KK Towers in the Early Unvierse

Size: px
Start display at page:

Download "KK Towers in the Early Unvierse"

Transcription

1 KK Towers in the Early Universe: Phase Transitions, Relic Abundances, and Applications to Axion Cosmology (IBS-CTPU) [arxiv:689] [arxiv:947] collaborators on this work: Keith Dienes (Arizona) Brooks Thomas (Lafayette) CosPA 7 Thursday, December 4 th, 7 / 4

2 Scalars in the Early Universe Impact of Mass-Generating Phase Transitions Additional scalar fields commonly appear in extensions of the SM, and tend to play an important role in early-universe cosmology These fields are often light due to shift symmetries at high scales, but are broken by some dynamics that enters in the effective lower-temperature theory ie, they undergo mass-generating phase transitions example: QCD Axion quintessence fields Q-balls chameleons DE motivated scalars in litte-higgs theories V (ϕ) massless degree of freedom at T Λ QCD dilatons axion-like particles candidate scalar fields Im{ϕ} branons majorons png bosons QCD axion familons string and geometric moduli scalar SUSY partners Re{ϕ} / 4

3 Scalars in the Early Universe Impact of Mass-Generating Phase Transitions Additional scalar fields commonly appear in extensions of the SM, and tend to play an important role in early-universe cosmology These fields are often light due to shift symmetries at high scales, but are broken by some dynamics that enters in the effective lower-temperature theory ie, they undergo mass-generating phase transitions example: QCD Axion quintessence fields Q-balls chameleons DE motivated scalars in litte-higgs theories V (ϕ) broken by instanton effects for T Λ QCD dilatons axion-like particles candidate scalar fields Im{ϕ} branons majorons png bosons QCD axion familons string and geometric moduli scalar SUSY partners Re{ϕ} / 4

4 Scalars in the Early Universe Impact of Mass-Generating Phase Transitions All of this can be important for model building: the energy density ρ carried by these scalar(s) at late times (used to compute abundances, overclosure bounds, etc) is generally sensitive to the timescale G over which such a phase transition unfolds With multiple fields {ϕ λ }, such transitions can generate off-diagonal elements in the mass matrix M, and thus mixing is also generated amongst the fields in a dynamical, time-dependent way M (t) = V eff (ϕ, ϕ, ) k,l ϕ k mass matrix M kl(t)ϕ l M m M m m,n m m m,n + MN m,n m,n m N,N constant masses M i m ij (t) generated during phase transition 3 / 4

5 A Two-Field Toy Model A Very Brief Review This has been found to have a surprising influence, even in the context of a simple but generic two-component toy model [arxiv:947]: [ ] ] M m (t) = +[ m M m m h (t) both enhancements and large suppressions to late-time energy density ρ _ (Δ G, ξ _ )/ ρ _ (,) - -3 ξ= ξ= ξ= ξ=9 ξ=99 ξ=999 m sum =4 Δm = θ max=4-4 Δ G constant term _λ ρ / _ ρ time-dependence generated terms distribution amongst fields extremely sensitive to phase transition timescale sequence of parametric resonances appear as mixing is saturated m sum =4 Δm = θ max=4 ξ= ξ= ξ= ξ=9 ξ=99 ξ=999 Δ G ϕ λ additional dynamical over/underdamping transitions: reoverdamping Δ G/τ G ϕ λ (Δ G) ϕ λ ( ) m sum = Δm = ϵ= -7 τ G=Δ G= -3 τ/τ G G phase transition timescale ξ mixing [, ) 4 / 4

6 A Two-Field Toy Model A Very Brief Review This has been found to have a surprising influence, even in the context of a simple but generic two-component toy model [arxiv:947]: [ ] ] M m (t) = +[ m M m m h (t) constant term time-dependence generated terms both enhancements and distribution amongst fields additional dynamical large suppressions to extremely sensitive to phase over/underdamping late-time energy This density is under the minimal transitionassumption timescale of only two transitions: components reoverdamping 3 m sum =4 m ϕ sum =4 Δ λ (Δ what happens in models with larger collections of G) G/τ fields, G Δm = Δm = ϕ λ ( ) such θ max=4 as those furnished 8 by models with extra dimensions? ρ _ (Δ G, ξ _ )/ ρ _ (,) - -3 ξ= ξ= ξ= ξ=9 ξ=99 ξ=999-4 Δ G _λ ρ / _ ρ 6 4 sequence of parametric resonances appear as mixing is saturated θ max=4 ξ= ξ= ξ= ξ=9 ξ=99 ξ=999 Δ G ϕ λ - - m sum = Δm = ϵ= -7 τ G=Δ G= -3 τ/τ G G phase transition timescale ξ mixing [, ) 4 / 4

7 Mass Generation in a KK Tower The Framework Consider a spacetime geometry M S /Z, ie an extra dimension compactified on a line segment, with a bulk scalar Φ(x µ, x ): S = d 4 xdx [ M Φ M Φ Φ shift symmetry forbids bulk mass ] +δ(x )L brane (ψ i, Φ) The 4D mass matrix then mixes the fields: M + c M = m m (t) (t) 4M + c m (t) M c /R 449 GeV m M c indicates highly mixed ensemble SM brane {ψ i (x µ )} V πr bulk Φ(x µ, x ) interactions with fields on brane can lead to an effective 4D mass m(t): V L brane(φ) = m (t) Φ + and we parameterize our ignorance: δ G m(t) m t G t / 4

8 Evolving the System In a flat FRW cosmology the KK modes {ϕ k } evolve as ϕ k + 3H(t) ϕ k + M kl(t)ϕ l =, l= which in general cannot be solved analytically due to the time-dependence in M kl near the phase transition perform numerics on truncated tower of N modes, and recover features through N limiting behavior 6 / 4

9 Survey of Four-Dimensional (N = ) Limit Standard Approximations Two approximations are commonly use in the literature to compute late-time abundances in single-field models that undergo such phase transitions: abrupt approximation ρ4d (where δg ) adiabatic approximation ρ4d ad (where m/m ) [exact ρ]/[abrupt solutions] ρ4d (δg ) 6 ρ4d () 3 [exact ρ]/[adiabatic solutions] ρ4d ρ4d ad 4 4 tζ m m / δg π /m G = δg = mtg N = N = 3 3 mtg 3 Even for N =, there are regions of parameter space that are inaccesible to the standard approximations, particularly in the m /tg regime 7 /4

10 Survey of Four-Dimensional (N = ) Limit Standard Approximations Two approximations are commonly use in the literature to compute late-time abundances in single-field models that undergo such phase transitions: abrupt approximation ρ4d (where δg ) adiabatic approximation ρ4d ad (where m/m ) [exact ρ]/[abrupt solutions] ρ4d (δg ) 6 ρ4d () 3 [exact ρ]/[adiabatic solutions] ρ4d ρ4d ad 4 4 tζ m m / δg can use numerical results to6 extract accurate analytical approximations 3 π /m G = δg = mtg N = N = 3 3 mtg 3 Even for N =, there are regions of parameter space that are inaccesible to the standard approximations, particularly in the m /tg regime 7 /4

11 Dynamics of the N > Tower A Qualitative Description suppresses/enhances modes by different amounts according to details of the phase transition energy density of modes in tower re-shuffling of energy densities t t t G t t G t t G Φ = implies displaced zero mode phase transition distribution frozen in / 4

12 Approaching Asymptotia: N Behavior of the Solutions It is instructive to examine the N asymptotic behavior of various late-time quantities while varying δ G (and taking m = M c ): different truncations [exact ρ]/[abrupt approx] [exact ρ]/[4d limit] the phase transition suppresses modes that exceed δ G t G π/λ, ie it accelerates the N convergence often leaving only a few modes that appreciably contribute to the total ρ 9 / 4

13 The KK Tower Limit: Extracting N Limit Suppressions, Tower Fractions, and Distributions Equipped with a method to efficiently compute asymptotia for large N, we now have the ability to compute results effectively for the full KK tower [exact ρ]/[abrupt approx] [exact ρ]/[4d limit] [tower fraction] ρ(δ G) ρ ρ() ρ 4D η 3 δg 3 t G = /M c mt G t G = /M c 3 4 mt G 3 3 tg = /Mc mt G η max λ { ρ λρ } fraction of abundance in subdominant modes / 4

14 The KK Tower Limit: Extracting N Limit Suppressions, Tower Fractions, and Distributions Equipped with a method to efficiently compute asymptotia for large N, we now have the ability to compute results effectively for the full KK tower [exact ρ]/[abrupt approx] [exact ρ]/[4d limit] [tower fraction] ρ(δ G) ρ ρ() ρ 4D η 3 δg 3 t G = /M c mt G t G = /M c again can extract general analytical approximations in different regions 3 4 mt G 3 3 tg = /Mc mt G η max λ { ρ λρ } fraction of abundance in subdominant modes / 4

15 The KK Tower Limit: Extracting N Limit Suppressions, Tower Fractions, and Distributions tower fraction η slices give ρ λ /ρ, the fractional abundance [blue slice lightest mode] δg heavier modes increasingly suppressed with larger δ G (as δ G t G π/λ) mt G / 4

16 The KK Tower Limit: Extracting N Limit Suppressions, Tower Fractions, and Distributions tower fraction η 3 area of pies total abundance of tower slices give ρ λ /ρ, the fractional abundance [blue slice lightest mode] δg heavier modes increasingly suppressed with larger δ G (as δ G t G π/λ) mt G 97 / 4

17 Example: Axion in the Bulk At this point we can drop the generality of Φ and apply our machinery to a specific model: for example a bulk axion-like particle (ALP) Our {t G, m X, M c } parameter space is mapped onto {Λ G, ˆf X, M c } associated confinement scale T t G = RH Mp 4g (T RH ) π g (Λ G )Λ 4 G effective 4D decay constant m X = C g Λ 4 3π G ˆf X ˆfX [GeV] 3 t G [s] Mct G= m X= Mc δg = m Xt G= 9 Λ G [GeV] t G [s] Mct G= m X= Mc δg = m Xt G= Λ G [GeV] t G [s] Mct G= m X= Mc δg = 3 m Xt G= Λ G [GeV] η [tower fraction] maximum tower fraction in M ct G m X t G transition suppresses heavier modes, confining maximum to M ct G m X t G / 4

18 Example: Axion in the Bulk [exact ρ]/[abrupt approx] ρ(δ G) ρ() 3 t G [s] 4 7 Mct G= m X= Mc δg = [exact ρ]/[4d limit] ρ ρ 4D t G [s] 4 7 Mct G= m X= Mc δg = ˆfX [GeV] 9 enhancements and large suppressions relative to abrupt approximation Mct G= m X= Mc m Xt G= δg = 3 Mct G= m X= Mc m Xt G= δg = 3 presence of extra dimension produces significant additional suppression of ρ for m M c mt G ˆfX [GeV] m Xt G= 9 Λ G [GeV] m Xt G= Λ G [GeV] 3 / 4

19 The Take-Away Message Models of non-minimal scalar sectors that undergo mass-generating phase transitions in general are very sensitive to phase transitions details both the total energy density and its distribution across individual modes in the ensemble show this both in a simple but generic two-field model, and in model with a bulk scalar we derived a variety of asymptotic scaling behaviors and analytic expressions for the energy densities of the tower as functions of relevant model parameters applied the general machinery of our framework to the example of a bulk axion, allowing us to determine where the standard approximations succeed/fail and may suggest the weakening of overclosure bounds in certain regions There are many possible future directions: we assumed a single flat extra dimension, but what phenomena arise with a warped geometry and/or multiple extra spatial dimensions? we operated under assumption that the fields ρ ϕ ρ crit during the mass-generation epoch, but what is the effect of the backreaction on H away from this regime [ie, where scalars play role during inflation/(p)reheating]? THANKS FOR YOUR ATTENTION! 4 / 4

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Coupled Dark Energy and Dark Matter from dilatation symmetry

Coupled Dark Energy and Dark Matter from dilatation symmetry Coupled Dark Energy and Dark Matter from dilatation symmetry Cosmological Constant - Einstein - Constant λ compatible with all symmetries Constant λ compatible with all observations No time variation in

More information

The Dark Universe from Higher Dimensions and Strings

The Dark Universe from Higher Dimensions and Strings Transregional Collaborative Research Centre TRR 33: The Dark Universe The Dark Universe from Higher Dimensions and Strings related to: Project A1: Quintessence, Branes and Higher Dimensions (Nilles, Wetterich)

More information

Axion in Large Extra Dimensions

Axion in Large Extra Dimensions Axion in Large Extra Dimensions Talk at ASK2011 Sanghyeon Chang Konkuk Univ. April 11, 2011 Sanghyeon Chang (Konkuk Univ.) Axion in Large Extra Dimensions April 11, 2011 1 / 27 Table of Contents 1 Introduction

More information

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) 2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) hep-th/0606045 Success of 2T-physics for particles on worldlines. Field theory version of 2T-physics. Standard Model in 4+2 dimensions.

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) ierarchy problems (from lecture 1) Planck-weak hierarchy problem Flavor (hierarchy) puzzle...extra dimensions can address both... Extra dimensions:

More information

Warped Models in String Theory

Warped Models in String Theory Warped Models in String Theory SISSA/ISAS Trieste (Italy) Rutgers 14 November 2006 (Work in collaboration with B.S.Acharya and F.Benini) Appearing soon Introduction 5D Models 5D warped models in a slice

More information

Accidental SUSY at the LHC

Accidental SUSY at the LHC Accidental SUSY at the LHC Tony Gherghetta (University of Melbourne) PACIFIC 2011, Moorea, French Polynesia, September 12, 2011 with Benedict von Harling and Nick Setzer [arxiv:1104.3171] 1 What is the

More information

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration. EXOTICA AT LHC Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration pmine@poly.in2p3.fr Chia, Sardinia, Italy October 24-27 2001 1 EXOTICA AT LHC Beyond the Standard Model, Supersymmetry

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge I shall use ATLAS to illustrate LHC physics, because it is the experiment I know best. Both general purpose detectors

More information

Elementary/Composite Mixing in Randall-Sundrum Models

Elementary/Composite Mixing in Randall-Sundrum Models Elementary/Composite Mixing in Randall-Sundrum Models Brian Batell University of Minnesota with Tony Gherghetta - arxiv:0706.0890 - arxiv:0710.1838 Cornell 1/30/08 5D Warped Dimension = 4D Strong Dynamics

More information

Cosmology from Brane Backreaction

Cosmology from Brane Backreaction Cosmology from Brane Backreaction Higher codimension branes and their bulk interactions w Leo van Nierop Outline Motivation Extra-dimensional cosmology Setup A 6D example Calculation Maximally symmetric

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

A naturally light & bent dilaton

A naturally light & bent dilaton A naturally light & bent dilaton Javi Serra with B.Bellazzini, C.Csaki, J.Hubisz, J.Terning arxiv:1305.3919 arxiv:14xx.xxxx SUSY 2014 Manchester July 22, 2014 1 Motivation. DILATON =Goldstone Boson of

More information

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Kalliopi Petraki University of Melbourne (in collaboration with: R. Volkas, N. Bell, I. Shoemaker) COSMO

More information

Exploring Universal Extra-Dimensions at the LHC

Exploring Universal Extra-Dimensions at the LHC Exploring Universal Extra-Dimensions at the LHC Southampton University & Rutherford Appleton Laboratory 1 Problems to be addressed by the underlying theory The Nature of Electroweak Symmetry Breaking The

More information

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter, March 8, 2017. arxiv:1612.02793, with Anirban Biswas. Aritra Gupta Why Non-Thermal? 1 / 31 The most widely studied

More information

Alternatives to the GUT Seesaw

Alternatives to the GUT Seesaw Alternatives to the GUT Seesaw Motivations Higher-dimensional operators String instantons Other (higher dimensions, Higgs triplets) Motivations Many mechanisms for small neutrino mass, both Majorana and

More information

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011 LHC Results in 2010-11 Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011 1 LHC results after a year of successful data taking Majid Hashemi IPM, 18th May 2011 http://cms.web.cern.ch/cms/timeline/index.html

More information

String Moduli Stabilization and Large Field Inflation

String Moduli Stabilization and Large Field Inflation Kyoto, 12.12.2016 p.1/32 String Moduli Stabilization and Large Field Inflation Ralph Blumenhagen Max-Planck-Institut für Physik, München based on joint work with A.Font, M.Fuchs, D. Herschmann, E. Plauschinn,

More information

The Stueckelberg Extension and Extra Weak Dark Matter

The Stueckelberg Extension and Extra Weak Dark Matter The Stueckelberg Extension and Extra Weak Dark Matter PN Miami-2006 Conference with Boris Kors, Daniel Feldman, and Zuowei Liu CDM Candidates Axion Right handed neutrino Neutralino Singlino Sneutrino KK

More information

Particle Physics and Cosmology II: Dark Matter

Particle Physics and Cosmology II: Dark Matter Particle Physics and Cosmology II: Dark Matter Mark Trodden Center for Particle Cosmology University of Pennsylvania Second Lecture Puerto Vallarta Mexico 1/13/2011 Problems of Modern Cosmology Is cosmic

More information

Particle Interpretation of Dark Matter and Energy

Particle Interpretation of Dark Matter and Energy Particle Interpretation of Dark Matter and Energy Hans Peter Nilles Physikalisches Institut Universität Bonn representing aspects of the projects A1, C2 and C4 Particle Interpretation of DM and DE, Heidelberg

More information

String-Theory: Open-closed String Moduli Spaces

String-Theory: Open-closed String Moduli Spaces String-Theory: Open-closed String Moduli Spaces Heidelberg, 13.10.2014 History of the Universe particular: Epoch of cosmic inflation in the early Universe Inflation and Inflaton φ, potential V (φ) Possible

More information

The Affleck Dine Seiberg superpotential

The Affleck Dine Seiberg superpotential The Affleck Dine Seiberg superpotential SUSY QCD Symmetry SUN) with F flavors where F < N SUN) SUF ) SUF ) U1) U1) R Φ, Q 1 1 F N F Φ, Q 1-1 F N F Recall that the auxiliary D a fields: D a = gφ jn T a

More information

Brane Backreaction: antidote to no-gos

Brane Backreaction: antidote to no-gos Brane Backreaction: antidote to no-gos Getting de Sitter (and flat) space unexpectedly w Leo van Nierop Outline New tool: high codim back-reaction RS models on steroids Outline New tool: high codim back-reaction

More information

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Sky Bauman Work in collaboration with Keith Dienes Phys. Rev. D 77, 125005 (2008) [arxiv:0712.3532 [hep-th]] Phys. Rev.

More information

Good things from Brane Backreaction

Good things from Brane Backreaction Good things from Brane Backreaction Codimension-2 Backreaction as a counterexample to almost everything w Leo van Nierop Outline New tool: high codim back-reaction RS models on steroids Outline New tool:

More information

Phase transitions in separated braneantibrane at finite temperature

Phase transitions in separated braneantibrane at finite temperature Phase transitions in separated braneantibrane at finite temperature Vincenzo Calo PhD Student, Queen Mary College London V.C., S. Thomas, arxiv:0802.2453 [hep-th] JHEP-06(2008)063 Superstrings @ AYIA NAPA

More information

Boundary Conditions in AdS Life Without a Higgs

Boundary Conditions in AdS Life Without a Higgs Boundary Conditions in AdS Life Without a Higgs Csáki, Grojean, Murayama, Pilo, JT hep-ph/0305237 Csáki, Grojean, Pilo, JT hep-ph/0308038 Csáki, Grojean, Hubisz, Shirman, JT hep-ph/0310355 Cacciapaglia,

More information

Big-Bang nucleosynthesis, early Universe and relic particles. Alexandre Arbey. Moriond Cosmology La Thuile, Italy March 23rd, 2018

Big-Bang nucleosynthesis, early Universe and relic particles. Alexandre Arbey. Moriond Cosmology La Thuile, Italy March 23rd, 2018 Big-Bang nucleosynthesis, early Universe and relic particles Alexandre Arbey Lyon U. & CERN TH Moriond Cosmology 2018 La Thuile, Italy March 23rd, 2018 Introduction Alexandre Arbey Moriond Cosmology 2018

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

Axion Detection With NMR

Axion Detection With NMR PRD 84 (2011) arxiv:1101.2691 + to appear Axion Detection With NMR Peter Graham Stanford with Dmitry Budker Micah Ledbetter Surjeet Rajendran Alex Sushkov Dark Matter Motivation two of the best candidates:

More information

Aligned Natural Inflation

Aligned Natural Inflation Aligned Natural Inflation, Mainz, September 2014 p. 1/42 Aligned Natural Inflation Hans Peter Nilles Physikalisches Institut Universität Bonn Aligned Natural Inflation, Mainz, September 2014 p. 2/42 Outline

More information

Cosmological Signatures of Brane Inflation

Cosmological Signatures of Brane Inflation March 22, 2008 Milestones in the Evolution of the Universe http://map.gsfc.nasa.gov/m mm.html Information about the Inflationary period The amplitude of the large-scale temperature fluctuations: δ H =

More information

Effective Field Theory in Cosmology

Effective Field Theory in Cosmology C.P. Burgess Effective Field Theory in Cosmology Clues for cosmology from fundamental physics Outline Motivation and Overview Effective field theories throughout physics Decoupling and naturalness issues

More information

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli Per Berglund University of New Hampshire Based on arxiv: 1012:xxxx with Balasubramanian and hep-th/040854 Balasubramanian,

More information

Cosmological Constraint on the Minimal Universal Extra Dimension Model

Cosmological Constraint on the Minimal Universal Extra Dimension Model Cosmological Constraint on the Minimal Universal Extra Dimension Model Mitsuru Kakizaki (Bonn Univ. & ICRR, Univ. of Tokyo) 20 September, 2006 @ SISSA In collaboration with Shigeki Matsumoto (KEK) Yoshio

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

Particles and Strings Probing the Structure of Matter and Space-Time

Particles and Strings Probing the Structure of Matter and Space-Time Particles and Strings Probing the Structure of Matter and Space-Time University Hamburg DPG-Jahrestagung, Berlin, March 2005 2 Physics in the 20 th century Quantum Theory (QT) Planck, Bohr, Heisenberg,...

More information

BSM physics and Dark Matter

BSM physics and Dark Matter BSM physics and Dark Matter Andrea Mammarella University of Debrecen 26-11-2013 1 Introduction and motivation 2 Dark Matter 3 MiAUMSSM 4 Dark Matter in the MiAUMSSM 5 Conclusion Introduction and motivation

More information

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs.

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs. Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs Tirtha Sankar Ray XXI DAE-BRNS HEP Symposium, 8-12 December, 2014 The Standard Model All

More information

Scalar field dark matter and the Higgs field

Scalar field dark matter and the Higgs field Scalar field dark matter and the Higgs field Catarina M. Cosme in collaboration with João Rosa and Orfeu Bertolami Phys. Lett., B759:1-8, 2016 COSMO-17, Paris Diderot University, 29 August 2017 Outline

More information

New Physics at the TeV Scale and Beyond Summary

New Physics at the TeV Scale and Beyond Summary New Physics at the TeV Scale and Beyond Summary Machine and Detector Issues 1. Correlated Beamstrahlung David Strom New Theoretical Ideas: 1. Signatures for Brane Kinetic Terms at the LC Tom Rizzo 2. Implementing

More information

Higgs inflation: dark matter, detectability and unitarity

Higgs inflation: dark matter, detectability and unitarity Higgs inflation: dark matter, detectability and unitarity Rose Lerner University of Helsinki and Helsinki Institute of Physics In collaboration with John McDonald (Lancaster University) 0909.0520 (Phys.

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

arxiv:hep-th/ v1 29 Nov 2001

arxiv:hep-th/ v1 29 Nov 2001 Scalar fluctuations in dilatonic brane worlds February 1, 2008 Valerio Bozza arxiv:hep-th/0111268v1 29 Nov 2001 Dipartimento di Fisica E.R. Caianiello, Università di Salerno Via S. Allende, 84081 Baronissi

More information

String Compactifications and low-energy SUSY: The last attempts?

String Compactifications and low-energy SUSY: The last attempts? String Compactifications and low-energy SUSY: The last attempts? F. Quevedo, ICTP/Cambridge Strings 2015, Bangalore, June 2015 Collaborations with (linear combinations of): L. Aparicio, M. Cicoli, B Dutta,

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Stringy Origins of Cosmic Structure

Stringy Origins of Cosmic Structure The D-brane Vector Curvaton Department of Mathematics University of Durham String Phenomenology 2012 Outline Motivation 1 Motivation 2 3 4 Fields in Type IIB early universe models Figure: Open string inflation

More information

Cosmology with Extra Dimensions

Cosmology with Extra Dimensions Cosmology with Extra Dimensions Johannes Martin University of Bonn May 13th 2005 Outline Motivation and Introduction 1 Motivation and Introduction Motivation From 10D to 4D: Dimensional Reduction Common

More information

Flavor, Minimality and Naturalness in Composite Higgs Models

Flavor, Minimality and Naturalness in Composite Higgs Models eth zurich Flavor, Minimality and Naturalness in Composite Higgs Models Adrián Carmona Bermúdez Institute for Theoretical Physics, ETH Zurich In collaboration with F. Goertz A naturally light Higgs without

More information

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

Introduction to (Large) Extra Dimensions

Introduction to (Large) Extra Dimensions SLAC Dark Matter & Exotic Physics WG p. 1/39 Introduction to (Large) Extra Dimensions A. Lionetto Department of Physics & INFN Roma Tor Vergata SLAC Dark Matter & Exotic Physics WG p. 2/39 Outline Introduction

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Cosmological Constraint on the Minimal Universal Extra Dimension Model

Cosmological Constraint on the Minimal Universal Extra Dimension Model Cosmological Constraint on the Minimal Universal Extra Dimension Model Mitsuru Kakizaki (Bonn University) September 7, 2007 @ KIAS In collaboration with Shigeki Matsumoto (Tohoku Univ.) Yoshio Sato (Saitama

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

Dynamical compactification from higher dimensional de Sitter space

Dynamical compactification from higher dimensional de Sitter space Dynamical compactification from higher dimensional de Sitter space Matthew C. Johnson Caltech In collaboration with: Sean Carroll Lisa Randall 0904.3115 Landscapes and extra dimensions Extra dimensions

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Phenomenological Aspects of Local String Models

Phenomenological Aspects of Local String Models Phenomenological Aspects of Local String Models F. Quevedo, Cambridge/ICTP. PASCOS-2011, Cambridge. M. Dolan, S. Krippendorf, FQ; arxiv:1106.6039 S. Krippendorf, M. Dolan, A. Maharana, FQ; arxiv:1002.1790

More information

Theory and phenomenology of hidden U(1)s from string compactifications

Theory and phenomenology of hidden U(1)s from string compactifications Theory and phenomenology of hidden U(1)s from string compactifications Andreas Ringwald DESY Corfu Summer Institute Workshop on Cosmology and Strings, Sept. 6-13, 2009, Corfu, GR Theory and phenomenology

More information

Understanding the scaling behaviour of axion cosmic strings

Understanding the scaling behaviour of axion cosmic strings Understanding the scaling behaviour of axion cosmic strings Toyokazu Sekiguchi (IBS-CTPU) In collaboration with Masahiro Kawasaki (ICRR), Jun ichi Yokoyama (U of Tokyo) and Masahide Yamaguchi (TITech)

More information

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University Non-Thermal Dark Matter rom Moduli Decay Bhaskar Dutta Texas A&M University Allahverdi, Dutta, Sinha, PRD87 (2013) 075024, PRDD86 (2012) 095016, PRD83 (2011) 083502, PRD82 (2010) 035004 Allahverdi, Dutta,

More information

The Invisible Universe: Dark Matter and Dark Energy

The Invisible Universe: Dark Matter and Dark Energy L Papantonopoulos (Ed) The Invisible Universe: Dark Matter and Dark Energy fyj Springer Contents Part I Dark Matter The Missing Matter of the Universe as Seen by Astroparticle Physics and Astrophysics

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

STABILIZING EXTRA DIMENSIONS

STABILIZING EXTRA DIMENSIONS STABILIZING EXTRA DIMENSIONS Gero von Gersdorff (École Polytechnique) Warsaw, October 19th 2009 Collaboration with J.A.Cabrer and M.Quirós OUTLINE Features of Warped Extra Dimensions Stabilizing Models

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge The Large Hadron Collider Under construction in Geneva, startup in 2007. 14 TeV pp collider, L=1034cm-2 s-1. σ

More information

Phenomenological Aspects of LARGE Volume Models

Phenomenological Aspects of LARGE Volume Models Phenomenological Aspects of LARGE Volume Models Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge) 15th Irish Quantum Field Theory Meeting May(nooth) 2008 Phenomenological Aspects of LARGE Volume

More information

Gauge-Higgs Unification and the LHC

Gauge-Higgs Unification and the LHC Gauge-Higgs Unification and the LHC If the Higgs boson is 124 or 126 or? GeV with SM couplings, Explain SM Higgs. with non-sm couplings, is not seen at LHC, Higgs is stable. Higgs does not exist. 2 If

More information

Moduli-induced axion problem

Moduli-induced axion problem Moduli-induced axion problem Kazunori Nakayama (University of Tokyo) T.Higaki, KN, F.Takahashi, JHEP1307,005 (2013) [1304.7987] SUSY2013 @ ICTP, Trieste, Italy (2013/8/26) What we have shown : Kahler

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Thermalization in a confining gauge theory

Thermalization in a confining gauge theory 15th workshop on non-perturbative QD Paris, 13 June 2018 Thermalization in a confining gauge theory CCTP/ITCP University of Crete APC, Paris 1- Bibliography T. Ishii (Crete), E. Kiritsis (APC+Crete), C.

More information

Gravitational waves from bubble dynamics: Beyond the Envelope

Gravitational waves from bubble dynamics: Beyond the Envelope Gravitational waves from bubble dynamics: Beyond the Envelope Masahiro Takimoto (WIS, KEK) Based on arxiv:1605.01403 (PRD95, 024009) & 1707.03111 with Ryusuke Jinno (IBS-CTPU) Aug.09, TevPa2017 01 / 22

More information

Implications of first LHC results

Implications of first LHC results Implications of first LHC results 1) Large extra dimensions (http://arxiv.org/abs/1101.4919) 2) SuperSymmetry (http://arxiv.org/abs/1101.2195) Alessandro Strumia with R. Franceschini, G. Giudice, P. Paolo

More information

arxiv: v2 [hep-ph] 8 Dec 2009

arxiv: v2 [hep-ph] 8 Dec 2009 OUTP-09-18-P, UCB-PTH-09/32 Freeze-In Production of FIMP Dark Matter Lawrence J. Hall a, Karsten Jedamzik b, John March-Russell c and Stephen M. West d,e arxiv:0911.1120v2 [hep-ph] 8 Dec 2009 a Department

More information

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY MATHEMATICAL TRIPOS Part III Wednesday, 8 June, 2011 9:00 am to 12:00 pm PAPER 53 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

QCD axions with high scale inflation

QCD axions with high scale inflation QCD axions with high scale inflation Kiwoon Choi (COSMO 2014, Chicago) The IBS Center for Theoretical Physics of the Universe Outline * Introduction * Cosmological constraints on the QCD axion Before BICEP2

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

S = 2 decay in Warped Extra Dimensions

S = 2 decay in Warped Extra Dimensions S = 2 decay in Warped Extra Dimensions Faisal Munir IHEP, Beijing Supervisor: Cai-Dian Lü HFCPV CCNU, Wuhan October 28, 2017 based on: Chin. Phys. C41 (2017) 053106 [arxiv:1607.07713] F. Munir (IHEP) New

More information

Cosmological Signatures of a Mirror Twin Higgs

Cosmological Signatures of a Mirror Twin Higgs Cosmological Signatures of a Mirror Twin Higgs Zackaria Chacko University of Maryland, College Park Curtin, Geller & Tsai Introduction The Twin Higgs framework is a promising approach to the naturalness

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses UCRHEP-T565 April 2016 arxiv:1604.01148v1 [hep-ph] 5 Apr 2016 Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses Corey Kownacki 1 and Ernest Ma 1,2,3 1 Department of Physics and Astronomy, University

More information

Dark inflation. Micha l Artymowski. Jagiellonian University. December 12, 2017 COSPA arxiv:

Dark inflation. Micha l Artymowski. Jagiellonian University. December 12, 2017 COSPA arxiv: Dark inflation Micha l Artymowski Jagiellonian University December 12, 2017 COSPA 2017 arxiv:1711.08473 (with Olga Czerwińska, M. Lewicki and Z. Lalak) Cosmic microwave background Cosmic microwave background

More information

Partial Compositeness and

Partial Compositeness and Partial Compositeness and its implications for the LHC Roberto Contino Università Roma La Sapienza & INFN In collaboration with: Raman Sundrum Thomas Kramer Minho Son Motivation: Solving the Hierarchy

More information

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv: arxiv:1407.4192 Unified Dark Matter SUSY2014 Stephen J. Lonsdale The University of Melbourne In collaboration with R.R. Volkas Unified Dark Matter Motivation: Asymmetric dark matter models Asymmetric symmetry

More information

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003 WIMPs and superwimps Jonathan Feng UC Irvine MIT Particle Theory Seminar 17 March 2003 Dark Matter The dawn (mid-morning?) of precision cosmology: Ω DM = 0.23 ± 0.04 Ω total = 1.02 ± 0.02 Ω baryon = 0.044

More information

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory 1 Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory Itzhak Bars University of Southern California Talk at 4 th Sakharov Conference, May 2009 http://physics.usc.edu/~bars/homepage/moscow2009_bars.pdf

More information

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics, 06.07.06 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The

More information

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY Jonathan Feng University of California, Irvine 28-29 July 2005 PiTP, IAS, Princeton 28-29 July 05 Feng 1 Graphic: N. Graf OVERVIEW This Program anticipates

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Hadronic Search for SUSY with MT2 variable

Hadronic Search for SUSY with MT2 variable Hadronic Search for SUSY with MT2 variable Esmaeel Eskandari on behalf of the CMS Collaboration School of Particles & Accelerators, Institute for Research in Fundamental Sciences (IPM) The 2nd IPM Meeting

More information

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter UCRHEP-T593 Aug 018 arxiv:1808.05417v [hep-ph] 5 Jan 019 Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter Ernest Ma Physics and Astronomy Department, University of California, Riverside,

More information

Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario

Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge) Stockholm, February 2008 Hierarchy Problems in String Theory: An

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

Extra Dimensional Signatures at CLIC

Extra Dimensional Signatures at CLIC Extra Dimensional Signatures at CLIC Thomas G. Rizzo SLAC A brief overview is presented of the signatures for several different models with extra dimensions at CLIC, an e + e linear collider with a center

More information

Efficient coannihilation process through strong Higgs self-coupling in LKP dark matter annihilation

Efficient coannihilation process through strong Higgs self-coupling in LKP dark matter annihilation Efficient coannihilation process through strong Higgs self-coupling in LKP dark matter annihilation Masato Senami (ICRR, University of Tokyo) senami@icrr.u-tokyo.ac.jp in collaboration with Shigeki Matsumoto

More information