulant-transformation (1) We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ )) = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ ) Ξ 1 x = c 1 1 F (0, 0, 0) m 100 ( c) 1 = 1 F (0, 0, 0) m 100 With F (0, 0, 0) = f ijk e 0 e 0 e 0 = ρ also: c 100 = 1 ρ m 100 Define: Cαβγ = ρc αβγ, then = C 100 = m 100 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 40/60 We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ )) = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ ) Ξ 1 x = c 1 1 F (0, 0, 0) m 100 ( c) 1 = 1 F (0, 0, 0) m 100 With F (0, 0, 0) = f ijk e 0 e 0 e 0 = ρ also: c 100 = 1 ρ m 100 Define: Cαβγ = ρc αβγ, then = C 100 = m 100 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 40/60

22 Cumulant-transformation (2) Half-time score Analogous procedure for the remaining cumulants: C 100 = m 100 C 010 = m 010 C 001 = m 001 C 200 = m ρ m2 100 C 020 = m ρ m2 010 C 002 = m ρ m2 001 What do we have so far? How far do we come with that, starting with the current distributions? Transform distributions f to (raw)-moments m = M f Transform (raw)-moments m to cumulants C = K(m) = K(M f ) = C(f ) C 110 = m ρ m 100m 010 C 101 = m ρ m 100m 001 [Ŝ ] f (t+ t, x +c t) = f (t, x) C 1 (C(f (t, x)) C(f eq (t, x))) C 210 = m ρ 2 m2 100m ρ m 110m ρ m 200m 010 Efficient transformation of equilibria Choice of relaxation parameters ωi Inverse mapping C 1 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 41/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 42/60 Cumulant equilibria - Derivation Cumulant equilibria - Derivation The equilibria can be calculated in advance The equilibria can be calculated in advance Laplace-transformation of Maxwell-distribution: F eq (Ξ) = L [ M(ξ) ] (Ξ) = M(ξ) e Ξ ξ dξ x dξ y dξ = ρ ( ) 1 exp C 4C (Ξ2 x + Ξ 2 y + Ξ 2 ) Ξ x u x Ξ y u y Ξ u Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 43/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 43/60

23 Cumulant equilibria - Derivation Cumulant equilibria - Derivation The equilibria can be calculated in advance Laplace-transformation of Maxwell-distribution: F eq (Ξ) = L [ M(ξ) ] (Ξ) = M(ξ) e Ξ ξ dξ x dξ y dξ = ρ ( ) 1 exp C 4C (Ξ2 x + Ξ 2 y + Ξ 2 ) Ξ x u x Ξ y u y Ξ u The equilibria can be calculated in advance Laplace-transformation of Maxwell-distribution: F eq (Ξ) = L [ M(ξ) ] (Ξ) = M(ξ) e Ξ ξ dξ x dξ y dξ = ρ ( ) 1 exp C 4C (Ξ2 x + Ξ 2 y + Ξ 2 ) Ξ x u x Ξ y u y Ξ u Apply the logarithm: ( ) ρ ln(f eq (Ξ)) = ln Ξ x u x Ξ y u y Ξ u + c2 ( s Ξ 2 2 x + Ξ 2 y + Ξ 2 ) ρ 0 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 43/60 Apply the logarithm: ( ) ρ ln(f eq (Ξ)) = ln Ξ x u x Ξ y u y Ξ u + c2 ( s Ξ 2 2 x + Ξ 2 y + Ξ 2 ) ρ 0 Taylor-expansion can be skipped, since this is a polynomial anyway Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 43/60 Cumulant equilibria - Derivation Cumulant equilibria The equilibria can be calculated in advance Laplace-transformation of Maxwell-distribution: F eq (Ξ) = L [ M(ξ) ] (Ξ) = M(ξ) e Ξ ξ dξ x dξ y dξ = ρ ( ) 1 exp C 4C (Ξ2 x + Ξ 2 y + Ξ 2 ) Ξ x u x Ξ y u y Ξ u Apply the logarithm: ( ) ρ ln(f eq (Ξ)) = ln Ξ x u x Ξ y u y Ξ u + c2 ( s Ξ 2 2 x + Ξ 2 y + Ξ 2 ) ρ 0 Taylor-expansion can be skipped, since this is a polynomial anyway Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 43/60 Only a certain few cumulants have an equilibrium not equal 0: c eq 000 = ln(ρ/ρ 0) c eq 100 = c 1 u x c eq 010 = c 1 u y c eq 001 = c 1 u c eq 200 = c 2 c 2 s c eq 020 = c 2 c 2 s c eq 002 = c 2 c 2 s For all others, there holds: c eq αβγ = 0 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 44/60

24 Half-time score Choice of relaxation parameters What do we have so far? How far do we come with that, starting with the current distributions? Transform distributions f to (raw)-moments m = M f Transform (raw)-moments m to cumulants C = K(m) = K(M f ) = C(f ) [Ŝ ] f (t+ t, x +c t) = f (t, x) C 1 (C(f (t, x)) C(f eq (t, x))) For the most cumulants the equilibrium is 0, hence one gets for example: C 110 = ω 1 C 110 C 101 = ω 1 C 101 C 011 = ω 1 C 011 C 222 = ω 10 (C 222 0) Efficient transformation of equilibria Choice of relaxation parameters ωi Inverse mapping C 1 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 45/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 46/60 Choice of relaxation parameters For the most cumulants the equilibrium is 0, hence one gets for example: C 222 = ω 10 (C 222 0) Choice of relaxation parameters For the most cumulants the equilibrium is 0, hence one gets for example: C 222 = ω 10 (C 222 0) C 110 = ω 1 C 110 C 211 = ω 8 C 211 C 110 = ω 1 C 110 C 211 = ω 8 C 211 C 101 = ω 1 C 101 C 121 = ω 8 C 121 C 101 = ω 1 C 101 C 121 = ω 8 C 121 C 011 = ω 1 C 011 C 112 = ω 8 C 112 C 011 = ω 1 C 011 C 112 = ω 8 C 112 Those with non vanishing equilibrium one can combine: C 200 C 020 = ω 1 (C 200 C 020 ) C 200 C 002 = ω 1 (C 200 C 002 ) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 46/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 46/60

25 Choice of relaxation parameters Half-time score For the most cumulants the equilibrium is 0, hence one gets for example: C 110 = ω 1 C 110 C 222 = ω 10 (C 222 0) C 211 = ω 8 C 211 What do we have so far? How far do we come with that, starting with the current distributions? Transform distributions f to (raw)-moments m = M f Transform (raw)-moments m to cumulants C = K(m) = K(M f ) = C(f ) C 101 = ω 1 C 101 C 011 = ω 1 C 011 C 121 = ω 8 C 121 C 112 = ω 8 C 112 [Ŝ ] f (t+ t, x +c t) = f (t, x) C 1 (C(f (t, x)) C(f eq (t, x))) Those with non vanishing equilibrium one can combine: C 200 C 020 = ω 1 (C 200 C 020 ) C 200 C 002 = ω 1 (C 200 C 002 ) Efficient transformation of equilibria Choice of relaxation parameters ωi Inverse mapping C 1 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 46/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 47/60 Half-time score Advantages of Cumulant-based LBM What do we have so far? How far do we come with that, starting with the current distributions? Transform distributions f to (raw)-moments m = M f Transform (raw)-moments m to cumulants C = K(m) = K(M f ) = C(f ) [Ŝ ] f (t+ t, x +c t) = f (t, x) C 1 (C(f (t, x)) C(f eq (t, x))) Efficient transformation of equilibria Choice of relaxation parameters ωi Inverse mapping C 1 Better representation of physical processes due to statistical independence Equilibria of cumulants are almost all 0 More (real) degrees of freedom than in classical MT Gradual improvement of the method by asymptotic analysis and elimination of error-terms Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 48/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 49/60

26 Synthesis of Navier-Stokes-equation Synthesis of Navier-Stokes-equation By a Chapman-Enskog expansion one can derive the Navier-Stokes equations: u = 0 u t + (u ) u = 1 ρ p + 1 ( 1 1 ) u + f 3 ω 1 2 ρ }{{} =ν By a Chapman-Enskog expansion one can derive the Navier-Stokes equations: u = 0 u t + (u ) u = 1 ρ p + 1 ( 1 1 ) u + f 3 ω 1 2 ρ }{{} =ν With ω1 one can simulate fluids of different viscosity Only ω1 directly influences the solution With ω1 one can simulate fluids of different viscosity Only ω1 directly influences the solution Further parameters influence higher order error terms (set them to 1 in the following) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 50/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 50/60 Synthesis of Navier-Stokes-equation By a Chapman-Enskog expansion one can derive the Navier-Stokes equations: u = 0 u t + (u ) u = 1 ρ p + 1 ( 1 1 ) u + f 3 ω 1 2 ρ }{{} =ν Validation aka colorful pictures With ω1 one can simulate fluids of different viscosity Only ω1 directly influences the solution Further parameters influence higher order error terms (set them to 1 in the following) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 50/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 51/60

27 Turbulence measure The eynolds-number is dimensionless parameter of a flow e = Comparison: BGK Kumulanten U L ν At some specific threshold e the laminar-turbulent transition starts a) BGK-ST-LBM Traditional LBM methods have problems with high eynolds-numbers: Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 52/60 (Picture source [5]) Kumulanten-basierte LBM b) Cumulant-based LBM Prof B Wohlmuth Markus Muhr (Picture source [5]) 53/60 Turbulence resolution in 3D Comparison ST- and cumulant-based LBM for a cylinder flow at e = 8000 Turbulence resolution in 3D epresentation of (turbulence) vortices around a sphere flow: (Picture source [5]) (Picture source [5]) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 54/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 55/60

28 Turbulence resolution in 3D The highlights MT-like-method with nonlinear transformation to statistical independent quantities Mathematical methods: I I I Distributions as generalied functions (Analytiation) Laplace-transform Comparison of Taylor-coefficients (Picture source [5]) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 56/60 Kumulanten-basierte LBM I Mathematical methods: I Distributions as generalied functions (Analytiation) Laplace-transform Comparison of Taylor-coefficients Prof B Wohlmuth Markus Muhr MT-like-method with nonlinear transformation to statistical independent quantities Mathematical methods: I I I Advantages especially at high eynolds-numbers (stability and adaptivity) Kumulanten-basierte LBM 57/60 The highlights MT-like-method with nonlinear transformation to statistical independent quantities I Markus Muhr The highlights Prof B Wohlmuth 57/60 Distributions as generalied functions (Analytiation) Laplace-transform Comparison of Taylor-coefficients Advantages especially at high eynolds-numbers (stability and adaptivity) Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 57/60

29 Literature I Literature II d Humières, Dominique: Multiple relaxation time lattice Boltmann models in three dimensions Philosophical Transactions of the oyal Society of London A: Mathematical, Physical and Engineering Sciences, 360(1792): , 2002 Dubois, François: Equivalent partial differential equations of a lattice Boltmann scheme Computers & Mathematics with Applications, 55(7): , 2008 Geier, M: Ab initio derivation of the cascaded Lattice Boltmann Automaton University of Freiburg IMTEK, 2006 Geier, Martin, Andreas Greiner und Jan G Korvink: Cascaded digital lattice Boltmann automata for high eynolds number flow Physical eview E, 73(6):066705, 2006 Geier, Martin, Martin Schönherr, Andrea Pasquali und Manfred Krafcyk: The cumulant lattice Boltmann equation in three dimensions: Theory and validation Computers & Mathematics with Applications, 70(4): , 2015 Ning, Yang und Kannan N Premnath: Numerical Study of the Properties of the Central Moment Lattice Boltmann Method arxiv preprint arxiv: , 2012 ohm, Florian: A commented Python Script for LBM-Flow-Simulations Lecture on, 2015 Wolf-Gladrow, Dieter A: Lattice-gas cellular automata and lattice Boltmann models: An Introduction Nummer 1725 Springer Science & Business Media, 2000 Hänel, Dieter: Molekulare Gasdynamik: Einführung in die kinetische Theorie der Gase und Lattice-Boltmann-Methoden Springer-Verlag, 2006 Lukacs, Eugene: Characteristics functions Griffin, London, 1970 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 58/60 Kumulanten-basierte LBM Prof B Wohlmuth Markus Muhr 59/60

Lattice Boltzmann methods Summer term Cumulant-based LBM. 25. July 2017

Lattice Boltzmann methods Summer term Cumulant-based LBM. 25. July 2017 Cumulant-based LBM Prof. B. Wohlmuth Markus Muhr 25. July 2017 1. Repetition: LBM and notation Discretization SRT-equation Content 2. MRT-model Basic idea Moments and moment-transformation 3. Cumulant-based

More information

Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method. Abstract

Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method. Abstract Accepted for publication on Physical Review E (R), code ERR1034 Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method Pietro Asinari Department of Energetics, Politecnico di Torino, Corso

More information

Lattice Boltzmann Method

Lattice Boltzmann Method 3 Lattice Boltzmann Method 3.1 Introduction The lattice Boltzmann method is a discrete computational method based upon the lattice gas automata - a simplified, fictitious molecular model. It consists of

More information

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 10, No. 2, 2018 Article ID IJIM-00726, 8 pages Research Article External and Internal Incompressible Viscous

More information

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes Applied Mathematical Sciences, Vol. 9, 2015, no. 84, 4191-4199 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.5138 Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes G. V.

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations 1 / 16 Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas Simon Fraser University April 7, 2011 2 / 16 Ludwig Boltzmann and His Kinetic Theory of Gases The Boltzmann Transport

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

The lattice Boltzmann method for contact line dynamics

The lattice Boltzmann method for contact line dynamics The lattice Boltzmann method for contact line dynamics Sudhir Srivastava, J.H.M. ten Thije Boonkkamp, Federico Toschi April 13, 2011 Overview 1 Problem description 2 Huh and Scriven model 3 Lattice Boltzmann

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas April 14, 2011 1 Introduction In the last two decades, the Lattice Boltzmann method (LBM) has emerged as a promising tool

More information

Physical Modeling of Multiphase flow. Boltzmann method

Physical Modeling of Multiphase flow. Boltzmann method with lattice Boltzmann method Exa Corp., Burlington, MA, USA Feburary, 2011 Scope Scope Re-examine the non-ideal gas model in [Shan & Chen, Phys. Rev. E, (1993)] from the perspective of kinetic theory

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme

Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme Pietro Asinari (1), Taku Ohwada (2) (1) Department of Energetics, Politecnico di Torino, Torino 10129,

More information

SEMICLASSICAL LATTICE BOLTZMANN EQUATION HYDRODYNAMICS

SEMICLASSICAL LATTICE BOLTZMANN EQUATION HYDRODYNAMICS The Seventh Nobeyama Workshop on CFD: To the Memory of Prof. Kuwahara Sanjo Kaikan, the University of Tokyo, Japan, September. 23-24, 2009 SEMICLASSICAL LATTICE BOLTZMANN EQUATION HYDRODYNAMICS Jaw-Yen

More information

Lattice Bhatnagar Gross Krook model for the Lorenz attractor

Lattice Bhatnagar Gross Krook model for the Lorenz attractor Physica D 154 (2001) 43 50 Lattice Bhatnagar Gross Krook model for the Lorenz attractor Guangwu Yan a,b,,liyuan a a LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences,

More information

Lattice Boltzmann Method for Moving Boundaries

Lattice Boltzmann Method for Moving Boundaries Lattice Boltzmann Method for Moving Boundaries Hans Groot March 18, 2009 Outline 1 Introduction 2 Moving Boundary Conditions 3 Cylinder in Transient Couette Flow 4 Collision-Advection Process for Moving

More information

Analysis of the Lattice Boltzmann Method by the Truncated Moment System

Analysis of the Lattice Boltzmann Method by the Truncated Moment System by the Truncated Moment System Pietro Asinari, PhD Department of Energetics, Politecnico di Torino, Torino 10129, Italy, pietro.asinari@polito.it http://staff.polito.it/pietro.asinari Lab for Simulation,

More information

On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier-Stokes equations

On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier-Stokes equations On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier-Stokes equations François Dubois, Tony Fevrier, Benjamin Graille To cite this version: François Dubois, Tony Fevrier,

More information

Non-equilibrium mixtures of gases: modeling and computation

Non-equilibrium mixtures of gases: modeling and computation Non-equilibrium mixtures of gases: modeling and computation Lecture 1: and kinetic theory of gases Srboljub Simić University of Novi Sad, Serbia Aim and outline of the course Aim of the course To present

More information

Simulation of floating bodies with lattice Boltzmann

Simulation of floating bodies with lattice Boltzmann Simulation of floating bodies with lattice Boltzmann by Simon Bogner, 17.11.2011, Lehrstuhl für Systemsimulation, Friedrich-Alexander Universität Erlangen 1 Simulation of floating bodies with lattice Boltzmann

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS

LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS THERMAL SCIENCE: Year 27, Vol. 2, No. 3, pp. 73-82 73 LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS by Edouard WALTHER *, Rachid BENNACER, and Caroline DE SA LMT, ENS

More information

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction APCOM & ISCM -4 th December, 03, Singapore A Momentum Exchange-based Immersed Boundary-Lattice Boltzmann Method for Fluid Structure Interaction Jianfei Yang,,3, Zhengdao Wang,,3, and *Yuehong Qian,,3,4

More information

Lattice Boltzmann Methods for Fluid Dynamics

Lattice Boltzmann Methods for Fluid Dynamics Lattice Boltzmann Methods for Fluid Dynamics Steven Orszag Department of Mathematics Yale University In collaboration with Hudong Chen, Isaac Goldhirsch, and Rick Shock Transient flow around a car LBGK

More information

NON-DARCY POROUS MEDIA FLOW IN NO-SLIP AND SLIP REGIMES

NON-DARCY POROUS MEDIA FLOW IN NO-SLIP AND SLIP REGIMES THERMAL SCIENCE, Year 2012, Vol. 16, No. 1, pp. 167-176 167 NON-DARCY POROUS MEDIA FLOW IN NO-SLIP AND SLIP REGIMES by Antonio F. MIGUEL Geophysics Centre of Evora & Department of Physics, University of

More information

LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT BOUNDARY CONDITIONS

LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT BOUNDARY CONDITIONS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 5 June 28, Glasgow, UK LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT

More information

COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD

COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD XVIII International Conference on Water Resources CMWR 2010 J. Carrera (Ed) c CIMNE, Barcelona, 2010 COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD James.E. McClure, Jan F. Prins

More information

The Lattice Boltzmann method for hyperbolic systems. Benjamin Graille. October 19, 2016

The Lattice Boltzmann method for hyperbolic systems. Benjamin Graille. October 19, 2016 The Lattice Boltzmann method for hyperbolic systems Benjamin Graille October 19, 2016 Framework The Lattice Boltzmann method 1 Description of the lattice Boltzmann method Link with the kinetic theory Classical

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

Lattice Boltzmann approach to liquid - vapour separation

Lattice Boltzmann approach to liquid - vapour separation Lattice Boltzmann approach to liquid - vapour separation T.Biciușcă 1,2, A.Cristea 1, A.Lamura 3, G.Gonnella 4, V.Sofonea 1 1 Centre for Fundamental and Advanced Technical Research, Romanian Academy Bd.

More information

Simulation of 2D non-isothermal flows in slits using lattice Boltzmann method

Simulation of 2D non-isothermal flows in slits using lattice Boltzmann method Simulation of 2D non-isothermal flows in slits using lattice Boltzmann method João Chambel Leitão Department of Mechanical Engineering, Instituto Superior Técnico, Lisboa, Portugal Abstract: The present

More information

Multi species Lattice Boltzmann Models and Applications to Sustainable Energy Systems

Multi species Lattice Boltzmann Models and Applications to Sustainable Energy Systems Multi species Lattice Boltzmann Models and Applications to Sustainable Energy Systems Pietro Asinari, PhD Dipartimento di Energetica (DENER), Politecnico di Torino (POLITO), Torino 10129, Italy e-mail:

More information

PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD

PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD Luís Orlando Emerich dos Santos emerich@lmpt.ufsc.br Carlos Enrique Pico Ortiz capico@lmpt.ufsc.br Henrique Cesar de Gaspari henrique@lmpt.ufsc.br

More information

Kinetic relaxation models for reacting gas mixtures

Kinetic relaxation models for reacting gas mixtures Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma - ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.

More information

Hilbert Sixth Problem

Hilbert Sixth Problem Academia Sinica, Taiwan Stanford University Newton Institute, September 28, 2010 : Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem:

More information

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method Research Journal of Applied Sciences, Engineering and Technology 6(14): 50-55, 013 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 013 Submitted: November 08, 01 Accepted: December 8,

More information

Level Set-based Topology Optimization Method for Viscous Flow Using Lattice Boltzmann Method

Level Set-based Topology Optimization Method for Viscous Flow Using Lattice Boltzmann Method 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level Set-based Topology Optimization Method for Viscous Flow Using Lattice Boltzmann Method

More information

arxiv:gr-qc/ v2 6 Apr 1999

arxiv:gr-qc/ v2 6 Apr 1999 1 Notations I am using the same notations as in [3] and [2]. 2 Temporal gauge - various approaches arxiv:gr-qc/9801081v2 6 Apr 1999 Obviously the temporal gauge q i = a i = const or in QED: A 0 = a R (1)

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Application of the Lattice-Boltzmann method in flow acoustics

Application of the Lattice-Boltzmann method in flow acoustics Application of the Lattice-Boltzmann method in flow acoustics Andreas Wilde Fraunhofer Institut für Integrierte Schaltungen, Außenstelle EAS Zeunerstr. 38, 01069 Dresden Abstract The Lattice-Boltzmann

More information

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 7, 307-315 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.7418 Solution of the Hirota Equation Using Lattice-Boltzmann and the

More information

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows K. Xu and J.C. Huang Mathematics Department, Hong Kong University of Science and Technology, Hong Kong Department of Merchant Marine, National

More information

arxiv:comp-gas/ v1 28 Apr 1993

arxiv:comp-gas/ v1 28 Apr 1993 Lattice Boltzmann Thermohydrodynamics arxiv:comp-gas/9304006v1 28 Apr 1993 F. J. Alexander, S. Chen and J. D. Sterling Center for Nonlinear Studies and Theoretical Division Los Alamos National Laboratory

More information

Lattice Boltzmann Method

Lattice Boltzmann Method Chapter 5 Lattice Boltzmann Method 5.1 Pseudo-kinetic computational methods Understanding the flow properties of complex fluids in complex topologies is of importance to technological applications and

More information

Magic. The Lattice Boltzmann Method

Magic. The Lattice Boltzmann Method Magic The Lattice Boltzmann Method Lattice Boltzmann: secret ingredients Kn(Ma t f + v x x f + v y y f + v z z f ) = Ω( f ) Analysis Modeling Kn(Ma t π α + x π αx + y π αy + z π αz ) = ω α ( α π α ) ω

More information

Pietro Asinari Department of Energetics, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy. (Dated: September 25, 2009) Abstract

Pietro Asinari Department of Energetics, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy. (Dated: September 25, 2009) Abstract Submitted for publication to Physical Review E, code EL10375, version Ge Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell Stefan model and incompressible

More information

Free energy concept Free energy approach LBM implementation Parameters

Free energy concept Free energy approach LBM implementation Parameters BINARY LIQUID MODEL A. Kuzmin J. Derksen Department of Chemical and Materials Engineering University of Alberta Canada August 22,2011 / LBM Workshop OUTLINE 1 FREE ENERGY CONCEPT 2 FREE ENERGY APPROACH

More information

Supplement: Statistical Physics

Supplement: Statistical Physics Supplement: Statistical Physics Fitting in a Box. Counting momentum states with momentum q and de Broglie wavelength λ = h q = 2π h q In a discrete volume L 3 there is a discrete set of states that satisfy

More information

On the relation between lattice variables and physical quantities in lattice Boltzmann simulations

On the relation between lattice variables and physical quantities in lattice Boltzmann simulations On the relation between lattice variables and physical quantities in lattice Boltzmann simulations Michael Junk Dirk Kehrwald th July 6 Kaiserslautern, Germany CONTENTS Contents Initial situation Problem

More information

July 21 Math 2254 sec 001 Summer 2015

July 21 Math 2254 sec 001 Summer 2015 July 21 Math 2254 sec 001 Summer 2015 Section 8.8: Power Series Theorem: Let a n (x c) n have positive radius of convergence R, and let the function f be defined by this power series f (x) = a n (x c)

More information

Connection Between the Lattice Boltzmann Equation and the Beam Scheme

Connection Between the Lattice Boltzmann Equation and the Beam Scheme NASA/CR-1999-209001 ICASE Report No. 99-10 Connection Between the Lattice Boltzmann Equation and the Beam Scheme Kun Xu Hong Kong University of Science and Technology, Kowloon, Hong Kong Li-Shi Luo ICASE,

More information

Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows

Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows Amir Eshghinejadfard, Abouelmagd Abdelsamie, Dominique Thévenin University of Magdeburg, Germany 14th Workshop on Two-Phase Flow Predictions

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles

Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles O. A. SHAHRUL Faculty of Mechanical & Manufacturing Engineering Universiti

More information

Grad s approximation for missing data in lattice Boltzmann simulations

Grad s approximation for missing data in lattice Boltzmann simulations Europhysics Letters PREPRINT Grad s approximation for missing data in lattice Boltzmann simulations S. Ansumali 2, S. S. Chikatamarla 1 and I. V. Karlin 1 1 Aerothermochemistry and Combustion Systems Laboratory,

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions

Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions J. math. fluid mech. c 6 Birkhäuser Verlag, Basel DOI.7/s-5-9-z Journal of Mathematical Fluid Mechanics Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions Ronald B. Guenther and

More information

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Stability Evaluation of Lattice Boltzmann Method for High Viscosity Fluid Model Applied in Pore Scale Porous Media Pahala Richard Panjaitan Ph.D. Student,

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models Alessandro Alaia, Gabriella Puppo May 31, 2011 Abstract In this work we present a non stationary domain

More information

Turbulence modulation by fully resolved particles using Immersed Boundary Methods

Turbulence modulation by fully resolved particles using Immersed Boundary Methods Turbulence modulation by fully resolved particles using Immersed Boundary Methods Abouelmagd Abdelsamie and Dominique Thévenin Lab. of Fluid Dynamics & Technical Flows University of Magdeburg Otto von

More information

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries SC13, November 21 st 2013 Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler, Ulrich

More information

Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method

Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method Pradipto and Hisao Hayakawa Yukawa Insitute for Theoretical Physics Kyoto University Rheology of disordered

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel

Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel PERTURBED NONLINEAR EVOLUTION EQUATIONS AND ASYMPTOTIC INTEGRABILITY Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion,

More information

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018 Physics 704 Spring 2018 1 Fundamentals 1.1 Overview The objective of this course is: to determine and fields in various physical systems and the forces and/or torques resulting from them. The domain of

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information

IMPLEMENTING THE LATTICE-BOLTZMANN

IMPLEMENTING THE LATTICE-BOLTZMANN IMPLEMENTING THE LATTICE-BOLTZMANN METHOD A RESEARCH ON BOUNDARY CONDITION TECHNIQUES by S.C. Wetstein in partial fulfillment of the requirements for the degree of Bachelor of Science in Applied Physics

More information

Lattice Boltzmann model for the Elder problem

Lattice Boltzmann model for the Elder problem 1549 Lattice Boltzmann model for the Elder problem D.T. Thorne a and M.C. Sukop a a Department of Earth Sciences, Florida International University, PC 344, University Park, 11200 SW 8th Street, Miami,

More information

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS 1 REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS HENNING STRUCHTRUP ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland (on leave from University of Victoria,

More information

fluid mechanics as a prominent discipline of application for numerical

fluid mechanics as a prominent discipline of application for numerical 1. fluid mechanics as a prominent discipline of application for numerical simulations: experimental fluid mechanics: wind tunnel studies, laser Doppler anemometry, hot wire techniques,... theoretical fluid

More information

A Compact and Efficient Lattice Boltzmann Scheme to Simulate Complex Thermal Fluid Flows

A Compact and Efficient Lattice Boltzmann Scheme to Simulate Complex Thermal Fluid Flows A Compact and Efficient Lattice Boltzmann Scheme to Simulate Complex Thermal Fluid Flows Tao Zhang 1[0000-0001-7216-0423] and Shuyu Sun 1[0000-0002-3078-864X] 1 Computational Transport Phenomena Laboratory

More information

Experience with DNS of particulate flow using a variant of the immersed boundary method

Experience with DNS of particulate flow using a variant of the immersed boundary method Experience with DNS of particulate flow using a variant of the immersed boundary method Markus Uhlmann Numerical Simulation and Modeling Unit CIEMAT Madrid, Spain ECCOMAS CFD 2006 Motivation wide range

More information

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations The Hilltop Review Volume 7 Issue 1 Winter 2014 Article 10 December 2014 Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations Tai-Hsien Wu Western Michigan University

More information

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I J. A. Carrillo collaborators: T. Goudon (Lille), P. Lafitte (Lille) and F. Vecil (UAB) (CPDE 2005), (JCP, 2008), (JSC, 2008) ICREA

More information

General introduction to Hydrodynamic Instabilities

General introduction to Hydrodynamic Instabilities KTH ROYAL INSTITUTE OF TECHNOLOGY General introduction to Hydrodynamic Instabilities L. Brandt & J.-Ch. Loiseau KTH Mechanics, November 2015 Luca Brandt Professor at KTH Mechanics Email: luca@mech.kth.se

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang,

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, yfwang09@stanford.edu 1. Problem setting In this project, we present a benchmark simulation for segmented flows, which contain

More information

YAN GUO, JUHI JANG, AND NING JIANG

YAN GUO, JUHI JANG, AND NING JIANG LOCAL HILBERT EXPANSION FOR THE BOLTZMANN EQUATION YAN GUO, JUHI JANG, AND NING JIANG Abstract. We revisit the classical ork of Caflisch [C] for compressible Euler limit of the Boltzmann equation. By using

More information

Hydrodynamics, Thermodynamics, and Mathematics

Hydrodynamics, Thermodynamics, and Mathematics Hydrodynamics, Thermodynamics, and Mathematics Hans Christian Öttinger Department of Mat..., ETH Zürich, Switzerland Thermodynamic admissibility and mathematical well-posedness 1. structure of equations

More information

Vector and Tensor Calculus

Vector and Tensor Calculus Appendices 58 A Vector and Tensor Calculus In relativistic theory one often encounters vector and tensor expressions in both three- and four-dimensional form. The most important of these expressions are

More information

1 Solutions in cylindrical coordinates: Bessel functions

1 Solutions in cylindrical coordinates: Bessel functions 1 Solutions in cylindrical coordinates: Bessel functions 1.1 Bessel functions Bessel functions arise as solutions of potential problems in cylindrical coordinates. Laplace s equation in cylindrical coordinates

More information

Quantum Hydrodynamics models derived from the entropy principle

Quantum Hydrodynamics models derived from the entropy principle 1 Quantum Hydrodynamics models derived from the entropy principle P. Degond (1), Ch. Ringhofer (2) (1) MIP, CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France degond@mip.ups-tlse.fr

More information

Random Eigenvalue Problems Revisited

Random Eigenvalue Problems Revisited Random Eigenvalue Problems Revisited S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Decay profiles of a linear artificial viscosity system

Decay profiles of a linear artificial viscosity system Decay profiles of a linear artificial viscosity system Gene Wayne, Ryan Goh and Roland Welter Boston University rwelter@bu.edu July 2, 2018 This research was supported by funding from the NSF. Roland Welter

More information

M.Sc. in Meteorology. Numerical Weather Prediction

M.Sc. in Meteorology. Numerical Weather Prediction M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. In this section

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

Diffusion Equation and Mean Free Path

Diffusion Equation and Mean Free Path Diffusion Equation and Mean Free Path Speaker: Xiaolei Chen Advisor: Prof. Xiaolin Li Department of Applied Mathematics and Statistics Stony Brook University (SUNY) Content General Introduction Analytic

More information

Euler equation and Navier-Stokes equation

Euler equation and Navier-Stokes equation Euler equation and Navier-Stokes equation WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the Kadanoff center

More information

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit David Vener Department of Mathematics, MIT May 5, 3 Introduction In 8.366, we discussed the relationship

More information

ME615 Project Presentation Aeroacoustic Simulations using Lattice Boltzmann Method

ME615 Project Presentation Aeroacoustic Simulations using Lattice Boltzmann Method ME615 Project Presentation Aeroacoustic Simulations using Lattice Boltzmann Method Kameswararao Anupindi Graduate Research Assistant School of Mechanical Engineering Purdue Universit December 11, 11 Outline...

More information

Computer simulations of fluid dynamics. Lecture 11 LBM: Algorithm for BGK Maciej Matyka

Computer simulations of fluid dynamics. Lecture 11 LBM: Algorithm for BGK Maciej Matyka Computer simulations of fluid dynamics Lecture 11 LBM: Algorithm for BGK Maciej Matyka https://www.youtube.com/watch? v=vluyp_ydfjc https://youtu.be/cj52zpggka (789 citations) Lecture goal l l Give a complete

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

Lattice Boltzmann Method Solver Documentation

Lattice Boltzmann Method Solver Documentation Lattice Boltzmann Method Solver Documentation Release 0.0.1 Sayop Kim May 03, 2016 Contents 1 Code Instruction 3 1.1 Quick instruction for running the simulation.............................. 3 2 Results

More information

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations.

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. May 6, 2009 Motivation Constitutive Equations EnKF algorithm Some results Method Navier Stokes equations

More information

Numerical Simulation Of Pore Fluid Flow And Fine Sediment Infiltration Into The Riverbed

Numerical Simulation Of Pore Fluid Flow And Fine Sediment Infiltration Into The Riverbed City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Numerical Simulation Of Pore Fluid Flow And Fine Sediment Infiltration Into The Riverbed Tobias

More information

A LATTICE BOLTZMANN SCHEME WITH A THREE DIMENSIONAL CUBOID LATTICE. Haoda Min

A LATTICE BOLTZMANN SCHEME WITH A THREE DIMENSIONAL CUBOID LATTICE. Haoda Min A LATTICE BOLTZMANN SCHEME WITH A THREE DIMENSIONAL CUBOID LATTICE by Haoda Min A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree

More information

SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011.

SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011. SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011. C. Ringhofer ringhofer@asu.edu, math.la.asu.edu/ chris OVERVIEW Quantum and classical description of many particle

More information

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information