Session 11. Large-sample intervals. Small-sample intervals. Bootstrap. Confidence Intervals via the bootstrap. Dr. Syring April 2, 2019

Size: px
Start display at page:

Download "Session 11. Large-sample intervals. Small-sample intervals. Bootstrap. Confidence Intervals via the bootstrap. Dr. Syring April 2, 2019"

Transcription

1 Session 11 Dr. Syring April 2, 2019 Confidence Intervals via the bootstrap Large-sample intervals Recall that we use the Central Limit Theorem to derive approximate confidence intervals for population means of general or non-normal populations, e.g. for a Bernoulli population, the 100(1 α)% approximate CI for p is ( p^ + z α/2 p^ (1 p^ )/n, p^ + z α/2 p^ (1 p^ )/n). And, the textbook claims the approximation is good if np, n(1 p) 8. Here is a short simulation to support that claim: n<-16 p<-0.5 alpha <- 0.1 coverage <- rep(0,1000) for(i in 1:1000){ data<-rbinom(1,n,p) p.hat <- data/n CI <- c(p.hat + qnorm(alpha/2)*sqrt(p.hat*(1-p.hat)/n), p.hat + qnorm(1-alpha/2)*sqrt(p.hat*(1 -p.hat)/n)) coverage[i] <- ifelse(ci[1]<=p & CI[2]>=p,1,0) mean(coverage) ## [1] Small-sample intervals The CLT generally works for n 30 samples. What if we do not have that many? For some experiments, it is very costly and/or time-consuming to collect data, so even n = 30 may be prohibitively large. Suppose a biologist is studying a random mutation. She has the time and funding to grow n = 10 strains of cyanobacteria (photosynthetic microorganisms). Each strain has the same chance of gaining the mutation, independentyl of the other strains. Suppose in her experiment only one strain mutates. Compute the approximate 90% CLT-based confidence interval for the true population proportion of mutating strains. What s problematic about your interval estimate of p? c(.1+qnorm(.05)*sqrt(.1*.9/10),.1+qnorm(.95)*sqrt(.1*.9/10)) ## [1] Bootstrap file:///e:/teaching/washu/math3200sp19/discussion/session11/ds11_solutions.html 1/6

2 We use the CLT to approximate the distribution of a sample mean with a normal distribution. This works well for large samples, but not always for smaller samples. The bootstrap is another way to approximate the probability distribution of a sample mean. The bootstrap is a computational method that uses only the data, no model. Thus, it s sort of like ``pulling oneself up by one s own bootstraps" which never really made sense to me Suppose you have a random sample X 1,..., X n. The bootstrap distribution of the data is the set of all random samples of size n, with replacement, from,...,. X 1 X n For example, suppose n = 3 and X 1 = 1, X 2 = 2, X 3 = 3. The bootstrap distribution of the data is the set of 3 3 = 27 equally-likely sets: {{1, 1, 1, {1, 1, 2, {1, 2, 1,..., {3, 3, 1, {3, 3, 2, {3, 3, 3. In general, there are n n sets (which is a huge number!), though many are equal up to a permutation, e.g. {1, 2, 3 and {3, 2, 1. Suppose we are interested in the population mean. Then, the sample mean based on the sample X 1 = 1, X 2 = 2, X 3 = 3 is 2. But, we also have a bootstrap estimate of the distribution of the sample mean. For each bootstrap data set, compute the sample mean. You will find you get the following distribution: x : 1, 1.33, 1.67, 2, 2.33, 2.67, 3 P ( X = x ) : 1/27, 3/27, 6/27, 7/27, 6/27, 3/27, 1/27 In practice, it is difficult to list all the bootstrap data sets. So, we approximate the bootstrap distribution by simulation. Here s an example for the above data X 1 = 1, X 2 = 2, X 3 = 3. X<-c(1,2,3) means<-rep(0,10000) for(i in 1:10000){ Y <- sample(x,3, replace = T) means[i] = mean(y) hist(means) file:///e:/teaching/washu/math3200sp19/discussion/session11/ds11_solutions.html 2/6

3 sorted <- sort(means) c(sorted[.05*10000], sorted[.95*10000]) ## [1] Confidence intervals using bootstrap There are many ways to compute confidence intervals using the bootstrap. The easiest is the quantile method (or percentile method). Once you have the bootstrap distribution of the sample mean, simply use the α/2 and 1 α/2 quantiles of this distribution as an approximate 100(1 α%) CI. Here s an example for the small sample binomial data: X<-c(1,0,0,0,0,0,0,0,0,0) means<-rep(0,10000) for(i in 1:10000){ Y <- sample(x,10, replace = T) means[i] = mean(y) hist(means) file:///e:/teaching/washu/math3200sp19/discussion/session11/ds11_solutions.html 3/6

4 sorted <- sort(means) c(sorted[.05*10000], sorted[.95*10000]) ## [1] c(quantile(means,.05), quantile(means,.95)) ## 5% 95% ## The interval (0, 0.3) is much more sensible than what we got using the CLT for this small data set. Exercises 1. Poisson. Suppose in n = 5 Poisson trials we observe X 1 = 4, X 2 = 4, X 3 = 6, X 4 = 5, X 5 = 7. Compute approximate 95% confidence intervals using both the CLT and the bootstrap. data <- c(4,4,6,5,7) clt.ci <- c(mean(data)+qnorm(.025)*sqrt(mean(data)/5), mean(data)+qnorm(.975)*sqrt(mean(data)/5 )) clt.ci file:///e:/teaching/washu/math3200sp19/discussion/session11/ds11_solutions.html 4/6

5 ## [1] boot.means<-rep(0,10000) for(i in 1:10000){ boot.data<-sample(data,5,replace = T) boot.means[i] <- mean(boot.data) c(quantile(boot.means,0.025), quantile(boot.means,0.975)) ## 2.5% 97.5% ## Exponential. Suppose in n = 8 Exponential trials we observe $ X_1 = 0.82, X_2 = 1.54, X_3 = 1.26, X_4 = 1.62, X_5 = 0.64, X_6 = 0.84, X_7 = 0.43, X_8 = 1.63$. Assume the exponential is parametrized with E(X) = λ. Compute approximate 80% confidence intervals using both the CLT and the bootstrap. 3. General population with finite variance. Suppose in n = 10 trials we observe 1.06, 1.93, 2.02, 2.17, 0.89, 1.60, 3.07, 1.57, 1.37, Compute approximate 99% confidence intervals using both the CLT and the bootstrap. 4. Simulation study. Design and perform a simulation to compare the coverage probability of CLT intervals and bootstrap intervals for an Exponential population. Assume in each experiment we conduct n = 10 trials and E(X) = λ = 0.1. Simulate this experiment times and compute the corresponding interval estimates for each simulated experiment. Store an indicator value of whether or not each CI contained the true λ = 0.1 and compute the overall coverage proportion of the of each type of CI. Does the bootstrap CI have better coverage than the CLT-based interval in this example? file:///e:/teaching/washu/math3200sp19/discussion/session11/ds11_solutions.html 5/6

6 reps < cover_clt <- rep(0,reps) cover_boot_quant <- rep(0,reps) cover_boot_basic <- rep(0,reps) alpha <- 0.1 lambda <- 0.1 n <- 10 for(i in 1:reps){ data <- rexp(n,1/lambda) xbar <- mean(data) # bootstrap boot.means <- rep(0,1000) for(j in 1:1000){ data.boot <- sample(data,n,replace=t) boot.means[j] <- mean(data.boot) boot.ci <- c(2*xbar-quantile(boot.means,1-alpha/2), 2*xbar+quantile(boot.means,alpha/2)) # a d ifferent way to compute bootstrap intervals... boot.ci.quant <- c(quantile(boot.means,alpha/2), quantile(boot.means,1-alpha/2)) # quantile bo otstrap method # clt clt.ci <- c(xbar+qnorm(alpha/2)*xbar/sqrt(n), xbar+qnorm(1-alpha/2)*xbar/sqrt(n)) # cover or not cover_boot_basic[i] <-ifelse(boot.ci[1]<=lambda & boot.ci[2]>=lambda,1,0) cover_boot_quant[i] <-ifelse(boot.ci.quant[1]<=lambda & boot.ci.quant[2]>=lambda,1,0) cover_clt[i] <-ifelse(clt.ci[1]<=lambda & clt.ci[2]>=lambda,1,0) mean(cover_boot_basic) ## [1] mean(cover_boot_quant) ## [1] mean(cover_clt) ## [1] file:///e:/teaching/washu/math3200sp19/discussion/session11/ds11_solutions.html 6/6

1 Statistical inference for a population mean

1 Statistical inference for a population mean 1 Statistical inference for a population mean 1. Inference for a large sample, known variance Suppose X 1,..., X n represents a large random sample of data from a population with unknown mean µ and known

More information

CS 5014: Research Methods in Computer Science. Bernoulli Distribution. Binomial Distribution. Poisson Distribution. Clifford A. Shaffer.

CS 5014: Research Methods in Computer Science. Bernoulli Distribution. Binomial Distribution. Poisson Distribution. Clifford A. Shaffer. Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2015 by Clifford A. Shaffer Computer Science Title page Computer Science Clifford A. Shaffer Fall 2015 Clifford A. Shaffer

More information

Bootstrapping Spring 2014

Bootstrapping Spring 2014 Bootstrapping 18.05 Spring 2014 Agenda Bootstrap terminology Bootstrap principle Empirical bootstrap Parametric bootstrap January 1, 2017 2 / 16 Empirical distribution of data Data: x 1, x 2,..., x n (independent)

More information

Topic 6 - Confidence intervals based on a single sample

Topic 6 - Confidence intervals based on a single sample Topic 6 - Confidence intervals based on a single sample Sampling distribution of the sample mean Sampling distribution of the sample variance Confidence interval for a population mean Confidence interval

More information

Point and Interval Estimation II Bios 662

Point and Interval Estimation II Bios 662 Point and Interval Estimation II Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2006-09-13 17:17 BIOS 662 1 Point and Interval Estimation II Nonparametric CI

More information

Bootstrap. ADA1 November 27, / 38

Bootstrap. ADA1 November 27, / 38 The bootstrap as a statistical method was invented in 1979 by Bradley Efron, one of the most influential statisticians still alive. The idea is nonparametric, but is not based on ranks, and is very computationally

More information

The Union and Intersection for Different Configurations of Two Events Mutually Exclusive vs Independency of Events

The Union and Intersection for Different Configurations of Two Events Mutually Exclusive vs Independency of Events Section 1: Introductory Probability Basic Probability Facts Probabilities of Simple Events Overview of Set Language Venn Diagrams Probabilities of Compound Events Choices of Events The Addition Rule Combinations

More information

7 More One-Sample Confidence Intervals and Tests, Part 1 of 2

7 More One-Sample Confidence Intervals and Tests, Part 1 of 2 7 More One-Sample Confidence Intervals and Tests, Part 1 of 2 We already have a Z confidence interval ( 5) and a Z test ( 6) for an unknown mean µ for when we know σ and have a normal population or large

More information

BEGINNING BAYES IN R. Bayes with discrete models

BEGINNING BAYES IN R. Bayes with discrete models BEGINNING BAYES IN R Bayes with discrete models Beginning Bayes in R Survey on eating out What is your favorite day for eating out? Construct a prior for p Define p: proportion of all students who answer

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 1 One-Sample Methods 3 1.1 Parametric Methods.................... 4 1.1.1 One-sample Z-test (see Chapter 0.3.1)...... 4 1.1.2 One-sample t-test................. 6 1.1.3 Large sample

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

TEACHER NOTES FOR YEAR 12 MATHEMATICAL METHODS

TEACHER NOTES FOR YEAR 12 MATHEMATICAL METHODS TEACHER NOTES FOR YEAR 12 MATHEMATICAL METHODS 21 November 2016 CHAPTER 1: FUNCTIONS A Exponential functions Topic 1 Unit 3 Sub-topic 1.3 Topic 1 B Logarithms Topic 4 Unit 4 C Logarithmic functions Sub-topics

More information

Chapter 3 Class Notes Word Distributions and Occurrences

Chapter 3 Class Notes Word Distributions and Occurrences Chapter 3 Class Notes Word Distributions and Occurrences 3.1. The Biological Problem: restriction endonucleases provide[s] the means for precisely and reproducibly cutting the DNA into fragments of manageable

More information

Lecture 7: Confidence interval and Normal approximation

Lecture 7: Confidence interval and Normal approximation Lecture 7: Confidence interval and Normal approximation 26th of November 2015 Confidence interval 26th of November 2015 1 / 23 Random sample and uncertainty Example: we aim at estimating the average height

More information

Statistical Inference

Statistical Inference Statistical Inference Bernhard Klingenberg Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Outline Estimation: Review of concepts

More information

INDEX UNIT 4 TSFX REFERENCE MATERIALS 2013 APPLICATIONS IN DIFFERENTIATION

INDEX UNIT 4 TSFX REFERENCE MATERIALS 2013 APPLICATIONS IN DIFFERENTIATION INDEX UNIT 4 TSFX REFERENCE MATERIALS 2013 APPLICATIONS IN DIFFERENTIATION Applications in Differentiation Page 1 Conditions For Differentiability Page 1 Gradients at Specific Points Page 3 Derivatives

More information

Computer exercises on Experimental Design, ANOVA, and the BOOTSTRAP

Computer exercises on Experimental Design, ANOVA, and the BOOTSTRAP Computer exercises on Experimental Design, ANOVA, and the BOOTSTRAP Exercice 1: Copy the workspace ExpDes_1.Rdata to your local D drive and load it into a R-session. Perform a sample size calculation for

More information

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation. PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.. Beta Distribution We ll start by learning about the Beta distribution, since we end up using

More information

Large n normal approximations (Central Limit Theorem). xbar ~ N[mu, sigma 2 / n] (sketch a normal with mean mu and sd = sigma / root(n)).

Large n normal approximations (Central Limit Theorem). xbar ~ N[mu, sigma 2 / n] (sketch a normal with mean mu and sd = sigma / root(n)). 1. 5-1, 5-2, 5-3 Large n normal approximations (Central Limit Theorem). xbar ~ N[mu, sigma 2 / n] (sketch a normal with mean mu and sd = sigma / root(n)). phat ~ N[p, pq / n] (sketch a normal with mean

More information

Practical Considerations Surrounding Normality

Practical Considerations Surrounding Normality Practical Considerations Surrounding Normality Prof. Kevin E. Thorpe Dalla Lana School of Public Health University of Toronto KE Thorpe (U of T) Normality 1 / 16 Objectives Objectives 1. Understand the

More information

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT), with some slides by Jacqueline Telford (Johns Hopkins University) 1 Sampling

More information

Bootstrap Confidence Intervals

Bootstrap Confidence Intervals Bootstrap Confidence Intervals Patrick Breheny September 18 Patrick Breheny STA 621: Nonparametric Statistics 1/22 Introduction Bootstrap confidence intervals So far, we have discussed the idea behind

More information

This does not cover everything on the final. Look at the posted practice problems for other topics.

This does not cover everything on the final. Look at the posted practice problems for other topics. Class 7: Review Problems for Final Exam 8.5 Spring 7 This does not cover everything on the final. Look at the posted practice problems for other topics. To save time in class: set up, but do not carry

More information

4 Resampling Methods: The Bootstrap

4 Resampling Methods: The Bootstrap 4 Resampling Methods: The Bootstrap Situation: Let x 1, x 2,..., x n be a SRS of size n taken from a distribution that is unknown. Let θ be a parameter of interest associated with this distribution and

More information

Exponential, Gamma and Normal Distribuions

Exponential, Gamma and Normal Distribuions Exponential, Gamma and Normal Distribuions Sections 5.4, 5.5 & 6.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

How do we compare the relative performance among competing models?

How do we compare the relative performance among competing models? How do we compare the relative performance among competing models? 1 Comparing Data Mining Methods Frequent problem: we want to know which of the two learning techniques is better How to reliably say Model

More information

Bootstrap metody II Kernelové Odhady Hustot

Bootstrap metody II Kernelové Odhady Hustot Bootstrap metody II Kernelové Odhady Hustot Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

HYPOTHESIS TESTING: FREQUENTIST APPROACH.

HYPOTHESIS TESTING: FREQUENTIST APPROACH. HYPOTHESIS TESTING: FREQUENTIST APPROACH. These notes summarize the lectures on (the frequentist approach to) hypothesis testing. You should be familiar with the standard hypothesis testing from previous

More information

Statistical Simulation An Introduction

Statistical Simulation An Introduction James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 Simulation Through Bootstrapping Introduction 1 Introduction When We Don t Need Simulation

More information

Lecture 1: Random number generation, permutation test, and the bootstrap. August 25, 2016

Lecture 1: Random number generation, permutation test, and the bootstrap. August 25, 2016 Lecture 1: Random number generation, permutation test, and the bootstrap August 25, 2016 Statistical simulation 1/21 Statistical simulation (Monte Carlo) is an important part of statistical method research.

More information

Estimating a population mean

Estimating a population mean Introductory Statistics Lectures Estimating a population mean Confidence intervals for means Department of Mathematics Pima Community College Redistribution of this material is prohibited without written

More information

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 1.1 The Probability Model...1 1.2 Finite Discrete Models with Equally Likely Outcomes...5 1.2.1 Tree Diagrams...6 1.2.2 The Multiplication Principle...8

More information

Applications in Differentiation Page 3

Applications in Differentiation Page 3 Applications in Differentiation Page 3 Continuity and Differentiability Page 3 Gradients at Specific Points Page 5 Derivatives of Hybrid Functions Page 7 Derivatives of Composite Functions Page 8 Joining

More information

Fundamental Tools - Probability Theory IV

Fundamental Tools - Probability Theory IV Fundamental Tools - Probability Theory IV MSc Financial Mathematics The University of Warwick October 1, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory IV 1 / 14 Model-independent

More information

Math 143: Introduction to Biostatistics

Math 143: Introduction to Biostatistics Math 143: Introduction to Biostatistics R Pruim Spring 2012 0.2 Last Modified: April 2, 2012 Math 143 : Spring 2012 : Pruim Contents 10 More About Random Variables 1 10.1 The Mean of a Random Variable....................................

More information

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3).

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). First of all, we note that µ = 2 and σ = 2. (a) Since X 3 is equivalent

More information

Frequency table: Var2 (Spreadsheet1) Count Cumulative Percent Cumulative From To. Percent <x<=

Frequency table: Var2 (Spreadsheet1) Count Cumulative Percent Cumulative From To. Percent <x<= A frequency distribution is a kind of probability distribution. It gives the frequency or relative frequency at which given values have been observed among the data collected. For example, for age, Frequency

More information

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses*

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Amy G. Froelich Michael D. Larsen Iowa State University *The work presented in this talk was partially supported by

More information

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13 PubH 5450 Biostatistics I Prof. Carlin Lecture 13 Outline Outline Sample Size Counts, Rates and Proportions Part I Sample Size Type I Error and Power Type I error rate: probability of rejecting the null

More information

Rules for Means and Variances; Prediction

Rules for Means and Variances; Prediction Chapter 7 Rules for Means and Variances; Prediction 7.1 Rules for Means and Variances The material in this section is very technical and algebraic. And dry. But it is useful for understanding many of the

More information

Lecture 3. Biostatistics in Veterinary Science. Feb 2, Jung-Jin Lee Drexel University. Biostatistics in Veterinary Science Lecture 3

Lecture 3. Biostatistics in Veterinary Science. Feb 2, Jung-Jin Lee Drexel University. Biostatistics in Veterinary Science Lecture 3 Lecture 3 Biostatistics in Veterinary Science Jung-Jin Lee Drexel University Feb 2, 2015 Review Let S be the sample space and A, B be events. Then 1 P (S) = 1, P ( ) = 0. 2 If A B, then P (A) P (B). In

More information

Confidence Intervals for Population Mean

Confidence Intervals for Population Mean Confidence Intervals for Population Mean Reading: Sections 7.1, 7.2, 7.3 Learning Objectives: Students should be able to: Understand the meaning and purpose of confidence intervals Calculate a confidence

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Inference for Single Proportions and Means T.Scofield

Inference for Single Proportions and Means T.Scofield Inference for Single Proportions and Means TScofield Confidence Intervals for Single Proportions and Means A CI gives upper and lower bounds between which we hope to capture the (fixed) population parameter

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 Justify your answers; show your work. 1. A sequence of Events. (10 points) Let {B n : n 1} be a sequence of events in

More information

Nonparametric tests, Bootstrapping

Nonparametric tests, Bootstrapping Nonparametric tests, Bootstrapping http://www.isrec.isb-sib.ch/~darlene/embnet/ Hypothesis testing review 2 competing theories regarding a population parameter: NULL hypothesis H ( straw man ) ALTERNATIVEhypothesis

More information

Name: Biostatistics 1 st year Comprehensive Examination: Applied in-class exam. June 8 th, 2016: 9am to 1pm

Name: Biostatistics 1 st year Comprehensive Examination: Applied in-class exam. June 8 th, 2016: 9am to 1pm Name: Biostatistics 1 st year Comprehensive Examination: Applied in-class exam June 8 th, 2016: 9am to 1pm Instructions: 1. This is exam is to be completed independently. Do not discuss your work with

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

Physics 6720 Introduction to Statistics April 4, 2017

Physics 6720 Introduction to Statistics April 4, 2017 Physics 6720 Introduction to Statistics April 4, 2017 1 Statistics of Counting Often an experiment yields a result that can be classified according to a set of discrete events, giving rise to an integer

More information

6. Bernoulli Trials and the Poisson Process

6. Bernoulli Trials and the Poisson Process 1 of 5 7/16/2009 7:09 AM Virtual Laboratories > 14. The Poisson Process > 1 2 3 4 5 6 7 6. Bernoulli Trials and the Poisson Process Basic Comparison In some sense, the Poisson process is a continuous time

More information

The Normal Distribution

The Normal Distribution The Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) February 10, 2004 Statistics 371 Last modified: February 11, 2004 The The (AKA Gaussian Distribution) is our first distribution

More information

probability George Nicholson and Chris Holmes 31st October 2008

probability George Nicholson and Chris Holmes 31st October 2008 probability George Nicholson and Chris Holmes 31st October 2008 This practical focuses on understanding probabilistic and statistical concepts using simulation and plots in R R. It begins with an introduction

More information

Confidence Intervals for Normal Data Spring 2018

Confidence Intervals for Normal Data Spring 2018 Confidence Intervals for Normal Data 18.05 Spring 2018 Agenda Exam on Monday April 30. Practice questions posted. Friday s class is for review (no studio) Today Review of critical values and quantiles.

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

Asymptotic Tests and Likelihood Ratio Tests

Asymptotic Tests and Likelihood Ratio Tests Asymptotic Tests and Likelihood Ratio Tests Dennis D. Cox Department of Statistics Rice University P. O. Box 1892 Houston, Texas 77251 Email: dcox@stat.rice.edu November 21, 2004 0 1 Chapter 6, Section

More information

Topic 16 Interval Estimation

Topic 16 Interval Estimation Topic 16 Interval Estimation Additional Topics 1 / 9 Outline Linear Regression Interpretation of the Confidence Interval 2 / 9 Linear Regression For ordinary linear regression, we have given least squares

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park August 19, 2008 1 Introduction There are three main objectives to this section: 1. To introduce the concepts of probability and random variables.

More information

MATH 728 Homework 3. Oleksandr Pavlenko

MATH 728 Homework 3. Oleksandr Pavlenko MATH 78 Homewor 3 Olesandr Pavleno 4.5.8 Let us say the life of a tire in miles, say X, is normally distributed with mean θ and standard deviation 5000. Past experience indicates that θ = 30000. The manufacturer

More information

Exercise I.1 I.2 I.3 I.4 II.1 II.2 III.1 III.2 III.3 IV.1 Question (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Answer

Exercise I.1 I.2 I.3 I.4 II.1 II.2 III.1 III.2 III.3 IV.1 Question (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Answer Solutions to Exam in 02402 December 2012 Exercise I.1 I.2 I.3 I.4 II.1 II.2 III.1 III.2 III.3 IV.1 Question (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Answer 3 1 5 2 5 2 3 5 1 3 Exercise IV.2 IV.3 IV.4 V.1

More information

ZACHARY AHLERS. B.S., Regis University, 2013 A REPORT. submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE

ZACHARY AHLERS. B.S., Regis University, 2013 A REPORT. submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Estimating the necessary sample size for a binomial proportion confidence interval with low success probabilities by ZACHARY AHLERS B.S., Regis University, 2013 A REPORT submitted in partial fulfillment

More information

Basic Concepts of Inference

Basic Concepts of Inference Basic Concepts of Inference Corresponds to Chapter 6 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT) with some slides by Jacqueline Telford (Johns Hopkins University) and Roy Welsch (MIT).

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics March 14, 2018 CS 361: Probability & Statistics Inference The prior From Bayes rule, we know that we can express our function of interest as Likelihood Prior Posterior The right hand side contains the

More information

STAT 4385 Topic 01: Introduction & Review

STAT 4385 Topic 01: Introduction & Review STAT 4385 Topic 01: Introduction & Review Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 Outline Welcome What is Regression Analysis? Basics

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 120 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 120 minutes. Closed book and notes. 10 minutes. Two summary tables from the concise notes are attached: Discrete distributions and continuous distributions. Eight Pages. Score _ Final Exam, Fall 1999 Cover Sheet, Page

More information

Poisson regression: Further topics

Poisson regression: Further topics Poisson regression: Further topics April 21 Overdispersion One of the defining characteristics of Poisson regression is its lack of a scale parameter: E(Y ) = Var(Y ), and no parameter is available to

More information

BINF702 SPRING 2015 Chapter 7 Hypothesis Testing: One-Sample Inference

BINF702 SPRING 2015 Chapter 7 Hypothesis Testing: One-Sample Inference BINF702 SPRING 2015 Chapter 7 Hypothesis Testing: One-Sample Inference BINF702 SPRING 2014 Chapter 7 Hypothesis Testing 1 Section 7.9 One-Sample c 2 Test for the Variance of a Normal Distribution Eq. 7.40

More information

STAT 830 Non-parametric Inference Basics

STAT 830 Non-parametric Inference Basics STAT 830 Non-parametric Inference Basics Richard Lockhart Simon Fraser University STAT 801=830 Fall 2012 Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics STAT 801=830

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

AMS 132: Discussion Section 2

AMS 132: Discussion Section 2 Prof. David Draper Department of Applied Mathematics and Statistics University of California, Santa Cruz AMS 132: Discussion Section 2 All computer operations in this course will be described for the Windows

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL - MAY 2005 EXAMINATIONS STA 248 H1S. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL - MAY 2005 EXAMINATIONS STA 248 H1S. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL - MAY 2005 EXAMINATIONS STA 248 H1S Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 17 pages including

More information

Hypothesis testing. Data to decisions

Hypothesis testing. Data to decisions Hypothesis testing Data to decisions The idea Null hypothesis: H 0 : the DGP/population has property P Under the null, a sample statistic has a known distribution If, under that that distribution, the

More information

Better Bootstrap Confidence Intervals

Better Bootstrap Confidence Intervals by Bradley Efron University of Washington, Department of Statistics April 12, 2012 An example Suppose we wish to make inference on some parameter θ T (F ) (e.g. θ = E F X ), based on data We might suppose

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS 1a. Under the null hypothesis X has the binomial (100,.5) distribution with E(X) = 50 and SE(X) = 5. So P ( X 50 > 10) is (approximately) two tails

More information

Continuous Probability Distributions

Continuous Probability Distributions 1 Chapter 5 Continuous Probability Distributions 5.1 Probability density function Example 5.1.1. Revisit Example 3.1.1. 11 12 13 14 15 16 21 22 23 24 25 26 S = 31 32 33 34 35 36 41 42 43 44 45 46 (5.1.1)

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Lecture 7. Testing for Poisson cdf - Poisson regression - Random points in space 1

Lecture 7. Testing for Poisson cdf - Poisson regression - Random points in space 1 Lecture 7. Testing for Poisson cdf - Poisson regression - Random points in space 1 Igor Rychlik Chalmers Department of Mathematical Sciences Probability, Statistics and Risk, MVE300 Chalmers April 2010

More information

SUFFICIENT STATISTICS

SUFFICIENT STATISTICS SUFFICIENT STATISTICS. Introduction Let X (X,..., X n ) be a random sample from f θ, where θ Θ is unknown. We are interested using X to estimate θ. In the simple case where X i Bern(p), we found that the

More information

Probability Distributions.

Probability Distributions. Probability Distributions http://www.pelagicos.net/classes_biometry_fa18.htm Probability Measuring Discrete Outcomes Plotting probabilities for discrete outcomes: 0.6 0.5 0.4 0.3 0.2 0.1 NOTE: Area within

More information

The Use of R Language in the Teaching of Central Limit Theorem

The Use of R Language in the Teaching of Central Limit Theorem The Use of R Language in the Teaching of Central Limit Theorem Cheang Wai Kwong waikwong.cheang@nie.edu.sg National Institute of Education Nanyang Technological University Singapore Abstract: The Central

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution Lecture 12: Small Sample Intervals Based on a Normal Population MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 24 In this lecture, we will discuss (i)

More information

Bernoulli Counting Process with p=0.1

Bernoulli Counting Process with p=0.1 Stat 28 October 29, 21 Today: More Ch 7 (Sections 7.4 and part of 7.) Midterm will cover Ch 7 to section 7.4 Review session will be Nov. Exercises to try (answers in book): 7.1-, 7.2-3, 7.3-3, 7.4-7 Where

More information

Bootstrap inference for the finite population total under complex sampling designs

Bootstrap inference for the finite population total under complex sampling designs Bootstrap inference for the finite population total under complex sampling designs Zhonglei Wang (Joint work with Dr. Jae Kwang Kim) Center for Survey Statistics and Methodology Iowa State University Jan.

More information

Interval Estimation III: Fisher's Information & Bootstrapping

Interval Estimation III: Fisher's Information & Bootstrapping Interval Estimation III: Fisher's Information & Bootstrapping Frequentist Confidence Interval Will consider four approaches to estimating confidence interval Standard Error (+/- 1.96 se) Likelihood Profile

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

IT 403 Statistics and Data Analysis Final Review Guide

IT 403 Statistics and Data Analysis Final Review Guide IT 403 Statistics and Data Analysis Final Review Guide Exam Schedule and Format Date: 11/15 (Wed) for Section 702 (Loop); between 11/15 (Wed) and 11/18 (Sat) for Section 711 (Online). Location: CDM 224

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE Course Title: Probability and Statistics (MATH 80) Recommended Textbook(s): Number & Type of Questions: Probability and Statistics for Engineers

More information

Sections 7.1 and 7.2. This chapter presents the beginning of inferential statistics. The two major applications of inferential statistics

Sections 7.1 and 7.2. This chapter presents the beginning of inferential statistics. The two major applications of inferential statistics Sections 7.1 and 7.2 This chapter presents the beginning of inferential statistics. The two major applications of inferential statistics Estimate the value of a population parameter Test some claim (or

More information

Topic 16 Interval Estimation. The Bootstrap and the Bayesian Approach

Topic 16 Interval Estimation. The Bootstrap and the Bayesian Approach Topic 16 Interval Estimation and the Bayesian Approach 1 / 9 Outline 2 / 9 The confidence regions have been determined using aspects of the distribution of the data, by, for example, appealing to the central

More information

This produces (edited) ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = aircondit, statistic = function(x, i) { 1/mean(x[i, ]) }, R = B)

This produces (edited) ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = aircondit, statistic = function(x, i) { 1/mean(x[i, ]) }, R = B) STAT 675 Statistical Computing Solutions to Homework Exercises Chapter 7 Note that some outputs may differ, depending on machine settings, generating seeds, random variate generation, etc. 7.1. For the

More information

Chapters 4-6: Estimation

Chapters 4-6: Estimation Chapters 4-6: Estimation Read sections 4. (except 4..3), 4.5.1, 5.1 (except 5.1.5), 6.1 (except 6.1.3) Point Estimation (4.1.1) Point Estimator - A formula applied to a data set which results in a single

More information

Continuous Probability Distributions

Continuous Probability Distributions 1 Chapter 5 Continuous Probability Distributions 5.1 Probability density function Example 5.1.1. Revisit Example 3.1.1. 11 12 13 14 15 16 21 22 23 24 25 26 S = 31 32 33 34 35 36 41 42 43 44 45 46 (5.1.1)

More information