Active Appearances. Statistical Appearance Models

Size: px
Start display at page:

Download "Active Appearances. Statistical Appearance Models"

Transcription

1 Active Appearances The material following is based on T.F. Cootes, G.J. Edwards, and C.J. Taylor, Active Appearance Models, Proc. Fifth European Conf. Computer Vision, H. Burkhardt and B. Neumann, eds., vol. 2, pp , T.F. Cootes, G.J. Edwards, and C.J. Taylor, "Active appearance models," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp , June Authors focus was development of method for matching statistical models of appearance to [2D] images Applied to faces, 2D medical images Basic idea has since been extended to many applications in 2D & 3D medical imaging /645 Fall 2015 Statistical Appearance Models Shape In this case, 2D locations of key feature points Texture I.e., patterns of intensities or colors across image patches Method to build: Identify key points; do deformable warp of points to common coordinate system; normalize intensities; read intensities into an intensity vector G G = 1 G k = /645 Fall

2 Statistical Appearance Models How might we do this? Shape In this case, 2D locations of key feature points Texture I.e., patterns of intensities or colors across image patches Method to build: Identify key points; do deformable warp of points to common coordinate system; normalize intensities; read intensities into an intensity vector G G = 1 G k = /645 Fall 2015 Deformable warping from point cloud matches One answer might make use of what we learned in programming assignments E.g., Determine some nominal location for each landmark point. E.g., pick some reference image or average multiple samples or do something else x (nom) k = 1 ( j ) x N j k Then fit Bernstein polynomials to determine distortion. x (nom) k = c s,t B s (u k ) B t (v k ) s,t Note: In this case, the coefficients will also parameterize the shape /645 Fall

3 Deformable warping from point cloud matches Another answer might use something like thin plate splines (e.g. Bookstein) TPS( v; a,b,c,p) = a +B v + U( v p i ) where U(r) = r 2 log( r) Thin plate splines are multidimensional analogues of 1- dimensional spline curves. NOTE: One might also use other radial basis functions. For compact support, one example* could be c i i Ψ(r,σ) = I 1 r σ k+1+ d /2 0 otherwise if 0 r σ * See: M. Fornefett, K. Rohr, and H. S. Stiehl, "Radial basis functions with compact support for elastic registration of medical images", Image and Vision Computing, vol Äì2, pp , article/pii/s S (00) /645 Fall 2015 Thin Plate Splines Digression Some citations (from G. Donato and S. Belongie, Approximation Methods for Thin Plate Spline Mappings and Principal Warps, 2002; ) /645 Fall

4 M-dimensional Thin Plate Spline Summary Given TPS( v; a,b,c,p) = a +B v + U( v p i ) where U(r) = r 2 log r = r 2 log r 2 v = v 1,",v M p i = p 1,",p M ( ) for 2D ( ) for 3D T i P = p 1,", p N C = c 1,", c N B = b 1,", b M T T c i i /645 Fall 2015 M-dimensional Thin Plate Spline Fitting Given /645 Fall 2015 V = v 1,", v N F = f 1,", f N find a, B,C such that fi =TPS( v i ; a, B,C,V) To do this, solve the linear system K [NxN] 1[N 1] V 1 [1 N] 0 0 V T 0 0 [M M ] C T a T B T = F T 0 0 [M 1] where K i,j = K j,i = U v i v j K i,j = ( v i v j ) v i v ( j )log( ( v v ) ( v i j i v j )) ( ) with U(r) = r 2 logr or U(r) = r 2 logr 2 4

5 TPS 2D case Given a set of points p i = x i,y i and corresponding points p i * = x i *,y i *, we want to find TPS parameters such that p i * = TPS( p i ; a,b,c,p) To do this, we solve the least squares problem 0 " U 1,k " U 1,N 1 x 1 y 1 c 1 p 1 * # $ U ij # # # # # U k,1 " 0 " U k,n 1 x k y k # pk * # U ij $ # # # # # cn # = pn U N,1 " U N,k " 0 1 x N y N * a 1 " 1 " bx x 1 " x k " x N y 1 " y k " y N b y 0 where U i,j =U j,i =U( p i p j ) /645 Fall 2015 Define /645 Fall 2015 M-dimensional Thin Plate Spline Fitting L [M+N+1 M+N+1] = K 1[N 1] [NxN] V 1 [1 N] 0 0 V T 0 0 [M M ] If there are many points, this matrix may be expensive to invert or even pseudo-invert. There are various methods to deal with this problem. These include See Use a random sample of the v i to approximate the solution Use a random sample of the basis functions & all data to solve problem in least squares sense Use matrix approximation methods 5

6 Further Digression: Radial Basis Functions Note that the function U(r) in the previous discussion is a an example of a more general class of "radial basis functions". These functions can be used in deformable registration in much the same way as the TPS function used above. Other commonly used radial basis functions include U(r) = (r 2 + c 2 ) µ for µ + U(r) = (r 2 + c 2 ) µ for µ + U(e) = e r 2 /2σ 2 The last one is probably the most popular /645 Fall 2015 Appearance models, con d Appearance model is defined by an instance parameter vector λ, mean shape and texture X (avg) and G (avg), and variation mode matrices M X and M G. Thus, an instance ( j) would be G ( j ) = G (avg) +M G λ ( j ) = G (avg) + X ( j ) = X (avg) +M X λ ( j ) = X (avg) + N G M (k ) k=1 N X k=1 ( j ) λ G k M (k ) ( j ) λ X k In fact, they created a multi-resolution hierarchy with models similar to the above at different resolutions. Used PCA to determine the statistical parameters /645 Fall

7 Digression: PCA Suppose that you have a set of N vectors a i in an M dimensional space? Is there a natural "coordinate system" for these vectors? /645 Fall 2015 We proceed as follows a i a (avg) = i N /645 Fall 2015 Digression: PCA ; bi = a i a (avg) ; B= b 1," b N ; Then form the singular value decomposition B = UΣV T = U Σ(N) 0 V T where Σ (N) = diag(σ 1,",σ N ) Then we note that M = UΣ 2 U T. Of course U is huge, but we have the following useful fact. We note that B = u 1,", u N, u N+1,", u M σ 1 # σ N $ $ $ V T = u 1,", u N Σ(N) V T = U (N) Σ (N) V T 7

8 Digression: PCA This means that any column b k of B may be expressed as a linear combination of the first N columns of U where So B = u 1,", u N Σ(N) V T = U (N) Σ (N) V T b k = λ (k ) 1 u 1 +"+λ (k ) N u N = U (N) Λ (k ) Λ (k ) = transpose(u (N) ) b k a k = a (avg) + b k = a (avg) +λ 1 (k ) u 1 +"+λ N (k ) u N But often the last few values of the λ k are small. If we ignore all but the first D values, we have a k a (avg) +λ 1 (k ) u 1 +"+λ D (k ) u D /645 Fall 2015 Digression: PCA Suppose now that we have an arbitrary a (arb). We can approximate a (arb) as follows: b (arb) = a (arb) a (avg) Λ (arb) = transpose(u (D) ) b (arb) a (arb) a (avg) +λ 1 (arb) u 1 +"+λ D (arb) u D a (arb) a (approx) /645 Fall

9 400 faces 68 points Training Set for 2001 paper intensity values /645 Fall 2015 Complication How do you do PCA if shape and intensity may covary? Answer : Form combined vector of shape and intensity variation ( ) Y = W X X X(avg) G G (avg) where W X is a diagonal matrix of weights. Then do PCA on Y /645 Fall

10 Further complication How do you find the right weights to use? Answer (from Cootes et al. 1998): I.e., do PCA first on shape only and determine an appropriate V X. Then find an optimal λ ( j ) for each training sample ( j). Then vary the values of λ ( j,k ) = λ ( j ) +α e k to create new shape models X ( j,k ) and determine the corresponding texture vectors G ( j,k ). Then the weight w k = 1 G ( j,k ) G ( j ) 2 / α. j N /645 Fall 2015 Face modes Shape Intensity Source: Cootes et al /645 Fall

11 Face modes Combined Source: Cootes et al /645 Fall 2015 Basic Algorithm Make an initial guess at model weights Create a model from weights Evaluate error Iteratively improve /645 Fall

12 Basic Iteration of the Method Source: Cootes et al /645 Fall 2015 Basic Iteration of the Method Source: Cootes et al /645 Fall 2015 Note: simple sum of differences. What are some alternatives? 12

13 Results Source: Cootes et al /645 Fall 2015 Results Source: Cootes et al /645 Fall

14 Results: Knee Example Trained on 30 knee MRI images With 42 landmark points Source: Cootes et al /645 Fall 2015 Results: Knee Example Source: Cootes et al /645 Fall

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

1 Introduction. BMVC 1994 doi: /c.8.41

1 Introduction. BMVC 1994 doi: /c.8.41 Combining Point Distribution Models with Shape Models Based on Finite Element Analysis TF.Cootes and C.J.Taylor Department of Medical Biophysics University of Manchester email: bim@wiau.mb.man.ac.uk Abstract

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Kronecker Decomposition for Image Classification

Kronecker Decomposition for Image Classification university of innsbruck institute of computer science intelligent and interactive systems Kronecker Decomposition for Image Classification Sabrina Fontanella 1,2, Antonio Rodríguez-Sánchez 1, Justus Piater

More information

Homework 1. Yuan Yao. September 18, 2011

Homework 1. Yuan Yao. September 18, 2011 Homework 1 Yuan Yao September 18, 2011 1. Singular Value Decomposition: The goal of this exercise is to refresh your memory about the singular value decomposition and matrix norms. A good reference to

More information

CSE 554 Lecture 7: Alignment

CSE 554 Lecture 7: Alignment CSE 554 Lecture 7: Alignment Fall 2012 CSE554 Alignment Slide 1 Review Fairing (smoothing) Relocating vertices to achieve a smoother appearance Method: centroid averaging Simplification Reducing vertex

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Reconstruction from projections using Grassmann tensors

Reconstruction from projections using Grassmann tensors Reconstruction from projections using Grassmann tensors Richard I. Hartley 1 and Fred Schaffalitzky 2 1 Australian National University and National ICT Australia, Canberra 2 Australian National University,

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

Matrices. Chapter Definitions and Notations

Matrices. Chapter Definitions and Notations Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which

More information

Medical Image Synthesis via Monte Carlo Simulation

Medical Image Synthesis via Monte Carlo Simulation Medical Image Synthesis via Monte Carlo Simulation An Application of Statistics in Geometry & Building a Geometric Model with Correspondence James Z. Chen, Stephen M. Pizer, Edward L. Chaney, Sarang Joshi,

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

Neural Networks Lecture 4: Radial Bases Function Networks

Neural Networks Lecture 4: Radial Bases Function Networks Neural Networks Lecture 4: Radial Bases Function Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

A New Closed-Form Information Metric for Shape Analysis

A New Closed-Form Information Metric for Shape Analysis A New Closed-Form Information Metric for Shape Analysis Adrian Peter 1 and Anand Rangarajan 2 1 Dept. of ECE, 2 Dept. of CISE, University of Florida, Gainesville, FL Abstract. Shape matching plays a prominent

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Numerical Linear Algebra Background Cho-Jui Hsieh UC Davis May 15, 2018 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u MATH 434/534 Theoretical Assignment 7 Solution Chapter 7 (71) Let H = I 2uuT Hu = u (ii) Hv = v if = 0 be a Householder matrix Then prove the followings H = I 2 uut Hu = (I 2 uu )u = u 2 uut u = u 2u =

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 22 MACHINE LEARNING Discrete Probabilities Consider two variables and y taking discrete

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

Point Distribution Models

Point Distribution Models Point Distribution Models Jan Kybic winter semester 2007 Point distribution models (Cootes et al., 1992) Shape description techniques A family of shapes = mean + eigenvectors (eigenshapes) Shapes described

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

Linear Subspace Models

Linear Subspace Models Linear Subspace Models Goal: Explore linear models of a data set. Motivation: A central question in vision concerns how we represent a collection of data vectors. The data vectors may be rasterized images,

More information

Statistical 2D and 3D shape analysis using Non-Euclidean Metrics

Statistical 2D and 3D shape analysis using Non-Euclidean Metrics Statistical 2D and 3D shape analysis using Non-Euclidean Metrics Rasmus Larsen, Klaus Baggesen Hilger, and Mark C. Wrobel Informatics and Mathematical Modelling, Technical University of Denmark Richard

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Le Song Machine Learning I CSE 674, Fall 23 Unsupervised learning Learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification of

More information

Linear Least-Squares Data Fitting

Linear Least-Squares Data Fitting CHAPTER 6 Linear Least-Squares Data Fitting 61 Introduction Recall that in chapter 3 we were discussing linear systems of equations, written in shorthand in the form Ax = b In chapter 3, we just considered

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Affine Structure From Motion

Affine Structure From Motion EECS43-Advanced Computer Vision Notes Series 9 Affine Structure From Motion Ying Wu Electrical Engineering & Computer Science Northwestern University Evanston, IL 68 yingwu@ece.northwestern.edu Contents

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 5 Singular Value Decomposition We now reach an important Chapter in this course concerned with the Singular Value Decomposition of a matrix A. SVD, as it is commonly referred to, is one of the

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 5: Numerical Linear Algebra Cho-Jui Hsieh UC Davis April 20, 2017 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Unsupervised Learning: Dimensionality Reduction

Unsupervised Learning: Dimensionality Reduction Unsupervised Learning: Dimensionality Reduction CMPSCI 689 Fall 2015 Sridhar Mahadevan Lecture 3 Outline In this lecture, we set about to solve the problem posed in the previous lecture Given a dataset,

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2017 LECTURE 5

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2017 LECTURE 5 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 17 LECTURE 5 1 existence of svd Theorem 1 (Existence of SVD) Every matrix has a singular value decomposition (condensed version) Proof Let A C m n and for simplicity

More information

Lecture 7 Spectral methods

Lecture 7 Spectral methods CSE 291: Unsupervised learning Spring 2008 Lecture 7 Spectral methods 7.1 Linear algebra review 7.1.1 Eigenvalues and eigenvectors Definition 1. A d d matrix M has eigenvalue λ if there is a d-dimensional

More information

Operations On Networks Of Discrete And Generalized Conductors

Operations On Networks Of Discrete And Generalized Conductors Operations On Networks Of Discrete And Generalized Conductors Kevin Rosema e-mail: bigyouth@hardy.u.washington.edu 8/18/92 1 Introduction The most basic unit of transaction will be the discrete conductor.

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables The Unconstrained Minimization Problem where In n dimensions the unconstrained problem is stated as f() x variables. minimize f()x x, is a scalar objective function of vector

More information

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop Fall 2017 Inverse of a matrix Authors: Alexander Knop Institute: UC San Diego Row-Column Rule If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 26, 2010 Linear system Linear system Ax = b, A C m,n, b C m, x C n. under-determined

More information

STATISTICAL SHAPE MODELS (SSM)

STATISTICAL SHAPE MODELS (SSM) STATISTICAL SHAPE MODELS (SSM) Medical Image Analysis Serena Bonaretti serena.bonaretti@istb.unibe.ch ISTB - Institute for Surgical Technology and Biomechanics University of Bern Overview > Introduction

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 37 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Linear Classifiers as Pattern Detectors

Linear Classifiers as Pattern Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2014/2015 Lesson 16 8 April 2015 Contents Linear Classifiers as Pattern Detectors Notation...2 Linear

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

A Coupled Helmholtz Machine for PCA

A Coupled Helmholtz Machine for PCA A Coupled Helmholtz Machine for PCA Seungjin Choi Department of Computer Science Pohang University of Science and Technology San 3 Hyoja-dong, Nam-gu Pohang 79-784, Korea seungjin@postech.ac.kr August

More information

ICS 6N Computational Linear Algebra Matrix Algebra

ICS 6N Computational Linear Algebra Matrix Algebra ICS 6N Computational Linear Algebra Matrix Algebra Xiaohui Xie University of California, Irvine xhx@uci.edu February 2, 2017 Xiaohui Xie (UCI) ICS 6N February 2, 2017 1 / 24 Matrix Consider an m n matrix

More information

Random Matrices: Invertibility, Structure, and Applications

Random Matrices: Invertibility, Structure, and Applications Random Matrices: Invertibility, Structure, and Applications Roman Vershynin University of Michigan Colloquium, October 11, 2011 Roman Vershynin (University of Michigan) Random Matrices Colloquium 1 / 37

More information

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg Linear Algebra, part 3 Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2010 Going back to least squares (Sections 1.7 and 2.3 from Strang). We know from before: The vector

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

JACOBI S ITERATION METHOD

JACOBI S ITERATION METHOD ITERATION METHODS These are methods which compute a sequence of progressively accurate iterates to approximate the solution of Ax = b. We need such methods for solving many large linear systems. Sometimes

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

Elementary Linear Algebra

Elementary Linear Algebra Matrices J MUSCAT Elementary Linear Algebra Matrices Definition Dr J Muscat 2002 A matrix is a rectangular array of numbers, arranged in rows and columns a a 2 a 3 a n a 2 a 22 a 23 a 2n A = a m a mn We

More information

Clusters. Unsupervised Learning. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Clusters. Unsupervised Learning. Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Clusters Unsupervised Learning Luc Anselin http://spatial.uchicago.edu 1 curse of dimensionality principal components multidimensional scaling classical clustering methods 2 Curse of Dimensionality 3 Curse

More information

Radial Basis Functions I

Radial Basis Functions I Radial Basis Functions I Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 14, 2008 Today Reformulation of natural cubic spline interpolation Scattered

More information

SPECTRAL CLUSTERING AND KERNEL PRINCIPAL COMPONENT ANALYSIS ARE PURSUING GOOD PROJECTIONS

SPECTRAL CLUSTERING AND KERNEL PRINCIPAL COMPONENT ANALYSIS ARE PURSUING GOOD PROJECTIONS SPECTRAL CLUSTERING AND KERNEL PRINCIPAL COMPONENT ANALYSIS ARE PURSUING GOOD PROJECTIONS VIKAS CHANDRAKANT RAYKAR DECEMBER 5, 24 Abstract. We interpret spectral clustering algorithms in the light of unsupervised

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017 CPSC 340: Machine Learning and Data Mining More PCA Fall 2017 Admin Assignment 4: Due Friday of next week. No class Monday due to holiday. There will be tutorials next week on MAP/PCA (except Monday).

More information

Bayesian Classifiers and Probability Estimation. Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington

Bayesian Classifiers and Probability Estimation. Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington Bayesian Classifiers and Probability Estimation Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington 1 Data Space Suppose that we have a classification problem The

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations Linear Equations: a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1 a + a + a + a +... + a = c 21 2 2 23 3 24 4 2n n 2 a + a + a + a +... + a = c 31 1 32 2 33 3 34 4 3n n

More information

Nonparametric Regression With Gaussian Processes

Nonparametric Regression With Gaussian Processes Nonparametric Regression With Gaussian Processes From Chap. 45, Information Theory, Inference and Learning Algorithms, D. J. C. McKay Presented by Micha Elsner Nonparametric Regression With Gaussian Processes

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

ECE133A Applied Numerical Computing Additional Lecture Notes

ECE133A Applied Numerical Computing Additional Lecture Notes Winter Quarter 2018 ECE133A Applied Numerical Computing Additional Lecture Notes L. Vandenberghe ii Contents 1 LU factorization 1 1.1 Definition................................. 1 1.2 Nonsingular sets

More information

Lecture 5 Singular value decomposition

Lecture 5 Singular value decomposition Lecture 5 Singular value decomposition Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Singular Value Decomposition 1 / 35 Understanding

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 9 1 / 23 Overview

More information

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = 30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University Fixed Points and Contractive Transformations Ron Goldman Department of Computer Science Rice University Applications Computer Graphics Fractals Bezier and B-Spline Curves and Surfaces Root Finding Newton

More information

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x = Linear Algebra Review Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1 x x = 2. x n Vectors of up to three dimensions are easy to diagram.

More information

Conjugate gradient acceleration of non-linear smoothing filters Iterated edge-preserving smoothing

Conjugate gradient acceleration of non-linear smoothing filters Iterated edge-preserving smoothing Cambridge, Massachusetts Conjugate gradient acceleration of non-linear smoothing filters Iterated edge-preserving smoothing Andrew Knyazev (knyazev@merl.com) (speaker) Alexander Malyshev (malyshev@merl.com)

More information

Computational Physics

Computational Physics Interpolation, Extrapolation & Polynomial Approximation Lectures based on course notes by Pablo Laguna and Kostas Kokkotas revamped by Deirdre Shoemaker Spring 2014 Introduction In many cases, a function

More information

Lecture 11. Linear systems: Cholesky method. Eigensystems: Terminology. Jacobi transformations QR transformation

Lecture 11. Linear systems: Cholesky method. Eigensystems: Terminology. Jacobi transformations QR transformation Lecture Cholesky method QR decomposition Terminology Linear systems: Eigensystems: Jacobi transformations QR transformation Cholesky method: For a symmetric positive definite matrix, one can do an LU decomposition

More information

Matrix-Matrix Multiplication

Matrix-Matrix Multiplication Chapter Matrix-Matrix Multiplication In this chapter, we discuss matrix-matrix multiplication We start by motivating its definition Next, we discuss why its implementation inherently allows high performance

More information

A METHOD OF FINDING IMAGE SIMILAR PATCHES BASED ON GRADIENT-COVARIANCE SIMILARITY

A METHOD OF FINDING IMAGE SIMILAR PATCHES BASED ON GRADIENT-COVARIANCE SIMILARITY IJAMML 3:1 (015) 69-78 September 015 ISSN: 394-58 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.1864/ijamml_710011547 A METHOD OF FINDING IMAGE SIMILAR PATCHES BASED ON GRADIENT-COVARIANCE

More information

Latent Semantic Analysis (Tutorial)

Latent Semantic Analysis (Tutorial) Latent Semantic Analysis (Tutorial) Alex Thomo Eigenvalues and Eigenvectors Let A be an n n matrix with elements being real numbers. If x is an n-dimensional vector, then the matrix-vector product Ax is

More information

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to : MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..

More information

Independent Component Analysis

Independent Component Analysis Independent Component Analysis Philippe B. Laval KSU Fall 2017 Philippe B. Laval (KSU) ICA Fall 2017 1 / 18 Introduction Independent Component Analysis (ICA) falls under the broader topic of Blind Source

More information

Appendix C Vector and matrix algebra

Appendix C Vector and matrix algebra Appendix C Vector and matrix algebra Concepts Scalars Vectors, rows and columns, matrices Adding and subtracting vectors and matrices Multiplying them by scalars Products of vectors and matrices, scalar

More information

UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 The Singular Value Decomposition (SVD) continued Linear Algebra Methods for Data Mining, Spring 2007, University

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

M2R IVR, October 12th Mathematical tools 1 - Session 2

M2R IVR, October 12th Mathematical tools 1 - Session 2 Mathematical tools 1 Session 2 Franck HÉTROY M2R IVR, October 12th 2006 First session reminder Basic definitions Motivation: interpolate or approximate an ordered list of 2D points P i n Definition: spline

More information

Computing the Geodesic Interpolating Spline

Computing the Geodesic Interpolating Spline Computing the Geodesic Interpolating Spline Anna Mills 1, Tony Shardlow 1, and Stephen Marsland 2 1 The University of Manchester, UK 2 Massey University, NZ Abstract. We examine non-rigid image registration

More information

Supervised locally linear embedding

Supervised locally linear embedding Supervised locally linear embedding Dick de Ridder 1, Olga Kouropteva 2, Oleg Okun 2, Matti Pietikäinen 2 and Robert P.W. Duin 1 1 Pattern Recognition Group, Department of Imaging Science and Technology,

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Prepared by: M. S. KumarSwamy, TGT(Maths) Page Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 50 - CHAPTER 3: MATRICES QUICK REVISION (Important Concepts & Formulae) MARKS WEIGHTAGE 03 marks Matrix A matrix is an ordered rectangular array of numbers

More information

Spectral Regularization

Spectral Regularization Spectral Regularization Lorenzo Rosasco 9.520 Class 07 February 27, 2008 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

The Mathematics of Facial Recognition

The Mathematics of Facial Recognition William Dean Gowin Graduate Student Appalachian State University July 26, 2007 Outline EigenFaces Deconstruct a known face into an N-dimensional facespace where N is the number of faces in our data set.

More information

Math 671: Tensor Train decomposition methods II

Math 671: Tensor Train decomposition methods II Math 671: Tensor Train decomposition methods II Eduardo Corona 1 1 University of Michigan at Ann Arbor December 13, 2016 Table of Contents 1 What we ve talked about so far: 2 The Tensor Train decomposition

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725 Consider Last time: proximal Newton method min x g(x) + h(x) where g, h convex, g twice differentiable, and h simple. Proximal

More information

LINEAR SYSTEMS (11) Intensive Computation

LINEAR SYSTEMS (11) Intensive Computation LINEAR SYSTEMS () Intensive Computation 27-8 prof. Annalisa Massini Viviana Arrigoni EXACT METHODS:. GAUSSIAN ELIMINATION. 2. CHOLESKY DECOMPOSITION. ITERATIVE METHODS:. JACOBI. 2. GAUSS-SEIDEL 2 CHOLESKY

More information