The National Superconducting Cyclotron State University

Size: px
Start display at page:

Download "The National Superconducting Cyclotron State University"

Transcription

1 The National Superconducting Cyclotron State University U.S. flagship user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics, and societal applications Betty Tsang, Asy-EOS Slide 1

2 Betty Tsang, Asy-EOS Slide 2

3 Michigan State University Betty Tsang, Asy-EOS Slide 3

4 Facility for Rare Isotope Beams (FRIB) FRIB will provide intense beams of rare isotopes (that is, short-lived nuclei not normally found on Earth). FRIB will enable scientists to make discoveries about the properties of these rare isotopes in order to better understand the physics of nuclei, nuclear astrophysics, fundamental interactions, and applications for society. Betty Tsang, Asy-EOS Slide 4

5 282 employees, including 24 faculty, 46 graduate, and 51 undergraduate students. (as of March 05) 489 employees, including 40 faculty, 64 graduate and 70 undergraduate students as of August 16, 2011 Betty Tsang, Asy-EOS Slide 5

6 Facility for Rare Isotope Beams (FRIB) FRIB will provide intense beams of rare isotopes (that is, short-lived nuclei not normally found on Earth). FRIB will enable scientists to make discoveries about the properties of these rare isotopes in order to better understand the physics of nuclei, nuclear astrophysics, fundamental interactions, and applications for society. Betty Tsang, Asy-EOS Slide 6

7 Graffiti Art, Dequindre Cut, Detroit, August, 2012 Artist: Kobie Solomon Betty Tsang, Asy-EOS Slide 7

8 Nuclear Equation of State E/A (,) = E/A (,0) + 2 S() = ( n - p )/ ( n + p ) = (N-Z)/A Research with rare isotope beams Nuclear Structure What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes? Nuclear Astrophysics What is the nature of neutron stars and dense nuclear matter? What is the origin of elements heavier than iron in the cosmos? What are the nuclear reactions that drive stars and stellar explosions? Tests of Fundamental Symmetries Why is there now more matter than antimatter in the universe? Betty Tsang, Asy-EOS Slide 8

9 Nuclear Equation of State E/A (,) = E/A (,0) + 2 S() = ( n - p )/ ( n + p ) = (N-Z)/A Research with rare isotope beams Nuclear Structure What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes? Nuclear Astrophysics What is the nature of neutron stars and dense nuclear matter? What is the origin of elements heavier than iron in the cosmos? What are the nuclear reactions that drive stars and stellar explosions? Tests of Fundamental Symmetries Why is there now more matter than antimatter in the universe? Betty Tsang, Asy-EOS Slide 9

10 E/A (, ) = E/A (,0) + 2 S() EoS of asymmetric matter = ( n - p )/ ( n + p ) = (N-Z)/A1 Constraints from Heavy Ion Collisions (HIC) B.A. Brown,PRL85(2000)5296 Tsang et al,prl102,122701(2009) The symmetry energy influences many properties of neutron stars: Radii, moments of inertia Cooling rates Phase transitions in interior The symmetry energy dominates the uncertainty in the n-matter EOS. E sym S o L B K sym 18 B Betty Tsang, Asy-EOS Slide 10

11 Consistent Constraints on Symmetry Energy from different experiments HIC is a viable probe Isobaric Analogue States NPA 818, 36 (2009) HIC: heavy ion collisions; PRL 102,122701(2009) Finite Droplet Range Model PRL108,052501(2012) p elastic scattering PRC82,044611(2010) Pygmy Dipole Resonances PRC 81, (2010) neutron-star radius PRL108,01102(2012) E sym S o L B K sym 18 B Tsang et al. C 86, (2012) Betty Tsang, Asy-EOS Slide 11

12 Proton Number Z E/A (, ) = E/A (,0) + 2 S() EoS of asymmetric matter = ( n - p )/ ( n + p ) = (N-Z)/A1 Isospin degree of freedom B a Aa A Z( Z 1) a C 2/3 V S 1/ 3 2 A ( A 2Z) a sym A Constraints from Heavy Ion Collisions (HIC) Tsang et al,prl102,122701(2009) Neutron Number N To improve experimental constraints: : constraints mainly obtained from ID : Increase the (A-2Z) 2 /A; RI beams : Identify new observables : remeasure n/p ratios Betty Tsang, Asy-EOS Slide 12

13 NSCL Experiment 07038: Precision Measurement of Isospin Diffusion Talk by J.R. Winkelbauer Investigates the density-dependence of the nuclear symmetry energy using isospin diffusion from residues new observable 112,118,124 Sn+ 112,118,124 Sn Collisions Combines the MSU Miniball, the LASSA Array, & S800 Spectrograph Incoming Beam, 70 MeV/u Beam-like fragments 10<Z<50 Betty Tsang, Asy-EOS Slide 13

14 Isospin diffusion experiments with RIB Betty Tsang, Asy-EOS Slide 14

15 Isospin Diffusion Experimental Setup at RIKEN BigRIPS Zero Degree Spectrometer WU microball Target 15 Betty Tsang, Asy-EOS Slide 15

16 Physics at high density I???? B.A. Brown,PRL85(2000)5296 B. Liu Tsang et al. et PRC 65(2002) al,prl102,122701(2009) Large uncertainties in the symmetry energy high density. At < 0 density, mass splitting increase with density and asymmetry Betty Tsang, Asy-EOS Slide 16

17 nucleon effective masses from n/p ratios miniball n-wall LASSA Use n/p spectral ratios and double ratios to probe m n * and m p * and E sym 124 Sn+ 124 Sn; 112 Sn+ 112 Sn,E/A=120 MeV (Coupland, Youngs) 48 Ca+ 124 Sn; 40 Ca 112 Sn,E/A=140 MeV (Hodges, Rachel) Sn+Sn, E/A=120 MeV Coupland et al, Zhang, private communications Betty Tsang, Asy-EOS Slide 17

18 Large scintillation arrays at great distance (TOF) Experimental challenges in detecting n and p yield γ 50 MeV Small Si-CsI arrays close to target (DE-E) protons H n 120 MeV q CM (deg) neutrons Rejected He TOF E CM (MeV) Many more particles detected by the neutron detectors in 124 Sn+ 124 Sn reactions than n s Different coverage in geometry and energy for particles Betty Tsang, Asy-EOS Slide 18

19 Betty Tsang, Asy-EOS Slide 19

20 Symmetry Energy Project: International collaboration to determine the symmetry energy over a range of densities RIBF 12, FRIB 20,RISP? GSI 11 FAIR Betty Tsang, Asy-EOS Slide 20

21 ASY-EOS May AMeV 96 Zr AMeV 96 Ru AMeV ~ 5x10 7 Events for each system Beam Line Krakow array Chimera TofWall MicroBall target Russotto & Lemmon Shadow Bar Land (not splitted) Betty Tsang, Asy-EOS Slide 21

22 To probe symmetry energy at > 0 with sub-threshold pions from HIC B.A. Brown,PRL85(2000)5296 Tsang et al,prl102,122701(2009) 124 Sn+ 124 Sn E lab =120 MeV/A b = 1fm BUU from: Danielewicz, NPA673, 375 (2000). Bickley et al., private comm. (2009) New observables: p - /p + ratio New detectors: SAMURARI- Time Projection Chamber Active Target -Time Projection Chamber Betty Tsang, Asy-EOS Slide 22

23 SAMURAI-TPC Time-projection chamber (TPC) will sit within SAMURAI dipole magnet Auxiliary detectors for heavy-ions and neutrons, and trigger Nebula (neutron array) SAMURAI-TPC Hodoscope beam SAMURAI dipole magnet and vacuum chamber Drawing courtesy of T. Betty Tsang, Asy-EOS Slide 23

24 Heavy Ion Collisions at high density with RIB Betty Tsang, Asy-EOS Slide 24

25 Importance of 3-body neutron-neutron force in the Equation of State of pure neutron matter Summary of 208 Pb n-skin thickness constraints neutron star Model calculations with and without 3nn forces: BHF: PRC80, (2009) Brueckner-Hartree-Fock DBHF: arxiv: Dirac Brueckner-Hartree-Fock CEFT :PRL105,161102(2010) Chiral Effective Field Theory QMC :PRC85,032801R(2012) Quantum Monte Carlo Tsang et al.prc (in print) arxiv: Betty Tsang, Asy-EOS Slide 25

26 Betty Tsang, Asy-EOS Slide 26

27 Study of Fission barriers of exotic nuclei with AT-TPC & PAT-TPC Provide constraints for fission cycling, beta-delayed and neutrino-induced fission contributions to r-process yields Extrapolations of ground state and fission saddle point binding energies away from the valley of stability Measurements of the excitation functions of fission cross-sections of exotic nuclei p+ 195 Tlfission at E/A=75, 65, 55, 50, 40, 35 MeV (NSCL#12014) etc. Corona Ring Beam Entrance Field Cage Endplate 6 He+ 4 He Micromegas Cathode Voltage Feed-through Betty Tsang, Asy-EOS Slide 27

28 Active Target -Time Projection Chamber Lead PI :W. Mittig; Project leader: D. Bazin; Co-PI: W. Lynch Broad innovative scientific program. Two alternate modes of operation Fixed Target Mode with solid target inside chamber: 4p tracking of charged particles allows full event characterization Active Target Mode: Chamber gas acts as both detector and target (H 2, D 2, 3 He, Ne, etc.) Provides a thick target for low intensity beams while retaining high resolution and efficiency AT-TPC will allow inverse kinematics studies in astrophysical, resonant, transfer, breakup, fusion, fission reactions and to study the EOS using giant resonances and heavy ion reactions. AT-TPC will make use of the full range of beam energies and intensities available from the CCF and ReA3 and extend the scientific reach of both. Betty Tsang, Asy-EOS Slide 28

29 Summary HiRA provides capabilities to use transfer reactions to investigate single particle levels in exotic nuclei from fast beams. Charged particle decay spectroscopy reveals structure and decay modes at the proton drip-line. Consistent constraints on the symmetry energy at sub-saturation densities with different experiments suggest that heavy ion collisions provide a good probe at high density.. Experiments to measure constraints on the symmetry energy above saturation densities have started with n/p ratios and will continue with pion and flow measurements with the AT-TPC The AT-TPC and its prototype have a broad science program to study fission barriers of exotic nuclei, transfer reactions, isobaric analog and cluster states and giant resonanes. The AT-TPC will be ready for experiments with ReA3. Betty Tsang, Asy-EOS Slide 29

30 Nuclear Structure studies with Transfer Reactions single partilcle structure of unstable nuclei pf shell 2p 3/2 N=28 gap Spectroscopy of N=27 isotones 1f 7/2 N=20 gap 2p 3/2 1d 3/2 2s 1/2 1f 7/2 2s 1/2 1d 3/2 H( 46 Ar,d) 45 Ar H( 56 Ni,d) 55 Ni (Sanetullaev, PhD, 2011) Betty Tsang, Asy-EOS Slide 30

31 Nuclear Reactions To study nuclear structure and the equation state of nuclear matter Faculty: Lynch, Mittig, Tsang, Westfall Detectors: HiRA, neutron wall, AT-TPC & its prototype Transfer reactions: What are the properties of single particle orbits? Decay spectroscopy of Nuclei at the drip-lines: What is their structure and how do they decay? Fission Barriers of exotic nuclei: How to extrapolate the Fission Barriers for nuclei relevant to the r- process? What is the EoS of Asymmetric Matter? Sub-saturation densities Supra-saturation densities Betty Tsang, Asy-EOS Slide 31

32 Looking forward to the AT-TPC at ReA3 Prototype (½ scale) AT-TPC NIMA660,64(2011) NIMA, (2012) Corona Ring Beam Entrance Field Cage Cathode Voltage Feed-through 6 He+ 4 He Micromegas Endplate Scientific programs for AT- TPC and its prototype: Transfer Reactions to measure SF s, ANC s Neutron particle states in neutron rich exotic nuclei using (d,p). Proton particle states in protonrich nuclei using ( 3 He,d). Isobaric Analog Resonances: A Z(p,p) Probe structure of states in A+1 Z: determine E *, J, L, SF s Cluster states in the continuum. Fission Barriers of exotic nuclei etc. Betty Tsang, Asy-EOS Slide 32

33 Experiments with AT-TPC Prototype Prototype (½ scale) AT-TPC NIMA660,64(2011) NIMA (in print) Corona Ring Beam Entrance Field Cage Endplate a+ 6 He a + 6 He a+ 6 He a + 6 He * a+2n 6 He+ 4 He Micromegas Cathode Voltage Feed-through Experiments at Notre Dame: - 6 He+ 4 He ( 10 Be decay spectroscopy) - 10 Be+ 4 He ( 14 C decay spectroscopy) - 6 He+ 40 Ar (complete and incomplete fusion) Betty Tsang, Asy-EOS Slide 33

34 Betty Tsang, Asy-EOS Slide 34

35 Decay spectroscopy for dripline nuclei Decay of proton unbound nuclei explosive hydrogen burning in X-ray bursts 69 Br p+ 68 Se waiting point. (Rogers, PhD 2009; PRL106, (2011) ) 73 Rb p+ 72 Kr, (NSCL#10015) Other programs: 8 C g.s. 2p+2p+a 8 B IAS 2p+ 6 Li IAS + (NSCL#10001) 16 Ne and 16 F IAS, (NSCL#11001) Betty Tsang, Asy-EOS Slide 35

36 Hubble ST Proton Number Z Strategies used to study the symmetry energy with Heavy Ion collisions below E/A=100 MeV Isospin degree of freedom B a Aa A Z( Z 1) a C 2/3 V S 1/ 3 2 A ( A 2Z) a sym A Neutron Number N Crab Pulsar Vary the N/Z compositions of projectile and targets 124 Sn+ 124 Sn, 124 Sn+ 112 Sn, 112 Sn+ 124 Sn, 112 Sn+ 112 Sn Measure N/Z compositions of emitted particles n & p yields isotopes yields: isospin diffusion Simulate collisions with transport theory Find the symmetry energy density dependence that describes the data. Constrain the relevant input transport variables. Betty Tsang, Asy-EOS Slide 36

37 Hubble ST Proton Number Z Strategies used to study the symmetry energy with Heavy Ion collisions below E/A=100 MeV Isospin degree of freedom B a Aa A Z( Z 1) a C 2/3 V S 1/ 3 2 A ( A 2Z) a sym A Neutron Number N Crab Pulsar Vary the N/Z compositions of projectile and targets 124 Sn+ 124 Sn, 124 Sn+ 112 Sn, 112 Sn+ 124 Sn, 112 Sn+ 112 Sn Measure N/Z compositions of emitted particles n & p yields isotopes yields: isospin diffusion Simulate collisions with transport theory Find the symmetry energy density dependence that describes the data. Constrain the relevant input transport variables. Betty Tsang, Asy-EOS Slide 37

38 2. Proposed Experimental Set up Microball from WU Chamber from RIKEN Scintillator & degrader foil ladder Betty Tsang, Asy-EOS Slide 38

39 Heavy Ion Collisions at high density with RIB B. Liu et al. PRC 65(2002) E/A (, ) = E/A (,0) + 2 S() = ( n - p )/ ( n + p ) = (N-Z)/A?? B.A. Brown,PRL85(2000)5296 Tsang et al,prl102,122701(2009) At < 0 density, consistent constraints Effect of mass splitting increase with density and asymmetry Large uncertainties in the symmetry energy high density. Betty Tsang, Asy-EOS Slide 39

40 Betty Tsang, Asy-EOS Slide 40

Betty Tsang, NSCL/MSU 曾敏兒. collaboration

Betty Tsang, NSCL/MSU 曾敏兒. collaboration Science of the SpRIT Time Projection Chamber From Earth to Heavens: Femto-scale nuclei to Astrophysical objects SAMURAI International Collaboration Meeting, Sept 8-9, 2014 Sendai, Japan 曾敏兒 for Betty Tsang,

More information

Momentum dependence of symmetry energy

Momentum dependence of symmetry energy Momentum dependence of symmetry energy Joint DNP of APS & JPS October 7-11, 2014 Kona, HI, USA 曾敏兒 Betty Tsang, NSCL/MSU Equation of State of Asymmetric Nuclear Matter E/A (, ) = E/A (,0) + 2 S( ) = (

More information

Experimental Observables to study the nuclear symmetry energy with Heavy Ion Collision

Experimental Observables to study the nuclear symmetry energy with Heavy Ion Collision Experimental Observables to study the nuclear symmetry energy with Heavy Ion Collision Heavy Ion Meeting April 13, 212 Pohang, Korea Betty Tsang The National Superconducting Cyclotron Laboratory Michigan

More information

Overview of Low energy nuclear physics and FRIB

Overview of Low energy nuclear physics and FRIB Overview of Low energy nuclear physics and FRIB William Lynch Low energy physics: not JLAB or RHIC How has the field evolved? What are some of the new scientific objectives? Will not discuss everything.

More information

Overview of Nuclear Science

Overview of Nuclear Science Overview of Nuclear Science Nuclear science addresses the quantum quark/gluon and nuclear many body problems. How do we understand nuclei in terms of their fundamental parts and interactions? W. Nazarewicz

More information

Symmetry Energy Project: To bring heavens down to earth

Symmetry Energy Project: To bring heavens down to earth The National Superconducting Cyclotron Laboratory @Michigan State University U.S. flagship user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics,

More information

Capabilities at the National Superconducting Cyclotron Laboratory. Sean Liddick NDNCA workshop, May 26-29, 2015

Capabilities at the National Superconducting Cyclotron Laboratory. Sean Liddick NDNCA workshop, May 26-29, 2015 Capabilities at the National Superconducting Cyclotron Laboratory Sean Liddick NDNCA workshop, May 26-29, 2015 NSCL and FRIB Laboratory NSCL is funded by the U.S. National Science Foundation to operate

More information

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering stochastic cooling Exotic nuclei from Super-FRS Degrader for fast slowing down The Ring Branch TOF Detector MCPs E anode ion B CR Electron cooler NESR secondary electrons Experiments: Mass- and Lifetime

More information

Construction of time-projection chambers to probe the symmetry energy at high density. R. Shane, for the SAMURAI-TPC collaboration

Construction of time-projection chambers to probe the symmetry energy at high density. R. Shane, for the SAMURAI-TPC collaboration Construction of time-projection chambers to probe the symmetry energy at high density R. Shane, for the SAMURAI-TPC collaboration Constraints on the Nuclear Symmetry Energy Nuclear EOS: Impacts heavy-ion

More information

Physics opportunities with the AT-TPC. D. Bazin NSCL/MSU at ReA

Physics opportunities with the AT-TPC. D. Bazin NSCL/MSU at ReA Physics opportunities with the AT-TPC D. Bazin NSCL/MSU at ReA Reaction studies at ReA Radioactive beams are used in inverse kinematics Target is now the (usually light) probe nucleus Scattered particles

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Thomas Aumann December 11 th 2013 27 th Texas Symposium on Relativistic Astrophysics Dallas, Texas Supported by the BMBF under contract

More information

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B investigated at relativistic energies at R 3 B for the R 3 B collaboration Technische Universität Darmstadt E-mail: fa.schindler@gsi.de Reactions of neutron-rich Sn isotopes have been measured in inverse

More information

Extracting symmetry energy information with transport models

Extracting symmetry energy information with transport models Extracting symmetry energy information with transport models Yingxun Zhang China Institute of Atomic Energy Collaborator: Zhuxia Li (CIAE) M.B.Tsang, P. Danielewicz, W.G. Lynch (MSU/NSCL) Fei Lu (PKU)

More information

Operation of the Coupled Cyclotron Facility at Michigan State University

Operation of the Coupled Cyclotron Facility at Michigan State University Operation of the Coupled Cyclotron Facility at Michigan State University Andreas Stolz Workshop on Accelerator Operations Head, Operations Department SLAC National Accelerator Laboratory NSCL / Michigan

More information

Using transport calculations as event generators to design experiments

Using transport calculations as event generators to design experiments Using transport calculations as event generators to design experiments Jerzy Łukasik IFJ PAN Kraków, Poland Transport 2017: International Workshop on Transport Simulations for Heavy Ion Collisions under

More information

Farcos FemtoscopeArray for Correlations and Spectroscopy

Farcos FemtoscopeArray for Correlations and Spectroscopy Farcos FemtoscopeArray for Correlations and Spectroscopy G. Verde(INFN-CT), A. Chbihi(GANIL), Exochim coll., INFN- CT, LNS, MI, NA - Open collaboration and synergies. Farcosphysics: dynamics & spectroscopy

More information

FAIR. Reiner Krücken for the NUSTAR collaboration

FAIR. Reiner Krücken for the NUSTAR collaboration NUSTAR @ FAIR Reiner Krücken for the NUSTAR collaboration Physik Department E12 Technische Universität München & Maier-Leibnitz-Laboratory for Nuclear and Particle Physics NUSTAR @ FAIR Nuclear Structure

More information

Opportunities to study the SHE production mechanism with rare isotopes at the ReA3 facility

Opportunities to study the SHE production mechanism with rare isotopes at the ReA3 facility Opportunities to study the SHE production mechanism with rare isotopes at the ReA3 facility Zach Kohley National Superconducting Cyclotron Laboratory Department of Chemistry Michigan State University,

More information

Investigation of nuclear Equation of State (EoS) is an attractive subject not only for nuclear

Investigation of nuclear Equation of State (EoS) is an attractive subject not only for nuclear First Experiment of SπRIT-TPC at SAMURAI in RIKEN-RIBF for SπRIT Collaboration RIKEN, Nishina Center, RIKEN, Japan E-mail: mizuki@riken.jp Investigation of nuclear Equation of State (EoS) is an attractive

More information

Symmetry Energy Project (SEP)

Symmetry Energy Project (SEP) Symmetry Energy Project (SEP) http://groups.nscl.msu.edu/hira/sep.htm http://nscl.msu.edu/~tsang Determination of the Equation of State of Asymmetric Nuclear Matter NSCL MSU, USA: B. Tsang & W. Lynch,

More information

Introduction to RAON & Detector Systems for Nuclear Physics

Introduction to RAON & Detector Systems for Nuclear Physics 3 rd Japan-Korea PHENIX Collaboration Meeting RIKEN, Japan, 27-28 November 2014 Introduction to RAON & Detector Systems for Nuclear Physics Byungsik Hong (Korea University) Outline - Plan for RAON and

More information

SpRIT TPC: Device to constrain the symmetry energy at supra-saturation densities

SpRIT TPC: Device to constrain the symmetry energy at supra-saturation densities SpRIT TPC: Device to constrain the symmetry energy at supra-saturation densities Jonathan Barney for SpRIT TPC Collaboration 4/17/2015 Outline Motivation: Probing the EoS at suprasaturation densities 2

More information

Isospin dynamics in the nuclear equation of state. The National Superconducting Cyclotron State University

Isospin dynamics in the nuclear equation of state. The National Superconducting Cyclotron State University Isospin dynamics in the nuclear equation of state Outline: 1. Introduction 2. Experimental signatures from HI collisions a) n/p ratios b) Isotope distributions c) Isospin diffusion at E/A=35 and 50 MeV

More information

From few-body to many-body systems

From few-body to many-body systems From few-body to many-body systems Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen Few-Body Physics: Advances and Prospects in Theory and Experiment 614. WE-Heraeus-Seminar, Bad Honnef April

More information

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Christoph Langer (JINA/NSCL) INT Workshop: Reactions and Structure of Exotic Nuclei March 2015 1 Understanding

More information

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective D. V. Shetty, S. J. Yennello, and G. A. Souliotis The density dependence of the

More information

Heavy-ion reactions and the Nuclear Equation of State

Heavy-ion reactions and the Nuclear Equation of State Heavy-ion reactions and the Nuclear Equation of State S. J. Yennello Texas A&M University D. Shetty, G. Souliotis, S. Soisson, Chen, M. Veselsky, A. Keksis, E. Bell, M. Jandel Studying Nuclear Equation

More information

Future Opportunity of Nuclear Symmetry Energy at LAMPS/RAON

Future Opportunity of Nuclear Symmetry Energy at LAMPS/RAON 9 th APCTP-BLTP JINR Joint Workshop at Kazakhstan Modern Problems of Nuclear and Elementary Particle Physics Almaty, Kazakhstan, 27 June-4 July, 2015 Future Opportunity of Nuclear Symmetry Energy at LAMPS/RAON

More information

The National Superconducting Cyclotron State University

The National Superconducting Cyclotron State University HIC Observables to probe the ASY-EOS Betty Tsang The National Superconducting Cyclotron Laboratory @Michigan State University Tests of the ASY-EOS in Heavy Ion Collisions asystiff asysoft Tsang, HW BA

More information

Physics with Exotic Nuclei

Physics with Exotic Nuclei Physics with Exotic Nuclei Hans-Jürgen Wollersheim NUclear STructure, Astrophysics and Reaction Outline Projectile Fragmentation A Route to Exotic Nuclei Fragmentation Cross Sections Nuclear Reaction Rates

More information

Constraining the Equation of State of Asymmetric Nuclear Matter with Collective Flow Measurements

Constraining the Equation of State of Asymmetric Nuclear Matter with Collective Flow Measurements Constraining the Equation of State of Asymmetric Nuclear Matter with Collective Flow Measurements Roy Lemmon STFC Daresbury Laboratory United Kingdom NuSYM11 Workshop, 19-21 June 2011, Smith College The

More information

NUSTAR and the status of the R3B project at FAIR

NUSTAR and the status of the R3B project at FAIR PRAMANA c Indian Academy of Sciences journal of physics pp. 1 7 NUSTAR and the status of the R3B project at FAIR 1nstituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientficas, Madrid

More information

ASY-EOS experiment at GSI: constraining the symmetry energy with neutron and proton elliptic flows

ASY-EOS experiment at GSI: constraining the symmetry energy with neutron and proton elliptic flows Società Italiana di Fisica XCVI Congresso Nazionale Bologna, 20-24 Settembre, 2010 ASY-EOS experiment at GSI: constraining the symmetry energy with neutron and proton elliptic flows Amorini F., Boiano

More information

Proximity Decay and Tidal Effects

Proximity Decay and Tidal Effects Proximity Decay and Tidal Effects A. B. McIntosh,S. Hudan, C.J. Metelko, N. Peters, J. Black, RdS Dept of Chemistry and IUCF, Indiana University July 16 22 1994: http://www2.jpl.nasa.gov/sl9/ Comet P/Shoemaker-Levy

More information

HiRA: Science and Design Considerations

HiRA: Science and Design Considerations HiRA: Science and Design Considerations Scientific Program: Astrophysics: Transfer reactions Resonance spectroscopy Nuclear Structure: Inelastic scattering Transfer reactions Resonance spectroscopy Breakup

More information

Quasi-Free Knockout Reaction Studies at RIBF

Quasi-Free Knockout Reaction Studies at RIBF INT Workshop INT-15-58W Reactions and Structure of Exotic Nuclei March 2 13, 2015 Quasi-Free Knockout Reaction Studies at RIBF Tomohiro Uesaka (RIKEN Nishina Center) Quasifree Scattering (QFS) QFS is a

More information

DSAM lifetime measurements at ReA - from stable Sn to exotic Ca. Hiro IWASAKI (NSCL/MSU)

DSAM lifetime measurements at ReA - from stable Sn to exotic Ca. Hiro IWASAKI (NSCL/MSU) DSAM lifetime measurements at ReA - from stable to exotic Ca Hiro IWASAKI (NSCL/MSU) 8/20/2015 ReA3 upgrade workshop 1 Evolution of halo properties N=28 pf-shell N>40 gds-shell E0,E? Efimov? 62 Ca? N=8

More information

Nuclear Reactions Part III Grigory Rogachev

Nuclear Reactions Part III Grigory Rogachev THE FLORIDA STATE UNIVERSITY National Superconducting Cyclotron Facility Nuclear Reactions Part III Grigory Rogachev Outline Introduction. Resonances in atomic nuclei Role of resonances in era of exotic

More information

Experimental Study of Stellar Reactions at CNS

Experimental Study of Stellar Reactions at CNS Experimental Study of Stellar Reactions at CNS Shigeru KUBONO ( 久保野茂 ) Center for Nuclear Study (CNS) University of Tokyo 1. Nucleosynthesis under Explosive Conditions + CNS-RIKEN AVF-Upgrade Project 2.

More information

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Dipole Polarizability and Neutron Skins in 208 Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Equation of State of neutron matter and neutron skin Proton scattering at 0 and electric

More information

Topics of interest for Must2 in HIC

Topics of interest for Must2 in HIC Topics of interest for Must2 in HIC 1. Density dependence of the symmetry energy: peripheral and central collisions 2. particle-particle correlations a. Imaging of emitting sources: space-time properties

More information

Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects. Catherine M. Deibel Louisiana State University

Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects. Catherine M. Deibel Louisiana State University Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects Catherine M. Deibel Louisiana State University 8/29/14 CGS15 August 25 29, 2014 1 Click Type to I X-Ray edit

More information

Experiments at NSCL. spectroscopy. A. Gade, 1/5/2011, Slide 1

Experiments at NSCL. spectroscopy. A. Gade, 1/5/2011, Slide 1 Experiments at NSCL Who we are Nuclear science thrusts Production of rare isotopes at NSCL Projectile fragmentation and separation Experimental consideration with fast beams Selection of physics highlights

More information

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar Calcium Radius Experiment (CREX) Workshop at Jefferson Lab, March 17-19, 2013 Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations N. Paar Physics Department Faculty of Science

More information

Nuclear Landscape not fully known

Nuclear Landscape not fully known Nuclear Landscape not fully known Heaviest Elements? Known Nuclei Limit of proton rich nuclei? Fission Limit? Possible Nuclei Limit of Neutron Rich Nuclei? Nuclear Radii Textbooks: R = r 00 A 1/3 1/3 I.

More information

Reaction rates in the Laboratory

Reaction rates in the Laboratory Reaction rates in the Laboratory Example I: 14 N(p,γ) 15 O slowest reaction in the CNO cycle Controls duration of hydrogen burning Determines main sequence turnoff glob. cluster ages stable target can

More information

A need for reliable transport codes -- a plea from the experimentalists

A need for reliable transport codes -- a plea from the experimentalists A need for reliable transport codes -- a plea from the experimentalists Transport 214, Shanghai, January 8-12, 214 曾敏兒 etty Tsang, NSCL/MSU Wish List from Experimentalists (From Trento 29) 1. Realistic

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams

Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams Hirschegg 06-1 Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams S. Kubono Center for Nuclear Study (CNS) University of Tokyo 1. Low Energy RI Beam Production 2. Proton Resonance

More information

GANIL / SPIRAL1 / SPIRAL2

GANIL / SPIRAL1 / SPIRAL2 Nuclear Structure, Reaction and Dynamics GANIL / SPIRAL1 / SPIRAL2 A huge discovery potential Exotic Nuclei Proton number Z Which force? 3-body, tensor, spin-orbit, Isospin dependence, Continuum coupling

More information

EVOLUTION OF SHELL STRUCTURE

EVOLUTION OF SHELL STRUCTURE EVOLUTION OF SHELL STRUCTURE W A RICHTER ITHEMBA LABS UNIVERSITY OF THE WESTERN CAPE Focus points: 1. Single-particle structure of nuclei 2. Elastic scattering 3. The Interface between Nuclear structure

More information

Probing the EoS of Asymmetric Matter

Probing the EoS of Asymmetric Matter Probing the EoS of Asymmetric Matter William Lynch, NSCL MSU Motivations Sources of constraints on the EOS and symmetry energy. Astrophysics Nuclear experiments Laboratory constraints from nuclear collisions

More information

Mapping Low-Energy Fission with RIBs (in the lead region)

Mapping Low-Energy Fission with RIBs (in the lead region) Mapping Low-Energy Fission with RIBs (in the lead region) Andrei Andreyev University of York, UK Japan Atomic Energy Agency (JAEA), Tokai, Japan Low-energy fission in the new regions of the Nuclear Chart

More information

First RIA Summer School on Exotic Beam Physics, August 12-17, Michael Thoennessen, NSCL/MSU. Lecture 1: Limits of Stability 1 A = 21

First RIA Summer School on Exotic Beam Physics, August 12-17, Michael Thoennessen, NSCL/MSU. Lecture 1: Limits of Stability 1 A = 21 Limits of Stability At the moment we are limited in our view of the atomic nucleus Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit? Some Basic Nuclear Property Neutron Drip Line? RIA Will

More information

From the Midwest to the World the Joint Institute for Nuclear Astrophysics Hendrik Schatz Michigan State University

From the Midwest to the World the Joint Institute for Nuclear Astrophysics Hendrik Schatz Michigan State University From the Midwest to the World the Joint Institute for Nuclear Astrophysics Hendrik Schatz Michigan State University 15 Years of Nuclear Astrophysics with JINA It started all at Notre Dame National and

More information

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University Exotic Nuclei II Neutron-rich nuclides Michael Thoennessen FRIB/NSCL Michigan State University Most neutron-rich nuclides N/Z = 1 n X not a nuclide but a nucleon N/Z = 3 8 He 11 Li: N/Z = 2.67 N/Z = 3

More information

Experimental Nuclear Astrophysics: Lecture 3. Chris Wrede National Nuclear Physics Summer School June 20 th, 2018

Experimental Nuclear Astrophysics: Lecture 3. Chris Wrede National Nuclear Physics Summer School June 20 th, 2018 : Lecture 3 Chris Wrede National Nuclear Physics Summer School June 20 th, 2018 Outline Lecture 1: Introduction & charged-particle reactions Lecture 2: Neutron-induced reactions Lecture 3: What I do (indirect

More information

Nuclear radii of unstable nuclei -neutron/proton skins and halos-

Nuclear radii of unstable nuclei -neutron/proton skins and halos- --- OUTLINE --- Introduction Situation @ stable nuclei How to measure radii? σ R / σ I measurements Transmission method Experimental setup Glauber model analysis Optical limit approximation Density distribution

More information

Worldwide Direction on Nuclear Science and Application

Worldwide Direction on Nuclear Science and Application Worldwide Direction on Nuclear Science and Application Thomas Glasmacher Michigan State University LINAC 16 28 th Linear Accelerator Conference East Lansing, MI, USA 25-30 September 2016 21 st Century

More information

Nuclear Physics using RadioIsotope Beams. T. Kobayashi (Tohoku Univ.)

Nuclear Physics using RadioIsotope Beams. T. Kobayashi (Tohoku Univ.) Nuclear Physics using RadioIsotope Beams T. Kobayashi (Tohoku Univ.) Nucleus: two kinds of Fermions: proton & neutron size ~1fm strong interaction: ~known tightly bound system < several fm < 300 nucleons

More information

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration Isospin influence on Fragments production in 78 Kr + 40 Ca and 86 Kr + 48 Ca collisions at 10 MeV/nucleon G. Politi for NEWCHIM/ISODEC collaboration Dipartimento di Fisica e Astronomia Sezione INFN - Catania,

More information

Physics of neutron-rich nuclei

Physics of neutron-rich nuclei Physics of neutron-rich nuclei Nuclear Physics: developed for stable nuclei (until the mid 1980 s) saturation, radii, binding energy, magic numbers and independent particle. Physics of neutron-rich nuclei

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

PREX and CREX. R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin.

PREX and CREX.   R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin. http://hallaweb.jlab.org/parity/prex PREX and CREX 08 Pb Horowitz 48 Ca Neutron Skin R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering R L 4 6 A ~ 10 PV Q ~ 10 R L PRL 108 (01) 1150

More information

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya University of Groningen Study of compression modes in 56Ni using an active target Bagchi, Soumya IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

Rare Isotope productions from Projectile Fragmentation. Ca + Be. Betty Tsang March 27, 2008

Rare Isotope productions from Projectile Fragmentation. Ca + Be. Betty Tsang March 27, 2008 Rare Isotope productions from Projectile Fragmentation 48 Ca + Be Betty Tsang March 27, 2008 Acknowledgement Collaborators: Michal Mocko (thesis) M. Andronenko, L. Andronenko, N. Aoi, J. Cook, F. Delaunay,

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

The Super-FRS Project at GSI

The Super-FRS Project at GSI 2 m A G A T A The Super-FRS Project at GSI FRS facility The concept of the new facility The Super-FRS and its branches Summary Martin Winkler for the Super-FRS working group CERN, 3.1.22 Energy Buncher

More information

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics.

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Grigory Rogachev RESOLUT: a new radioactive beam facility at FSU Solenoid 2 Magnetic Spectrograph Magnetic Spectrograph

More information

FARCOS Femtoscope Array for Correlations & Spectroscopy

FARCOS Femtoscope Array for Correlations & Spectroscopy FARCOS Femtoscope Array for Correlations & Spectroscopy Overview of project and physics inputs Present status (mechanics, electronics) and perspectives for the use with GET electronics G. Cardella, INFN-Catania

More information

Utilization of Intense Rare Isotope Beam at KoRIA

Utilization of Intense Rare Isotope Beam at KoRIA KIAS Workshop Nuclear and Particle Physics in KoRIA and BSI Utilization of Intense Rare Isotope Beam at KoRIA 2011. 9. 17 Yong-Kyun Kim (Hanyang University) On behalf of KoRIA User Community 초신성의 관측 1

More information

SpRIT TPC: Device to constrain the symmetry energy at supra-saturation densities

SpRIT TPC: Device to constrain the symmetry energy at supra-saturation densities SpRIT TPC: Device to constrain the symmetry energy at supra-saturation densities Jonathan Barney for SpRIT TPC Collaboration 1/11/2016 Outline Motivation: Probing the EoS at suprasaturation densities 2

More information

Probing the evolution of shell structure with in-beam spectroscopy

Probing the evolution of shell structure with in-beam spectroscopy Probing the evolution of shell structure with in-beam spectroscopy Alexandra Gade National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy at Michigan State University, East

More information

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies Bertram Blank CEN Bordeaux-Gradignan EPS European Nuclear Physics Conference 2009 Spring meeting

More information

Experiments with exotic nuclei I. Thursday. Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives.

Experiments with exotic nuclei I. Thursday. Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives. Experiments with exotic nuclei I Thursday Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives Friday Motivation Nuclear structure at extreme N/Z ratios or high A? Changes

More information

Summary and Outlook. W. Lynch NSCL and Department of Physics and Astronomy Michigan State University

Summary and Outlook. W. Lynch NSCL and Department of Physics and Astronomy Michigan State University Summary and Outlook W. Lynch NSCL and Department of Physics and Astronomy Michigan State University Importance of the Symmetry Energy and EoS Sub-saturation densities Momentum dependence Supra-saturation

More information

PROTON-PROTON FEMTOSCOPY AND ACCESS TO DYNAMICAL SOURCES AT INTERMEDIATE ENERGIES

PROTON-PROTON FEMTOSCOPY AND ACCESS TO DYNAMICAL SOURCES AT INTERMEDIATE ENERGIES EPJ Web of Conferences 66, 03068 (2014) DOI: 10.1051/ epjconf/ 2014 6603068 C Owned by the authors, published by EDP Sciences, 2014 PROTON-PROTON FEMTOSCOPY AND ACCESS TO DYNAMICAL SOURCES AT INTERMEDIATE

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei R.Avigo 1,2, O.Wieland 1, A.Bracco 1,2, F.Camera 1,2 on behalf of the AGATA and DALI2 collaborations 1 INFN, sezione di Milano 2 Università

More information

Electric Dipole Response of 208 Pb and Constraints on the Symmetry Energy. Atsushi Tamii

Electric Dipole Response of 208 Pb and Constraints on the Symmetry Energy. Atsushi Tamii Electric Dipole Response of 208 Pb and Constraints on the Symmetry Energy Atsushi Tamii Research Center for Nuclear Physics (RCNP) Osaka University, Japan I.Poltoratska, P. von Neumann Cosel and RCNP E282

More information

Isospin dependent EoS (Asy-EoS) with Heavy-ion collision probes

Isospin dependent EoS (Asy-EoS) with Heavy-ion collision probes Isospin dependent EoS (Asy-EoS) with Heavy-ion collision probes G. Verde INFN-CT for the Chimera & Farcos group OUTLINE: The Asy-EoS and the density dependence of the symmetry energy Experimental probes

More information

NSCL and Physics and Astronomy Department, Michigan State University Joint Institute for Nuclear Astrophysics

NSCL and Physics and Astronomy Department, Michigan State University Joint Institute for Nuclear Astrophysics National Superconducting Cyclotron Laboratory An overview Ana D. Becerril NSCL and Physics and Astronomy Department, Michigan State University Joint Institute for Nuclear Astrophysics University of North

More information

Isospin-symmetry breaking in nuclei around the N=Z line

Isospin-symmetry breaking in nuclei around the N=Z line Isospin-symmetry breaking in nuclei around the N=Z line Yang Sun Shanghai Jiao Tong University University of Hong Kong, July. 6-9, 2015 The concept of isospin Isospin of a nucleon: Projection of isospin:

More information

The Nuclear Many-Body problem. Lecture 3

The Nuclear Many-Body problem. Lecture 3 The Nuclear Many-Body problem Lecture 3 Emergent phenomena at the drip lines. How do properties of nuclei change as we move towards the nuclear driplines? Many-body open quantum systems. Unification of

More information

Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment. J. Button, Y.-W. Lui, and D.H.

Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment. J. Button, Y.-W. Lui, and D.H. Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment J. Button, Y.-W. Lui, and D.H. Youngblood I. Introduction The Giant Monopole Resonance (GMR) is

More information

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology 1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology Reading (all from White s Notes) Lecture 1: Introduction And Physics Of The Nucleus: Skim Lecture 1: Radioactive Decay- Read all Lecture 3:

More information

Tracking at the LAND/R B setup on 17

Tracking at the LAND/R B setup on 17 3 Tracking at the LAND/R B setup on 17 the example of Ne(γ,2p)15O R. Plag*, J. Marganiec 21. Januar 2011 Dedicated to the students of LAND/R3B Outline rp process and motivation coulomb dissociation as

More information

Construction of time-projection chambers to probe the symmetry energy at high density

Construction of time-projection chambers to probe the symmetry energy at high density Construction of time-projection chambers to probe the symmetry energy at high density Updated on 8/28/2013 Photo from SAMURAI-TPC collaboration meeting, Jan 25, 2013, NSCL/FRIB, East Lansing Symmetry Energy

More information

Charge Exchange and Weak Strength for Astrophysics

Charge Exchange and Weak Strength for Astrophysics Charge Exchange and Weak Strength for Astrophysics Sam Austin STANfest-July 16 2004 Charge Exchange and Weak Strength for Astrophysics Interesting phenomena Electron capture strength (GT) (Langanke talk)

More information

Perspectives on Nuclear Astrophysics

Perspectives on Nuclear Astrophysics Perspectives on Nuclear Astrophysics and the role of DUSEL Nuclear Astrophysics is a broad field that needs facilities from 1keV-100GeV A low energy accelerator DIANA a DUSEL is a unique instrument for

More information

nuclear states nuclear stability

nuclear states nuclear stability nuclear states 1 nuclear stability 2 1 nuclear chart 3 nuclear reactions Important concepts: projectile (A) target (B) residual nuclei (C+D) q-value of a reaction Notations for the reaction B(A,C)D A+B

More information

Baryon resonances in asymmetric nuclear matter:

Baryon resonances in asymmetric nuclear matter: Baryon resonances in asymmetric nuclear matter: Implications for nuclear structure and astrophysics J. Benlliure University of Santiago de Compostela, Spain NUSTAR Week York, UK, September 26-30 2016 Subnucleonic

More information

Valence p-n interactions, shell model for deformed nuclei and the physics of exotic nuclei. Rick Casten WNSL, Dec 9, 2014

Valence p-n interactions, shell model for deformed nuclei and the physics of exotic nuclei. Rick Casten WNSL, Dec 9, 2014 Valence p-n interactions, shell model for deformed nuclei and the physics of exotic nuclei Rick Casten WNSL, Dec 9, 2014 How can we understand nuclear behavior? Two approaches: 1) Nucleons in orbits and

More information

Symmetry Energy. in Structure and in Central and Direct Reactions

Symmetry Energy. in Structure and in Central and Direct Reactions : in Structure and in Central and Direct Reactions Pawel Natl Superconducting Cyclotron Lab, US The 12 th International Conference on Nucleus-Nucleus Collisions June 21-26, 2015, Catania, Italy Bulk Properties

More information

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Symmetry Energy within the Brueckner-Hartree-Fock approximation Symmetry Energy within the Brueckner-Hartree-Fock approximation Isaac Vidaña CFC, University of Coimbra International Symposium on Nuclear Symmetry Energy Smith College, Northampton ( Massachusetts) June

More information

Nuclear Alpha-Particle Condensation

Nuclear Alpha-Particle Condensation Nuclear Alpha-Particle Condensation 40 Ca+ 12 C, 25 AMeV with CHIMERA First experimental evidence of alpha-particle condensation for the Hoyle state Ad. R. Raduta, B.Borderie, N. Le Neindre, E. Geraci,

More information

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1:

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1: Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART : The 34 Si a bubble nucleus? Probing the neutron SO interaction using the 34 Si nucleus

More information

Theoretical Nuclear Physics

Theoretical Nuclear Physics Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, chongq@kth.se The course contains 12 sections 1-4 Introduction Basic Quantum Mechanics concepts

More information

Fusion studies at REA

Fusion studies at REA Indiana University: R. desouza, C.J.Horowitz Vanderbilt University: S. Umar GANIL: D. Ackermann, A. Chbihi Western Michigan: M. Famiano MSU-NSCL: K. Brown Motivation: understanding the character of neutron-rich

More information