Boundary conditions for molecular dynamics

Size: px
Start display at page:

Download "Boundary conditions for molecular dynamics"

Transcription

1 Xiantao Li Department of Mathematics Penn State University Collaborators Weinan E and Jerry Z. Yang Princeton University AtC Workshop: Sandia National Lab, Mar 21, 26

2 Motivations Boundary Reflection Fracture simulation in triangular lattice (Holian et. al. 1996)

3 Motivations Boundary Reflection Fracture simulation in BCC iron (Machova and Ackland 1998)

4 Motivations Boundary condition The role of boundary conditions: 1. Prevent phonon reflection 2. External loading 3. Maintain the system temperature 4. Couple with continuum models MD MD Boundary Conditions

5 Motivations Boundary condition The role of boundary conditions: 1. Prevent phonon reflection 2. External loading 3. Maintain the system temperature 4. Couple with continuum models MD PDE Boundary Conditions

6 Motivations Outline General formulation s From zero temperature to finite temperature Summary

7 General formulation Mori - Zwanzig s view Generalized Langevin equation (GLE), da t dt = iω(t)a Θ(t s)a(s)ds + R(t). A = (q, p): smaller number of variables Θ(t): correlation matrix R(t): from unresolved degrees of freedom R(t)A() =

8 General formulation Random forcing For system embedded in a linear heat bath, R(t) is a stationary Gaussian process. The second fluctuation dissipation theorem: R(t)R() T = p() 2 Θ(t) = k B T Θ(t). the correlation function determines the random force for T =, R = ; Θ(t) provides zero temperature BC.

9 General formulation Existing work GLE formulations One dimensional case: Adelman and Doll 1974, 1975 Multi dimensional case: Tully 198 Zero temperature BC Exact BC: Cai, de Koning, Bulatov and Yip 2 Approx. BC: E and Huang 21, 22 General Exact BC: Wagner, Karpov, Liu, Park et al 24, 25 Approx. BC for general system: E and Li 26

10 Exact boundary conditions: u i (t) = j t θ j (s)u i+j (t s)ds. n Boundary condition

11 Exact boundary condition: a 1D example u (t) = t β = J 2(2t) t β(t s)u 1 (s)ds, j u u 1 u 2

12 Exact boundary condition: a 1D example u (t) = t β = J 2(2t) t β(t s)u 1 (s)ds, j u u 1 u 2

13 Exact boundary condition: a 1D example.8 u (t) = t β = J 2(2t) t β(t s)u 1 (s)ds, j β(t) t

14 Boundary conditions: exact vs approximate Exact boundary conditions: nonlocal in both space and time numerical implementation is expensive premature truncation leads to large reflection Local boundary condition: Variational BC (E and Huang 21 and 22, E and Li 26) u i (t) = j J t A j (s)u i+j (t s)ds, J finite. Local in both space and time Minimize phonon reflection Optimal on a given stencil (J and (, t ))

15 Variational boundary condition Main components: 1. Reflection coefficients 2. Energy flux 3. Variational formulation u j = e i(r j k I ω st) ε s (k I ) + c R ss ei(r j k R ω s (kr )t) ε s(k R )

16 Variational boundary condition Main components: 1. Reflection coefficients 2. Energy flux 3. Variational formulation

17 Variational boundary condition Main components: 1. Reflection coefficients 2. Energy flux 3. Variational formulation

18 Variational boundary condition Main components: 1. Reflection coefficients 2. Energy flux 3. Variational formulation

19 Variational boundary condition Main components: 1. Reflection coefficients 2. Energy flux 3. Variational formulation J R = s BZ l css R l 2 ωs 2 ( ω s n)dk.

20 Variational boundary condition Main components: 1. Reflection coefficients 2. Energy flux 3. Variational formulation min I [{α j}; n] {α j } css R l 2 ( ω s n)dk s BZ l

21 Choosing the stencil J The space stencil J, only involves a small number of atoms translational invariant along the boundary respect some crystal symmetry

22 Choosing the stencil J The space stencil J, only involves a small number of atoms translational invariant along the boundary respect some crystal symmetry

23 Choosing the stencil J The space stencil J, only involves a small number of atoms translational invariant along the boundary respect some crystal symmetry

24 Choosing the stencil J The space stencil J, only involves a small number of atoms translational invariant along the boundary respect some crystal symmetry

25 Choosing the stencil J The space stencil J, only involves a small number of atoms translational invariant along the boundary respect some crystal symmetry

26 Example I: 1D chain R(k) = 1 j 1 j t e ijk a j (τ)e iωτ dτ e ijk t. a j (τ)e iωτ dτ Exact kernel M=2 M=1 M=5.2 The approximate kernels can be quite different from the exact ones VBC leads to much less reflection than the exact BC truncated to the same interval time history kernels

27 Example I: 1D chain R(k) = 1 j 1 j t e ijk a j (τ)e iωτ dτ e ijk t. a j (τ)e iωτ dτ VBC: M=2 Exact BC: M=2 Exact BC: M=2 R.5.4 The approximate kernels can be quite different from the exact ones VBC leads to much less reflection than the exact BC truncated to the same interval k phonon reflection

28 Example II: comparing different stencils Selection of the stencil

29 Example II: comparing different stencils J = 4

30 Example II: comparing different stencils J = 8

31 Example II: comparing different stencils J = 17

32 Example II: comparing different stencils J =4 J =8 J = J R M Total reflection on various stencil J = 17

33 Application: fracture simulation in BCC Iron fixed boundary condition variational boundary condition

34 Finite temperature boundary conditions From zero to finite temperature: GLE Boundary condition: U(r, t) = j t A j (t s)u(r + r j, s)ds. r J the boundary atoms those atoms at the boundary that have been removed from the system, r + r j J 1 : the interior atoms next to the boundary that are directly influenced by the boundary atoms. For r J 1, f(r, t) = V r + fex, f ex : the force due to the boundary atoms, f ex = r k J D k U(r k, t).

35 Finite temperature boundary conditions Zero temperature GLE Adding the external force: ü(r, t) = m t β m (s)u(r + r m, t s)ds V r. GLE in the standard form, ü(r, t) = m Θ m ()u(r + r m, t) t Θ m (s) u(r + r m, t s)ds V r + R(t) Θ m (t) = t β m (s)ds.

36 Finite temperature boundary conditions Solving GLE Represent the noise by a Fourier integral: R(t) = ˆR(ω)e iωt dω. The Fourier coefficients are Gaussian random variables and, R(t)R() T = Θ(t) = ˆR(ω)ˆR(η) = ˆΘ(ω)δ(ω + η). ˆΘ(ω): power spectrum the random noise is determined by the power spectrum

37 Finite temperature boundary conditions Approximation of the power spectrum ˆΘ ˆΘ C ( E + CẼ ) 1. Θ: computed from approximate boundary condition Θ : computed from exact boundary condition C: reflection coefficients. The error is controlled by the reflection coefficients!

38 T Finite temperature boundary conditions Example I: one dimensional chain 1.4 x x v(t)v() t t System temperature Velocity correlation

39 T Finite temperature boundary conditions Example II: 2D triangular lattice v(t) v() time t System temperature Velocity correlation

40 Summary Summary 1. General formulation from Mori - Zwanzig s viewpoint 2. Determine the random forcing from the correlation function 3. Variational formulation to obtain the correlation function 4. Reflection coefficients as a measure of the accuracy 5. Applications to various systems Reference: X. Li and W. E, Variational boundary conditions for molecular dynamics simulations of solids at low temperature, comm. comp. phys. 1 (26),

Boundary conditions for molecular dynamics

Boundary conditions for molecular dynamics Xiantao Li Institute for Math and its Applications joint work with Weinan E Princeton University Exact boundary conditions Variational boundary condition Motivation Holian and Ravelo PRB 1994 Examples

More information

Coarse-graining molecular dynamics in crystalline solids

Coarse-graining molecular dynamics in crystalline solids in crystalline solids Xiantao Li Department of Mathematics Penn State University. July 19, 2009. General framework Outline 1. Motivation and Problem setup 2. General methodology 3. The derivation of the

More information

Variational Boundary Conditions for Molecular Dynamics Simulations of Solids at Low Temperature

Variational Boundary Conditions for Molecular Dynamics Simulations of Solids at Low Temperature COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 1, No. 1, pp. 135-175 Commun. Comput. Phys. February 6 Variational Boundary Conditions for Molecular Dynamics Simulations of Solids at Low Temperature Xiantao

More information

F r (t) = 0, (4.2) F (t) = r= r a (t)

F r (t) = 0, (4.2) F (t) = r= r a (t) Chapter 4 Stochastic Equations 4.1 Langevin equation To explain the idea of introduction of the Langevin equation, let us consider the concrete example taken from surface physics: motion of an atom (adatom)

More information

Non-reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations

Non-reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 25; 64:237 259 Published online 11 May 25 in Wiley InterScience (www.interscience.wiley.com). DOI: 1.12/nme.1357 Non-reflecting

More information

August 2005 June 2010 Assistant Professor

August 2005 June 2010 Assistant Professor Xiantao Li Curriculum Vita 219C McAllister Building Department of Mathematics Penn State University University Park, PA 16802 (814)8639081 xxl12@psu.edu www.personal.psu.edu/xxl12 Education Ph.D. 2002,

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 28 Jun 2001

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 28 Jun 2001 arxiv:cond-mat/665v [cond-mat.mtrl-sci] 28 Jun 2 Matching Conditions in -Continuum Modeling of Materials Weinan E and Zhongyi Huang 2 Department of Mathematics and PACM, Princeton University and School

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Benjamin Seibold MIT Applied Mathematics Mar 02 nd, 2009 Collaborator Martin Frank (TU Kaiserslautern) Partial Support NSF

More information

Investigations on the SYK Model and its Dual Space-Time

Investigations on the SYK Model and its Dual Space-Time 2nd Mandelstam Theoretical Physics Workshop Investigations on the SYK Model and its Dual Space-Time Kenta Suzuki A. Jevicki, KS, & J. Yoon; 1603.06246 [hep-th] A. Jevicki, & KS; 1608.07567 [hep-th] S.

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 9 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Phase-field systems with nonlinear coupling and dynamic boundary conditions

Phase-field systems with nonlinear coupling and dynamic boundary conditions 1 / 46 Phase-field systems with nonlinear coupling and dynamic boundary conditions Cecilia Cavaterra Dipartimento di Matematica F. Enriques Università degli Studi di Milano cecilia.cavaterra@unimi.it VIII

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Some Representative Issues in Multiscale Modeling. Weinan E. Princeton University

Some Representative Issues in Multiscale Modeling. Weinan E. Princeton University Some Representative Issues in Multiscale Modeling Weinan E Princeton University Supported by DOE, ONR and NSF. Plan General remarks Issues in coupled atomistic-continuum methods (boundary conditions, consistency,

More information

Mechanical Vibrations Chapter 13

Mechanical Vibrations Chapter 13 Mechanical Vibrations Chapter 3 Peter Avitabile Mechanical Engineering Department University of Massachusetts Lowell Dr. Peter Avitabile Random Vibrations Up until now, everything analyzed was deterministic.

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Anomalous Transport and Fluctuation Relations: From Theory to Biology

Anomalous Transport and Fluctuation Relations: From Theory to Biology Anomalous Transport and Fluctuation Relations: From Theory to Biology Aleksei V. Chechkin 1, Peter Dieterich 2, Rainer Klages 3 1 Institute for Theoretical Physics, Kharkov, Ukraine 2 Institute for Physiology,

More information

SAR Imaging of Dynamic Scenes IPAM SAR Workshop

SAR Imaging of Dynamic Scenes IPAM SAR Workshop SAR Imaging of Dynamic Scenes IPAM SAR Workshop Brett Borden, Naval Postgraduate School Margaret Cheney, Rensselaer Polytechnic Institute 7 February, 2012 Introduction Need All weather, day/night, sensor

More information

Absorbing Boundary Conditions for Molecular Dynamics and Multiscale Modeling

Absorbing Boundary Conditions for Molecular Dynamics and Multiscale Modeling University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Chemical and Biomolecular Engineering Publications and Other Works Chemical and Biomolecular Engineering 10-24-2007 Absorbing

More information

Optical Imaging Chapter 5 Light Scattering

Optical Imaging Chapter 5 Light Scattering Optical Imaging Chapter 5 Light Scattering Gabriel Popescu University of Illinois at Urbana-Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical

More information

Reproducing formulas associated with symbols

Reproducing formulas associated with symbols Reproducing formulas associated with symbols Filippo De Mari Ernesto De Vito Università di Genova, Italy Modern Methods of Time-Frequency Analysis II Workshop on Applied Coorbit space theory September

More information

Introduction to Molecular Dynamics

Introduction to Molecular Dynamics Introduction to Molecular Dynamics Dr. Kasra Momeni www.knanosys.com Overview of the MD Classical Dynamics Outline Basics and Terminology Pairwise interacting objects Interatomic potentials (short-range

More information

Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models

Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models Julian Koellermeier, Manuel Torrilhon October 12th, 2015 Chinese Academy of Sciences, Beijing Julian Koellermeier,

More information

Bulletin of the Transilvania University of Braşov Vol 10(59), No Series III: Mathematics, Informatics, Physics, 83-90

Bulletin of the Transilvania University of Braşov Vol 10(59), No Series III: Mathematics, Informatics, Physics, 83-90 Bulletin of the Transilvania University of Braşov Vol 10(59), No. 1-2017 Series III: Mathematics, Informatics, Physics, 83-90 GENERALIZED MICROPOLAR THERMOELASTICITY WITH FRACTIONAL ORDER STRAIN Adina

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

Linear Response and Onsager Reciprocal Relations

Linear Response and Onsager Reciprocal Relations Linear Response and Onsager Reciprocal Relations Amir Bar January 1, 013 Based on Kittel, Elementary statistical physics, chapters 33-34; Kubo,Toda and Hashitsume, Statistical Physics II, chapter 1; and

More information

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island,

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island, University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 1-19-215 8. Brownian Motion Gerhard Müller University of Rhode Island, gmuller@uri.edu Follow this

More information

Stochastic Particle Dynamics for Unresolved Degrees of Freedom. Sebastian Reich in collaborative work with Colin Cotter (Imperial College)

Stochastic Particle Dynamics for Unresolved Degrees of Freedom. Sebastian Reich in collaborative work with Colin Cotter (Imperial College) Stochastic Particle Dynamics for Unresolved Degrees of Freedom Sebastian Reich in collaborative work with Colin Cotter (Imperial College) 1. The Motivation Classical molecular dynamics (MD) as well as

More information

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method Justyna Czerwinska Scales and Physical Models years Time hours Engineering Design Limit Process Design minutes Continious Mechanics

More information

1 Coherent-Mode Representation of Optical Fields and Sources

1 Coherent-Mode Representation of Optical Fields and Sources 1 Coherent-Mode Representation of Optical Fields and Sources 1.1 Introduction In the 1980s, E. Wolf proposed a new theory of partial coherence formulated in the space-frequency domain. 1,2 The fundamental

More information

Analytical and Numerical Study of Coupled Atomistic-Continuum Methods for Fluids

Analytical and Numerical Study of Coupled Atomistic-Continuum Methods for Fluids Analytical and Numerical Study of Coupled Atomistic-Continuum Methods for Fluids Weiqing Ren Courant Institute, NYU Joint work with Weinan E Multiscale modeling for two types of problems: Complex fluids

More information

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Mesoscale Simulation Methods Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Outline What is mesoscale? Mesoscale statics and dynamics through coarse-graining. Coarse-grained equations

More information

Feedback Control of Turbulent Wall Flows

Feedback Control of Turbulent Wall Flows Feedback Control of Turbulent Wall Flows Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Outline Introduction Standard approach Wiener-Hopf approach Conclusions Drag reduction A model problem:

More information

Non-parametric identification

Non-parametric identification Non-parametric Non-parametric Transient Step-response using Spectral Transient Correlation Frequency function estimate Spectral System Identification, SSY230 Non-parametric 1 Non-parametric Transient Step-response

More information

10. Zwanzig-Mori Formalism

10. Zwanzig-Mori Formalism University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 0-9-205 0. Zwanzig-Mori Formalism Gerhard Müller University of Rhode Island, gmuller@uri.edu Follow

More information

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization Diego Porras Outline Spin-boson trapped ion quantum simulators o Rabi Lattice/Jahn-Teller models o Gauge symmetries

More information

Solitons in the SU(3) Faddeev-Niemi Model

Solitons in the SU(3) Faddeev-Niemi Model Solitons in the SU(3) Faddeev-Niemi Model Yuki Amari Tokyo University of Science amari.yuki.ph@gmail.com Based on arxiv:1805,10008 with PRD 97, 065012 (2018) In collaboration with Nobuyuki Sawado (TUS)

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

From Atoms to Materials: Predictive Theory and Simulations

From Atoms to Materials: Predictive Theory and Simulations From Atoms to Materials: Predictive Theory and Simulations Week 3 Lecture 4 Potentials for metals and semiconductors Ale Strachan strachan@purdue.edu School of Materials Engineering & Birck anotechnology

More information

10. Zwanzig-Mori Formalism

10. Zwanzig-Mori Formalism University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 205 0. Zwanzig-Mori Formalism Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Overview of FRC-related modeling (July 2014-present)

Overview of FRC-related modeling (July 2014-present) Overview of FRC-related modeling (July 2014-present) Artan Qerushi AFRL-UCLA Basic Research Collaboration Workshop January 20th, 2015 AFTC PA Release# 15009, 16 Jan 2015 Artan Qerushi (AFRL) FRC modeling

More information

GLOBAL WELL-POSEDNESS FOR NONLINEAR NONLOCAL CAUCHY PROBLEMS ARISING IN ELASTICITY

GLOBAL WELL-POSEDNESS FOR NONLINEAR NONLOCAL CAUCHY PROBLEMS ARISING IN ELASTICITY Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 55, pp. 1 7. ISSN: 1072-6691. UL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu GLOBAL WELL-POSEDNESS FO NONLINEA NONLOCAL

More information

Computation of homoclinic and heteroclinic orbits for flows

Computation of homoclinic and heteroclinic orbits for flows Computation of homoclinic and heteroclinic orbits for flows Jean-Philippe Lessard BCAM BCAM Mini-symposium on Computational Math February 1st, 2011 Rigorous Computations Connecting Orbits Compute a set

More information

J07M.1 - Ball on a Turntable

J07M.1 - Ball on a Turntable Part I - Mechanics J07M.1 - Ball on a Turntable J07M.1 - Ball on a Turntable ẑ Ω A spherically symmetric ball of mass m, moment of inertia I about any axis through its center, and radius a, rolls without

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 5: Completely Monotone and Multiply Monotone Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 9, 2011 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics Nagoya Winter Workshop on Quantum Information, Measurement, and Quantum Foundations (Nagoya, February 18-23, 2010) Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

More information

PROBABILITY AND RANDOM PROCESSESS

PROBABILITY AND RANDOM PROCESSESS PROBABILITY AND RANDOM PROCESSESS SOLUTIONS TO UNIVERSITY QUESTION PAPER YEAR : JUNE 2014 CODE NO : 6074 /M PREPARED BY: D.B.V.RAVISANKAR ASSOCIATE PROFESSOR IT DEPARTMENT MVSR ENGINEERING COLLEGE, NADERGUL

More information

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES 13.42 READING 6: SPECTRUM OF A RANDOM PROCESS SPRING 24 c A. H. TECHET & M.S. TRIANTAFYLLOU 1. STATIONARY AND ERGODIC RANDOM PROCESSES Given the random process y(ζ, t) we assume that the expected value

More information

My talk Two different points of view:

My talk Two different points of view: Shin Nakamura (Dept. Phys. Kyoto Univ.) Reference: S.N., Hirosi Ooguri, Chang-Soon Park, arxiv:09.0679[hep-th] (to appear in Phys. Rev. D) ( k B = h= c=) My talk Two different points of view: rom the viewpoint

More information

Minimal time issues for the observability of Grushin-type equations

Minimal time issues for the observability of Grushin-type equations Intro Proofs Further Minimal time issues for the observability of Grushin-type equations Karine Beauchard (1) Jérémi Dardé (2) (2) (1) ENS Rennes (2) Institut de Mathématiques de Toulouse GT Contrôle LJLL

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

7 To solve numerically the equation of motion, we use the velocity Verlet or leap frog algorithm. _ V i n = F i n m i (F.5) For time step, we approxim

7 To solve numerically the equation of motion, we use the velocity Verlet or leap frog algorithm. _ V i n = F i n m i (F.5) For time step, we approxim 69 Appendix F Molecular Dynamics F. Introduction In this chapter, we deal with the theories and techniques used in molecular dynamics simulation. The fundamental dynamics equations of any system is the

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Solid State Physics II Lattice Dynamics and Heat Capacity

Solid State Physics II Lattice Dynamics and Heat Capacity SEOUL NATIONAL UNIVERSITY SCHOOL OF PHYSICS http://phya.snu.ac.kr/ ssphy2/ SPRING SEMESTER 2004 Chapter 3 Solid State Physics II Lattice Dynamics and Heat Capacity Jaejun Yu jyu@snu.ac.kr http://phya.snu.ac.kr/

More information

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution Mixing Quantum and Classical Mechanics: A Partially Miscible Solution R. Kapral S. Nielsen A. Sergi D. Mac Kernan G. Ciccotti quantum dynamics in a classical condensed phase environment how to simulate

More information

Temperature and Pressure Controls

Temperature and Pressure Controls Ensembles Temperature and Pressure Controls 1. (E, V, N) microcanonical (constant energy) 2. (T, V, N) canonical, constant volume 3. (T, P N) constant pressure 4. (T, V, µ) grand canonical #2, 3 or 4 are

More information

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain TNSAA 2018-2019 Dec. 3-6, 2018, Kobe, Japan Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain Kouichi Seki, Kouichi Okunishi Niigata University,

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Statistical Mechanics and Thermodynamics of Small Systems

Statistical Mechanics and Thermodynamics of Small Systems Statistical Mechanics and Thermodynamics of Small Systems Luca Cerino Advisors: A. Puglisi and A. Vulpiani Final Seminar of PhD course in Physics Cycle XXIX Rome, October, 26 2016 Outline of the talk 1.

More information

Fundamentals of Noise

Fundamentals of Noise Fundamentals of Noise V.Vasudevan, Department of Electrical Engineering, Indian Institute of Technology Madras Noise in resistors Random voltage fluctuations across a resistor Mean square value in a frequency

More information

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011 Direct Method of Construction of Conservation Laws for Nonlinear Differential Equations, its Relation with Noether s Theorem, Applications, and Symbolic Software Alexei F. Cheviakov University of Saskatchewan,

More information

Symmetry of the Dielectric Tensor

Symmetry of the Dielectric Tensor Symmetry of the Dielectric Tensor Curtis R. Menyuk June 11, 2010 In this note, I derive the symmetry of the dielectric tensor in two ways. The derivations are taken from Landau and Lifshitz s Statistical

More information

5. THE CLASSES OF FOURIER TRANSFORMS

5. THE CLASSES OF FOURIER TRANSFORMS 5. THE CLASSES OF FOURIER TRANSFORMS There are four classes of Fourier transform, which are represented in the following table. So far, we have concentrated on the discrete Fourier transform. Table 1.

More information

A path integral approach to the Langevin equation

A path integral approach to the Langevin equation A path integral approach to the Langevin equation - Ashok Das Reference: A path integral approach to the Langevin equation, A. Das, S. Panda and J. R. L. Santos, arxiv:1411.0256 (to be published in Int.

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

Compactness and weak solutions to time fractional PDEs

Compactness and weak solutions to time fractional PDEs Compactness and weak solutions to time fractional PDEs Lei Li (With Jian-Guo Liu) Department of Mathematics Duke University Lei Li (Math Dept) Compactness and fractional PDEs October 11, 2017 1 / 42 Outline

More information

Dyson series for the PDEs arising in Mathematical Finance I

Dyson series for the PDEs arising in Mathematical Finance I for the PDEs arising in Mathematical Finance I 1 1 Penn State University Mathematical Finance and Probability Seminar, Rutgers, April 12, 2011 www.math.psu.edu/nistor/ This work was supported in part by

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Step Bunching in Epitaxial Growth with Elasticity Effects

Step Bunching in Epitaxial Growth with Elasticity Effects Step Bunching in Epitaxial Growth with Elasticity Effects Tao Luo Department of Mathematics The Hong Kong University of Science and Technology joint work with Yang Xiang, Aaron Yip 05 Jan 2017 Tao Luo

More information

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18 Dynamics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2016-17 B. Bona (DAUIN) Dynamics Semester 1, 2016-17 1 / 18 Dynamics Dynamics studies the relations between the 3D space generalized forces

More information

Development of a stable coupling of the Yee scheme with linear current

Development of a stable coupling of the Yee scheme with linear current Development of a stable coupling of the Yee scheme with linear current Martin Campos Pinto (LJLL), Bruno Després (LJLL) Stéphane Heuraux (IJL), Filipe Da Silva (IPFN+IST) 15 octobre 2013 Munich: Pereverzev

More information

Remarks on the blow-up criterion of the 3D Euler equations

Remarks on the blow-up criterion of the 3D Euler equations Remarks on the blow-up criterion of the 3D Euler equations Dongho Chae Department of Mathematics Sungkyunkwan University Suwon 44-746, Korea e-mail : chae@skku.edu Abstract In this note we prove that the

More information

Journal of Computational Physics

Journal of Computational Physics ournal of Computational Physics 9 () 397 3987 Contents lists available at ScienceDirect ournal of Computational Physics journal homepage: www.elsevier.com/locate/jcp A multiscale coupling method for the

More information

On Chern-Simons-Schrödinger equations including a vortex point

On Chern-Simons-Schrödinger equations including a vortex point On Chern-Simons-Schrödinger equations including a vortex point Alessio Pomponio Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari Workshop in Nonlinear PDEs Brussels, September 7

More information

Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI

Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI Diffusion in multicomponent solids nton Van der Ven Department of Materials Science and Engineering University of Michigan nn rbor, MI Coarse graining time Diffusion in a crystal Two levels of time coarse

More information

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2,

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2, Filters Filters So far: Sound signals, connection to Fourier Series, Introduction to Fourier Series and Transforms, Introduction to the FFT Today Filters Filters: Keep part of the signal we are interested

More information

3d Crystallization. FCC structures. Florian Theil. Macroscopic Modeling of Materials with Fine Structure May Warwick University

3d Crystallization. FCC structures. Florian Theil. Macroscopic Modeling of Materials with Fine Structure May Warwick University FCC structures 1 Mathematics Institute Warwick University Macroscopic Modeling of Materials with Fine Structure May 2011 Outline 1 2 Outline 1 2 Extremum principles Crystalline structure is the minimizer

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

More information

Linear-response theory and the fluctuation-dissipation theorem: An executive summary

Linear-response theory and the fluctuation-dissipation theorem: An executive summary Notes prepared for the 27 Summer School at Søminestationen, Holbæk, July 1-8 Linear-response theory and the fluctuation-dissipation theorem: An executive summary Jeppe C. Dyre DNRF centre Glass and Time,

More information

Carbon Nanocone: A Promising Thermal Rectifier

Carbon Nanocone: A Promising Thermal Rectifier Carbon Nanocone: A Promising Thermal Rectifier Nuo Yang 1, Gang Zhang 2, a) 3,1, b) and Baowen Li 1 Department of Physics and Centre for Computational Science and Engineering, National University of Singapore,

More information

Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background

Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background Mauricio Martinez Guerrero In collaboration with Stefan Floerchinger arxiv:1507.05569 Correlations and Fluctuations

More information

Alignment processes on the sphere

Alignment processes on the sphere Alignment processes on the sphere Amic Frouvelle CEREMADE Université Paris Dauphine Joint works with : Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

More information

Onsager theory: overview

Onsager theory: overview Onsager theory: overview Pearu Peterson December 18, 2006 1 Introduction Our aim is to study matter that consists of large number of molecules. A complete mechanical description of such a system is practically

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology Chiu Fan Lee Department of Bioengineering, Imperial College London, UK Biology inspires new physics Biology Physics

More information

2 ω. 1 α 1. Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th

2 ω. 1 α 1. Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th α 2 ω 2 ω 1 α 1 Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 1 Berry Curvature, Spin, and Anomalous Velocity Michael Stone Institute for Condensed Matter Theory University

More information

Representing Gaussian Processes with Martingales

Representing Gaussian Processes with Martingales Representing Gaussian Processes with Martingales with Application to MLE of Langevin Equation Tommi Sottinen University of Vaasa Based on ongoing joint work with Lauri Viitasaari, University of Saarland

More information

Fractional charge in the fractional quantum hall system

Fractional charge in the fractional quantum hall system Fractional charge in the fractional quantum hall system Ting-Pong Choy 1, 1 Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801-3080, USA (Dated: May

More information

Gradient and smoothing stencils with isotropic discretization error. Abstract

Gradient and smoothing stencils with isotropic discretization error. Abstract Gradient and smoothing stencils with isotropic discretization error Tommy Anderberg (Dated: April 30, 2012) Abstract Gradient stencils with isotropic O(h 2 ) and O(h 4 ) discretization error are constructed

More information

Thermal Casimir Effect for Colloids at a Fluid Interface

Thermal Casimir Effect for Colloids at a Fluid Interface Thermal Casimir Effect for Colloids at a Fluid Interface Jef Wagner Ehsan Noruzifar Roya Zandi Department of Physics and Astronomy University of California, Riverside Outline 1 2 3 4 5 : Capillary Wave

More information

Lagrangian Statistics. of 3D MHD Convection. J. Pratt, W.-C. Müller. Boussinesq Simulation. Lagrangian. simulation. March 1, 2011

Lagrangian Statistics. of 3D MHD Convection. J. Pratt, W.-C. Müller. Boussinesq Simulation. Lagrangian. simulation. March 1, 2011 March 1, 2011 Our approach to the Dynamo Problem dynamo action: amplification of magnetic fields by turbulent flows, generation of large scale structures collaboration with the group of Schüssler et al.

More information

Solutions for Homework 4

Solutions for Homework 4 Solutions for Homework 4 October 6, 2006 1 Kittel 3.8 - Young s modulus and Poison ratio As shown in the figure stretching a cubic crystal in the x direction with a stress Xx causes a strain e xx = δl/l

More information

E cient Importance Sampling

E cient Importance Sampling E cient David N. DeJong University of Pittsburgh Spring 2008 Our goal is to calculate integrals of the form Z G (Y ) = ϕ (θ; Y ) dθ. Special case (e.g., posterior moment): Z G (Y ) = Θ Θ φ (θ; Y ) p (θjy

More information

Lecture 5 - Electromagnetic Waves IV 19

Lecture 5 - Electromagnetic Waves IV 19 Lecture 5 - Electromagnetic Waves IV 9 5. Electromagnetic Waves IV 5.. Symmetry in EM In applications, we often have symmetry in the structures we are interested in. For example, the slab waveguide we

More information

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany Langevin Methods Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 1 D 55128 Mainz Germany Motivation Original idea: Fast and slow degrees of freedom Example: Brownian motion Replace

More information