Representing Gaussian Processes with Martingales

Size: px
Start display at page:

Download "Representing Gaussian Processes with Martingales"

Transcription

1 Representing Gaussian Processes with Martingales with Application to MLE of Langevin Equation Tommi Sottinen University of Vaasa Based on ongoing joint work with Lauri Viitasaari, University of Saarland Stochastic Visit Workshop of the FDPSS, Tartu, Estonia September 11 12, / 23

2 Outline 1 Gaussian Processes and Martingales 2 Invertible Gaussian Volterra Processes and 3 MLE for Langevin Equation with Gaussian Noise 4 Invertible Gaussian Fredholm Processes and 2 / 23

3 Outline 1 Gaussian Processes and Martingales 2 Invertible Gaussian Volterra Processes and 3 MLE for Langevin Equation with Gaussian Noise 4 Invertible Gaussian Fredholm Processes and 3 / 23

4 Gaussian Processes and Martingales A centered Gaussian process X on [, T ] is completely defined by its covariance function R X (t, s) = E [X t X s ]. This seems simple enough. But for Gaussian martingales M on [, T ] the situation is even simpler. Indeed, R M (t, s) = E [M t M s ] = M t s is a function of one variable only. Moreover, for Gaussian martingales we have the powerful stochastic calculi of Ito and Malliavin at our disposal. 4 / 23

5 Gaussian Processes and Martingales So it seems desirable to connect Gaussian processes with Gaussian martingales to invoke the tools of Ito Malliavin calculus. This connection is called the. As an example we show how to construct an MLE for the drift parameter of the Langevin equation with relatively general Gaussian noise. 5 / 23

6 Outline 1 Gaussian Processes and Martingales 2 Invertible Gaussian Volterra Processes and 3 MLE for Langevin Equation with Gaussian Noise 4 Invertible Gaussian Fredholm Processes and 6 / 23

7 Invertible Gaussian Volterra Processes and A Gaussian process X on [, T ] is Invertible Gaussian Volterra process (IGV) if the exist a Gaussian martingale M with bracket M t = E[M 2 t ] such that X t = M t = k(t, s) dm s, k 1 (t, s) dx s. For convenience we assume that both X and M are continuous. The Wiener integral k 1 (t, s)dx s is defined via a Transfer Principle explained later. 7 / 23

8 Invertible Gaussian Volterra Processes and Remark: A good guess for M is the Prediction Martingale [ ] M t = E X T Ft X. Alas, now M depend on T. This is not too bad, or at least unavoidable for the transfer principle in general. Define the adjoint operators K T and (K T ) 1 by linearly extending the relations K T 1 [,t] = k(t, s), (K T ) 1 1 [,t] = k 1 (t, s). 8 / 23

9 Invertible Gaussian Volterra Processes and Then we have the (TP) for Wiener and Skorohod integrals f (t) dx t = g(t) dm t = K T f (t) dm t, (K T ) 1 g(t) dx t. Remark: If k is smooth enough and vanishes on the diagonal, then Ditto for (K ) 1. KT f (t) = f (s) k(ds, t). t 9 / 23

10 Outline 1 Gaussian Processes and Martingales 2 Invertible Gaussian Volterra Processes and 3 MLE for Langevin Equation with Gaussian Noise 4 Invertible Gaussian Fredholm Processes and 1 / 23

11 MLE for Langevin Equation with Gaussian Noise We show how to apply the for MLE s. Consider the Langevin equation on t [, T ]: dg θ t = θg θ t dt + dg t, where θ is the parameter to be estimated and G is a continuous process with mean zero. The solution is ) Gt θ = e (G θt + e θs dg s. The integral can be defined via integration by parts as e θs dg s = e θt G t G s de θs = e θt G t θ G s e θs ds. We have unique pathwise solution if G is continuous. No additional assumptions are needed. 11 / 23

12 MLE for Langevin Equation with Gaussian Noise Now assume that G in the Langevin equation is IGV with representations G t = M t = k(t, s) dm s, k 1 (t, s) dg s. Here M is a Gaussian martingale with bracket M and k L 2 ([, T ] 2, d M ). The Wiener integral k 1 (t, s)dg s is defined via the transfer principle and the kernel k 1 (t, s) is assumed to be a true function (as opposed to a generalized function). 12 / 23

13 MLE for Langevin Equation with Gaussian Noise Let us then consider MLE for θ. It makes sense to consider the case G = G θ =. So, we have the equation dgt θ = θgt θ dt + dg t with the solution Gt θ = e θt e θs dg s = e θt G t θ G s e θs ds. 13 / 23

14 MLE for Langevin Equation with Gaussian Noise To make MLE non-trivial we must assume the G θ and G are equivalent in law. Indeed, in the Gaussian case the only alternative would be singularity. Girsanov Hitsuda theorem suggest that the bracket d M is consistent with the drift dt. Indeed, we have the following necessary and sufficient condition for the existence of non-trivial MLE: Assume that (A) Q t = d d M t k 1 (t, s)g θ s ds exists in L 2 (Ω [, T ]). 14 / 23

15 MLE for Langevin Equation with Gaussian Noise Let us find the MLE by using a kind of inverse transfer principle. Start with the Langevin equation dg θ s = θg θ s ds + dg s and integrate against the kernel k 1 (t, s) on both sides. This yields k 1 (t, s) dgs θ = θ k 1 (t, s)gs θ ds + k 1 (t, s) dg s Or, by denoting Mt θ = k 1 (t, s)dgs θ, Mt θ = θ k 1 (t, s)gs θ ds + M t. 15 / 23

16 MLE for Langevin Equation with Gaussian Noise Now we use the assumption (A) and obtain dm θ t = θq t d M t + dm t. So, we have written the linear-drift Langevin equation with noise G as a Langevin equation with non-linear drift and noise M. By the Girsanov theorem for martingales we can write the log-likelihood as l T (θ) = log dpθ T dp T = θ Q t dm θ t θ2 2 Q 2 t d M t. 16 / 23

17 MLE for Langevin Equation with Gaussian Noise Maximizing l T (θ) with respect to θ is trivial. Indeed, l T (θ) = Q t dmt θ θ Qt 2 d M t. Setting l T (θ) = yields immediately the MLE ˆθ T = Q t dmt θ. Q2 t d M t 17 / 23

18 MLE for Langevin Equation with Gaussian Noise Let us then consider the Strong Consistency of the MLE. Now Thus, ˆθ T = = Q t dm θ t Q2 t d M t Q t {θq t d M t dm t } Q2 t d M t Q2 t d M t = θ Q2 t d M t Q t dm t ˆθ T θ = Q t dm t. Q2 t d M t 18 / 23

19 MLE for Langevin Equation with Gaussian Noise Note that the downstairs of the difference is nothing but the quadratic variation of the martingale appearing in the upstairs of the difference. Thus, by the strong law of large numbers for martingales, we obtain that ˆθ T is strongly consistent if (B) lim Qt 2 d M t = + T a.s. Assumption (B), and assumption (A), and also the IGV assumption, can be written in terms of the covariance of G, but it is complicated. 19 / 23

20 Outline 1 Gaussian Processes and Martingales 2 Invertible Gaussian Volterra Processes and 3 MLE for Langevin Equation with Gaussian Noise 4 Invertible Gaussian Fredholm Processes and 2 / 23

21 Invertible Gaussian Fredholm Processes and It follows from the Mercer s theorem that any centered Gaussian process X with X = on [, T ] with continuous (say) covariance function admits the Fredholm representation X t = where W is a Brownian motion. k T (t, s) dw s, Obviously, in general there is no hope in having the inversion W t = k 1 T (t, s) dx s. Indeed, X can be, e.g., generated by a single Gaussian variable. 21 / 23

22 Invertible Gaussian Fredholm Processes and There seems to be hope, when one replaces the Brownian motion W with a Gaussian martingale M that generates dynamically the same amount of randomness as X, whatever that means. So, with minimal assumptions one hopes to get X t = M t = k T (t, s) dm s, k 1 T (t, s) dx s. The obvious problem here is that the kernels k T and k 1 T depend on T. This is, I think, a minor inconvenience. Indeed, the adjoint operators K T and (K T ) 1 depend on T even in the Volterra case. The works pretty much the same way in the Fredholm case as in the Volterra case. 22 / 23

23 Thank you for listening! Any questions? 23 / 23

Generalized Gaussian Bridges of Prediction-Invertible Processes

Generalized Gaussian Bridges of Prediction-Invertible Processes Generalized Gaussian Bridges of Prediction-Invertible Processes Tommi Sottinen 1 and Adil Yazigi University of Vaasa, Finland Modern Stochastics: Theory and Applications III September 1, 212, Kyiv, Ukraine

More information

Generalized Gaussian Bridges

Generalized Gaussian Bridges TOMMI SOTTINEN ADIL YAZIGI Generalized Gaussian Bridges PROCEEDINGS OF THE UNIVERSITY OF VAASA WORKING PAPERS 4 MATHEMATICS 2 VAASA 212 Vaasan yliopisto University of Vaasa PL 7 P.O. Box 7 (Wolffintie

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

Rough Burgers-like equations with multiplicative noise

Rough Burgers-like equations with multiplicative noise Rough Burgers-like equations with multiplicative noise Martin Hairer Hendrik Weber Mathematics Institute University of Warwick Bielefeld, 3.11.21 Burgers-like equation Aim: Existence/Uniqueness for du

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

arxiv: v1 [math.pr] 23 Jan 2018

arxiv: v1 [math.pr] 23 Jan 2018 TRANSFER PRINCIPLE FOR nt ORDER FRACTIONAL BROWNIAN MOTION WIT APPLICATIONS TO PREDICTION AND EQUIVALENCE IN LAW TOMMI SOTTINEN arxiv:181.7574v1 [math.pr 3 Jan 18 Department of Mathematics and Statistics,

More information

Conditional Full Support for Gaussian Processes with Stationary Increments

Conditional Full Support for Gaussian Processes with Stationary Increments Conditional Full Support for Gaussian Processes with Stationary Increments Tommi Sottinen University of Vaasa Kyiv, September 9, 2010 International Conference Modern Stochastics: Theory and Applications

More information

Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior

Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior Ehsan Azmoodeh University of Vaasa Finland 7th General AMaMeF and Swissquote Conference September 7 1, 215 Outline

More information

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim ***

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 19, No. 4, December 26 GIRSANOV THEOREM FOR GAUSSIAN PROCESS WITH INDEPENDENT INCREMENTS Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** Abstract.

More information

The Cameron-Martin-Girsanov (CMG) Theorem

The Cameron-Martin-Girsanov (CMG) Theorem The Cameron-Martin-Girsanov (CMG) Theorem There are many versions of the CMG Theorem. In some sense, there are many CMG Theorems. The first version appeared in ] in 944. Here we present a standard version,

More information

Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments

Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments Austrian Journal of Statistics April 27, Volume 46, 67 78. AJS http://www.ajs.or.at/ doi:.773/ajs.v46i3-4.672 Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments Yuliya

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Representations of Gaussian measures that are equivalent to Wiener measure

Representations of Gaussian measures that are equivalent to Wiener measure Representations of Gaussian measures that are equivalent to Wiener measure Patrick Cheridito Departement für Mathematik, ETHZ, 89 Zürich, Switzerland. E-mail: dito@math.ethz.ch Summary. We summarize results

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Topics in fractional Brownian motion

Topics in fractional Brownian motion Topics in fractional Brownian motion Esko Valkeila Spring School, Jena 25.3. 2011 We plan to discuss the following items during these lectures: Fractional Brownian motion and its properties. Topics in

More information

Applications of Ito s Formula

Applications of Ito s Formula CHAPTER 4 Applications of Ito s Formula In this chapter, we discuss several basic theorems in stochastic analysis. Their proofs are good examples of applications of Itô s formula. 1. Lévy s martingale

More information

Malliavin Calculus: Analysis on Gaussian spaces

Malliavin Calculus: Analysis on Gaussian spaces Malliavin Calculus: Analysis on Gaussian spaces Josef Teichmann ETH Zürich Oxford 2011 Isonormal Gaussian process A Gaussian space is a (complete) probability space together with a Hilbert space of centered

More information

1 Brownian Local Time

1 Brownian Local Time 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) =

More information

Some Tools From Stochastic Analysis

Some Tools From Stochastic Analysis W H I T E Some Tools From Stochastic Analysis J. Potthoff Lehrstuhl für Mathematik V Universität Mannheim email: potthoff@math.uni-mannheim.de url: http://ls5.math.uni-mannheim.de To close the file, click

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

Stochastic Differential Equations

Stochastic Differential Equations Chapter 5 Stochastic Differential Equations We would like to introduce stochastic ODE s without going first through the machinery of stochastic integrals. 5.1 Itô Integrals and Itô Differential Equations

More information

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA On Stochastic Adaptive Control & its Applications Bozenna Pasik-Duncan University of Kansas, USA ASEAS Workshop, AFOSR, 23-24 March, 2009 1. Motivation: Work in the 1970's 2. Adaptive Control of Continuous

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

Igor Cialenco. Department of Applied Mathematics Illinois Institute of Technology, USA joint with N.

Igor Cialenco. Department of Applied Mathematics Illinois Institute of Technology, USA joint with N. Parameter Estimation for Stochastic Navier-Stokes Equations Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology, USA igor@math.iit.edu joint with N. Glatt-Holtz (IU) Asymptotical

More information

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term 1 Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term Enrico Priola Torino (Italy) Joint work with G. Da Prato, F. Flandoli and M. Röckner Stochastic Processes

More information

Densities for the Navier Stokes equations with noise

Densities for the Navier Stokes equations with noise Densities for the Navier Stokes equations with noise Marco Romito Università di Pisa Universitat de Barcelona March 25, 2015 Summary 1 Introduction & motivations 2 Malliavin calculus 3 Besov bounds 4 Other

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

Quasi-invariant Measures on Path Space. Denis Bell University of North Florida

Quasi-invariant Measures on Path Space. Denis Bell University of North Florida Quasi-invariant Measures on Path Space Denis Bell University of North Florida Transformation of measure under the flow of a vector field Let E be a vector space (or a manifold), equipped with a finite

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

LAN property for ergodic jump-diffusion processes with discrete observations

LAN property for ergodic jump-diffusion processes with discrete observations LAN property for ergodic jump-diffusion processes with discrete observations Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Arturo Kohatsu-Higa (Ritsumeikan University, Japan) &

More information

Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion

Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion Luis Barboza October 23, 2012 Department of Statistics, Purdue University () Probability Seminar 1 / 59 Introduction

More information

Rough paths methods 4: Application to fbm

Rough paths methods 4: Application to fbm Rough paths methods 4: Application to fbm Samy Tindel Purdue University University of Aarhus 2016 Samy T. (Purdue) Rough Paths 4 Aarhus 2016 1 / 67 Outline 1 Main result 2 Construction of the Levy area:

More information

Numerical treatment of stochastic delay differential equations

Numerical treatment of stochastic delay differential equations Numerical treatment of stochastic delay differential equations Evelyn Buckwar Department of Mathematics Heriot-Watt University, Edinburgh Evelyn Buckwar Roma, 16.10.2007 Overview An example: machine chatter

More information

Stochastic Calculus. Kevin Sinclair. August 2, 2016

Stochastic Calculus. Kevin Sinclair. August 2, 2016 Stochastic Calculus Kevin Sinclair August, 16 1 Background Suppose we have a Brownian motion W. This is a process, and the value of W at a particular time T (which we write W T ) is a normally distributed

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Minimum L 1 -norm Estimation for Fractional Ornstein-Uhlenbeck Type Process

Minimum L 1 -norm Estimation for Fractional Ornstein-Uhlenbeck Type Process isid/ms/23/25 September 11, 23 http://www.isid.ac.in/ statmath/eprints Minimum L 1 -norm Estimation for Fractional Ornstein-Uhlenbeck Type Process B. L. S. Prakasa Rao Indian Statistical Institute, Delhi

More information

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1].

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1]. 1 Introduction The content of these notes is also covered by chapter 3 section B of [1]. Diffusion equation and central limit theorem Consider a sequence {ξ i } i=1 i.i.d. ξ i = d ξ with ξ : Ω { Dx, 0,

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

Riemann-Stieltjes integrals and fractional Brownian motion

Riemann-Stieltjes integrals and fractional Brownian motion Riemann-Stieltjes integrals and fractional Brownian motion Esko Valkeila Aalto University, School of Science and Engineering, Department of Mathematics and Systems Analysis Workshop on Ambit processes,

More information

DOOB S DECOMPOSITION THEOREM FOR NEAR-SUBMARTINGALES

DOOB S DECOMPOSITION THEOREM FOR NEAR-SUBMARTINGALES Communications on Stochastic Analysis Vol. 9, No. 4 (215) 467-476 Serials Publications www.serialspublications.com DOOB S DECOMPOSITION THEOREM FOR NEAR-SUBMARTINGALES HUI-HSIUNG KUO AND KIMIAKI SAITÔ*

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

Convoluted Brownian motions: a class of remarkable Gaussian processes

Convoluted Brownian motions: a class of remarkable Gaussian processes Convoluted Brownian motions: a class of remarkable Gaussian processes Sylvie Roelly Random models with applications in the natural sciences Bogotá, December 11-15, 217 S. Roelly (Universität Potsdam) 1

More information

Stochastic Calculus Made Easy

Stochastic Calculus Made Easy Stochastic Calculus Made Easy Most of us know how standard Calculus works. We know how to differentiate, how to integrate etc. But stochastic calculus is a totally different beast to tackle; we are trying

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Itô s formula Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Itô s formula Probability Theory

More information

The Pedestrian s Guide to Local Time

The Pedestrian s Guide to Local Time The Pedestrian s Guide to Local Time Tomas Björk, Department of Finance, Stockholm School of Economics, Box 651, SE-113 83 Stockholm, SWEDEN tomas.bjork@hhs.se November 19, 213 Preliminary version Comments

More information

Stochastic Modelling in Climate Science

Stochastic Modelling in Climate Science Stochastic Modelling in Climate Science David Kelly Mathematics Department UNC Chapel Hill dtbkelly@gmail.com November 16, 2013 David Kelly (UNC) Stochastic Climate November 16, 2013 1 / 36 Why use stochastic

More information

Kolmogorov Equations and Markov Processes

Kolmogorov Equations and Markov Processes Kolmogorov Equations and Markov Processes May 3, 013 1 Transition measures and functions Consider a stochastic process {X(t)} t 0 whose state space is a product of intervals contained in R n. We define

More information

Integral representations in models with long memory

Integral representations in models with long memory Integral representations in models with long memory Georgiy Shevchenko, Yuliya Mishura, Esko Valkeila, Lauri Viitasaari, Taras Shalaiko Taras Shevchenko National University of Kyiv 29 September 215, Ulm

More information

Asymptotic Properties of an Approximate Maximum Likelihood Estimator for Stochastic PDEs

Asymptotic Properties of an Approximate Maximum Likelihood Estimator for Stochastic PDEs Asymptotic Properties of an Approximate Maximum Likelihood Estimator for Stochastic PDEs M. Huebner S. Lototsky B.L. Rozovskii In: Yu. M. Kabanov, B. L. Rozovskii, and A. N. Shiryaev editors, Statistics

More information

ELEMENTS OF STOCHASTIC CALCULUS VIA REGULARISATION. A la mémoire de Paul-André Meyer

ELEMENTS OF STOCHASTIC CALCULUS VIA REGULARISATION. A la mémoire de Paul-André Meyer ELEMENTS OF STOCHASTIC CALCULUS VIA REGULARISATION A la mémoire de Paul-André Meyer Francesco Russo (1 and Pierre Vallois (2 (1 Université Paris 13 Institut Galilée, Mathématiques 99 avenue J.B. Clément

More information

Lecture 22 Girsanov s Theorem

Lecture 22 Girsanov s Theorem Lecture 22: Girsanov s Theorem of 8 Course: Theory of Probability II Term: Spring 25 Instructor: Gordan Zitkovic Lecture 22 Girsanov s Theorem An example Consider a finite Gaussian random walk X n = n

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Finite element approximation of the stochastic heat equation with additive noise

Finite element approximation of the stochastic heat equation with additive noise p. 1/32 Finite element approximation of the stochastic heat equation with additive noise Stig Larsson p. 2/32 Outline Stochastic heat equation with additive noise du u dt = dw, x D, t > u =, x D, t > u()

More information

Divergence Theorems in Path Space. Denis Bell University of North Florida

Divergence Theorems in Path Space. Denis Bell University of North Florida Divergence Theorems in Path Space Denis Bell University of North Florida Motivation Divergence theorem in Riemannian geometry Theorem. Let M be a closed d-dimensional Riemannian manifold. Then for any

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

BV functions in a Gelfand triple and the stochastic reflection problem on a convex set

BV functions in a Gelfand triple and the stochastic reflection problem on a convex set BV functions in a Gelfand triple and the stochastic reflection problem on a convex set Xiangchan Zhu Joint work with Prof. Michael Röckner and Rongchan Zhu Xiangchan Zhu ( Joint work with Prof. Michael

More information

Regularization by noise in infinite dimensions

Regularization by noise in infinite dimensions Regularization by noise in infinite dimensions Franco Flandoli, University of Pisa King s College 2017 Franco Flandoli, University of Pisa () Regularization by noise King s College 2017 1 / 33 Plan of

More information

Continuous Time Finance

Continuous Time Finance Continuous Time Finance Lisbon 2013 Tomas Björk Stockholm School of Economics Tomas Björk, 2013 Contents Stochastic Calculus (Ch 4-5). Black-Scholes (Ch 6-7. Completeness and hedging (Ch 8-9. The martingale

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 3. Calculaus in Deterministic and Stochastic Environments Steve Yang Stevens Institute of Technology 01/31/2012 Outline 1 Modeling Random Behavior

More information

SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM. 1. Introduction This paper discusses arbitrage-free separable term structure (STS) models

SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM. 1. Introduction This paper discusses arbitrage-free separable term structure (STS) models SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM DAMIR FILIPOVIĆ Abstract. This paper discusses separable term structure diffusion models in an arbitrage-free environment. Using general consistency

More information

Density models for credit risk

Density models for credit risk Density models for credit risk Nicole El Karoui, Ecole Polytechnique, France Monique Jeanblanc, Université d Évry; Institut Europlace de Finance Ying Jiao, Université Paris VII Workshop on stochastic calculus

More information

Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues

Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues Mohammadreza Aghajani joint work with Kavita Ramanan Brown University March 2014 Mohammadreza Aghajanijoint work Asymptotic with

More information

COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE

COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE Communications on Stochastic Analysis Vol. 4, No. 3 (21) 299-39 Serials Publications www.serialspublications.com COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE NICOLAS PRIVAULT

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Introduction to Malliavin calculus and its applications Lecture 3: Clark-Ocone formula David Nualart Department of Mathematics Kansas University University of Wyoming Summer School 214 David Nualart

More information

BOOK REVIEW. Review by Denis Bell. University of North Florida

BOOK REVIEW. Review by Denis Bell. University of North Florida BOOK REVIEW By Paul Malliavin, Stochastic Analysis. Springer, New York, 1997, 370 pages, $125.00. Review by Denis Bell University of North Florida This book is an exposition of some important topics in

More information

Lecture 3 September 1

Lecture 3 September 1 STAT 383C: Statistical Modeling I Fall 2016 Lecture 3 September 1 Lecturer: Purnamrita Sarkar Scribe: Giorgio Paulon, Carlos Zanini Disclaimer: These scribe notes have been slightly proofread and may have

More information

Parameter Estimation for Stochastic Evolution Equations with Non-commuting Operators

Parameter Estimation for Stochastic Evolution Equations with Non-commuting Operators Parameter Estimation for Stochastic Evolution Equations with Non-commuting Operators Sergey V. Lototsky and Boris L. Rosovskii In: V. Korolyuk, N. Portenko, and H. Syta (editors), Skorokhod s Ideas in

More information

Introduction to Malliavin calculus and Applications to Finance

Introduction to Malliavin calculus and Applications to Finance Introduction to Malliavin calculus and Applications to Finance Part II Giulia Di Nunno Finance and Insurance, Stochastic Analysis and Practical Methods Spring School Marie Curie ITN - Jena 29 PART II 1.

More information

with Current Status Data

with Current Status Data Estimation and Testing with Current Status Data Jon A. Wellner University of Washington Estimation and Testing p. 1/4 joint work with Moulinath Banerjee, University of Michigan Talk at Université Paul

More information

Estimates for the density of functionals of SDE s with irregular drift

Estimates for the density of functionals of SDE s with irregular drift Estimates for the density of functionals of SDE s with irregular drift Arturo KOHATSU-HIGA a, Azmi MAKHLOUF a, a Ritsumeikan University and Japan Science and Technology Agency, Japan Abstract We obtain

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

DIVERGENCE THEOREMS IN PATH SPACE

DIVERGENCE THEOREMS IN PATH SPACE DIVERGENCE THEOREMS IN PATH SPACE Denis Bell Department of Mathematics, University of North Florida, 4567 St. Johns Bluff Road South, Jacksonville, FL 32224, U. S. A. email: dbell@unf.edu This paper is

More information

Existence Theory: Green s Functions

Existence Theory: Green s Functions Chapter 5 Existence Theory: Green s Functions In this chapter we describe a method for constructing a Green s Function The method outlined is formal (not rigorous) When we find a solution to a PDE by constructing

More information

Contents. 1 Preliminaries 3. Martingales

Contents. 1 Preliminaries 3. Martingales Table of Preface PART I THE FUNDAMENTAL PRINCIPLES page xv 1 Preliminaries 3 2 Martingales 9 2.1 Martingales and examples 9 2.2 Stopping times 12 2.3 The maximum inequality 13 2.4 Doob s inequality 14

More information

Branching Processes II: Convergence of critical branching to Feller s CSB

Branching Processes II: Convergence of critical branching to Feller s CSB Chapter 4 Branching Processes II: Convergence of critical branching to Feller s CSB Figure 4.1: Feller 4.1 Birth and Death Processes 4.1.1 Linear birth and death processes Branching processes can be studied

More information

Infinitely divisible distributions and the Lévy-Khintchine formula

Infinitely divisible distributions and the Lévy-Khintchine formula Infinitely divisible distributions and the Cornell University May 1, 2015 Some definitions Let X be a real-valued random variable with law µ X. Recall that X is said to be infinitely divisible if for every

More information

Exact Simulation of Multivariate Itô Diffusions

Exact Simulation of Multivariate Itô Diffusions Exact Simulation of Multivariate Itô Diffusions Jose Blanchet Joint work with Fan Zhang Columbia and Stanford July 7, 2017 Jose Blanchet (Columbia/Stanford) Exact Simulation of Diffusions July 7, 2017

More information

Malliavin calculus and central limit theorems

Malliavin calculus and central limit theorems Malliavin calculus and central limit theorems David Nualart Department of Mathematics Kansas University Seminar on Stochastic Processes 2017 University of Virginia March 8-11 2017 David Nualart (Kansas

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197 MATH 56A SPRING 8 STOCHASTIC PROCESSES 197 9.3. Itô s formula. First I stated the theorem. Then I did a simple example to make sure we understand what it says. Then I proved it. The key point is Lévy s

More information

Introduction to Random Diffusions

Introduction to Random Diffusions Introduction to Random Diffusions The main reason to study random diffusions is that this class of processes combines two key features of modern probability theory. On the one hand they are semi-martingales

More information

Wiener integrals, Malliavin calculus and covariance measure structure

Wiener integrals, Malliavin calculus and covariance measure structure Wiener integrals, Malliavin calculus and covariance measure structure Ida Kruk 1 Francesco Russo 1 Ciprian A. Tudor 1 Université de Paris 13, Institut Galilée, Mathématiques, 99, avenue J.B. Clément, F-9343,

More information

EQUITY MARKET STABILITY

EQUITY MARKET STABILITY EQUITY MARKET STABILITY Adrian Banner INTECH Investment Technologies LLC, Princeton (Joint work with E. Robert Fernholz, Ioannis Karatzas, Vassilios Papathanakos and Phillip Whitman.) Talk at WCMF6 conference,

More information

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS APPLICATIONES MATHEMATICAE 29,4 (22), pp. 387 398 Mariusz Michta (Zielona Góra) OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS Abstract. A martingale problem approach is used first to analyze

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

A Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime

A Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime A Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime Mohammadreza Aghajani joint work with Kavita Ramanan Brown University APS Conference, Istanbul,

More information

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3.

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3. 1. GAUSSIAN PROCESSES A Gaussian process on a set T is a collection of random variables X =(X t ) t T on a common probability space such that for any n 1 and any t 1,...,t n T, the vector (X(t 1 ),...,X(t

More information

The Azéma-Yor Embedding in Non-Singular Diffusions

The Azéma-Yor Embedding in Non-Singular Diffusions Stochastic Process. Appl. Vol. 96, No. 2, 2001, 305-312 Research Report No. 406, 1999, Dept. Theoret. Statist. Aarhus The Azéma-Yor Embedding in Non-Singular Diffusions J. L. Pedersen and G. Peskir Let

More information

GENERALIZED COVARIATION FOR BANACH SPACE VALUED PROCESSES, ITÔ FORMULA AND APPLICATIONS

GENERALIZED COVARIATION FOR BANACH SPACE VALUED PROCESSES, ITÔ FORMULA AND APPLICATIONS Di Girolami, C. and Russo, F. Osaka J. Math. 51 (214), 729 783 GENERALIZED COVARIATION FOR BANACH SPACE VALUED PROCESSES, ITÔ FORMULA AND APPLICATIONS CRISTINA DI GIROLAMI and FRANCESCO RUSSO (Received

More information

A stochastic particle system for the Burgers equation.

A stochastic particle system for the Burgers equation. A stochastic particle system for the Burgers equation. Alexei Novikov Department of Mathematics Penn State University with Gautam Iyer (Carnegie Mellon) supported by NSF Burgers equation t u t + u x u

More information

Lecture 19 L 2 -Stochastic integration

Lecture 19 L 2 -Stochastic integration Lecture 19: L 2 -Stochastic integration 1 of 12 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 19 L 2 -Stochastic integration The stochastic integral for processes

More information

Universal examples. Chapter The Bernoulli process

Universal examples. Chapter The Bernoulli process Chapter 1 Universal examples 1.1 The Bernoulli process First description: Bernoulli random variables Y i for i = 1, 2, 3,... independent with P [Y i = 1] = p and P [Y i = ] = 1 p. Second description: Binomial

More information

Homogenization with stochastic differential equations

Homogenization with stochastic differential equations Homogenization with stochastic differential equations Scott Hottovy shottovy@math.arizona.edu University of Arizona Program in Applied Mathematics October 12, 2011 Modeling with SDE Use SDE to model system

More information