arxiv: v1 [math.at] 19 Nov 2018

Size: px
Start display at page:

Download "arxiv: v1 [math.at] 19 Nov 2018"

Transcription

1 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS arxiv:.7937v [math.at] 9 Nov DANIEL C. ISAKSEN Department of Mathematics Wayne State University Detroit, MI Abstract. A C-motivic modular forms spectrum mmf has recently been constructed. This article presents detailed computational information on the Adams spectral sequence for mmf. This information is essential for computing with the C-motivic and classical Adams spectral sequences that compute the C-motivic and classical stable homotopy groups of spheres.. Introduction.. Topological modular forms. The topological modular forms spectrum tmf is an important tool for studying classical stable homotopy groups at the prime. Its unit map S tmf induces a map of Adams spectral sequences, and much information about the behavior of the Adams spectral sequence for S can be deduced from the behavior of the Adams spectral sequence for tmf. From this perspective, the essential properties of tmf are that it is a ring spectrum whose F -cohomology is A//A(). Here A is the usual Steenrod algebra, and A() is the subalgebra generated by Sq, Sq, and Sq. A standard change-of-rings theorem then implies that the E -page of the Adams spectral sequence for tmf is the cohomology of A(), i.e., Ext A() (F, F ). The cohomology of A() was first computed by May in his thesis [9]. The computation is also described in [] [3, Chapter 3] [7] []. It turns out that the Adams differentials are manageable, and a complete description of the E -page is possible. It is also possible to determine all of the hidden extensions by, η, and ν. As a result, we thoroughly understand the ring of stable homotopy groups of tmf. The spectrum tmf has also been completely analyzed from the perspective of the Adams-Novikov spectral sequence []... Motivic modular forms. A similar story plays out in C-motivic stable homotopy theory. A C-motivic modular forms spectrum mmf has recently been constructed []. Specifically, mmf is a C-motivic ring spectrum whose cohomology is A//A(), where A is the C-motivic Steenrod algebra and A() is the subalgebra of A generated by Sq, Sq, and Sq. The goal is to compute the C-motivic stable homotopy groups of mmf via the C-motivic Adams spectral sequence. The C-motivic stable homotopy groups of mmf were first computed (speculatively) by means of the C-motivic Adams-Novikov spectral sequence [7]. address: isaksen@wayne.edu.

2 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS The first step in our project is to identify the E -page of the C-motivic Adams spectral sequence for mmf, i.e., the cohomology of C-motivic A(). This calculation is completely described in [7]. The next step is to determine Adams differentials. This turns out to be fairly straightforward. The Betti realization map allows us to deduce motivic differentials from known classical differentials. The final step is to find hidden extensions in the E -page of the C-motivic Adams spectral sequence for mmf. As in the classical case, it is possible to resolve all hidden extensions by, η, and ν, but this manuscript does not provide exhaustive information about these extensions. On the other hand, we do exhaustively list the hidden τ extensions. The Betti realization functor from C-motivic stable homotopy theory to classical stable homotopy theory is well-understood from a calculational perspective []. Namely, Betti realization corresponds to inverting a particular element τ in π,. In particular, the Betti realization of mmf is tmf. Therefore, there is a well-understood map from the C-motivic Adams spectral sequence of mmf to the classical Adams spectral sequence for tmf. In other words, the C-motivic Adams spectral sequence for mmf is compatible with the classical Adams spectral sequence for tmf. Depending on perspective, this could mean two different things. First, information about tmf can be transported to information about mmf. This does not completely determine the C-motivic Adams spectral sequence for mmf, because of the presence of τ torsion. Second, an independent analysis of the C-motivic Adams spectral sequence for mmf leads to an analysis of the classical Adams spectral sequence for tmf as a corollary. This latter motivic-to-classical perspective is at the heart of recent progress in the computation of classical stable homotopy groups []. Without further mention, we are always working in C-motivic stable homotopy theory that has been completed at and at η. This means that the Adams spectral sequence converges..3. Logical assumptions. We assume without further reference the entire algebraic structure of the cohomology of C-motivic A(), as described in [7] (especially Theorem.3). We also assume complete knowledge of the C-motivic Adams-Novikov spectral sequence for mmf, as shown in the charts in [7]. This means that the homotopy groups of mmf are already known, and we just have to figure out which Adams differentials and which hidden extensions are compatible with that calculation. See also [] for a thorough analysis of the classical Adams-Novikov spectral sequence for tmf. We also assume complete knowledge of the classical Adams spectral sequence for tmf [3, Chapter 3] []... Organization. Section gives a few explicit proofs for the handful of Adams differentials that do not follow immediately from comparison with the classical case. Section 3 summarizes the essential parts of the calculation in table format. We give multiplicative generators for each page of the spectral sequence, as well as the values of the Adams differentials on these generators..5. Notation. We adopt the notation of [7] and [], with the exception that the elements α and ν from [7] are written here as a and n.

3 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS 3 Note that the elements a, n, h, and c are called α, β, γ, and δ in [] and [3, Chapter 3].. Adams differentials and hidden extensions There are several possible approaches to computing C-motivic Adams differentials for mmf: () Compare to the known classical case of tmf. This method takes care of most of the motivic differentials. () Compare to the results of the known C-motivic Adams-Novikov spectral sequence for mmf. Since the C-motivic stable homotopy groups of mmf are already known, one can often reverse engineer Adams differentials to obtain that answer. (3) Use the algebraic Novikov spectral sequence [] [] that computes the E -page of the classical Adams-Novikov spectral sequence for tmf. As discussed in [5], this entirely algebraic spectral sequence is isomorphic to the C-motivic Adams spectral sequence for mmf/τ. Then one can pull back or push forward differentials to the C-motivic Adams spectral sequence for mmf. While this method is extremely powerful, we will not use it in this manuscript. Theorem.. The multiplicative generators of the Adams E -page for mmf are listed in Table, together with the values of the d differential on these generators. Proof. Most of the values of the motivic d differential follow from the analogous classical calculations. A few differentials require additional arguments. The value of d (e) follows from comparison to the h -periodic calculation []. Then the value of d (u) follows from the relation cu = h e. Finally, the value of d ( u + τng) follows from the relation h ( u + τng) = u h. Theorem.. The multiplicative generators of the Adams E 3 -page for mmf are listed in Table, together with the values of the d 3 differential on these generators. Proof. The structure of the E 3 -page is completely determined by the d differentials in Theorem.. Then the E 3 -page generators can be determined by naive algebraic considerations. Most of the values of the motivic d 3 differential follow from the analogous classical calculations. A few differentials require additional arguments. There is a classical differential d (aeg) = P ( c + ag). This must correspond to a motivic differential d (τ 3 aeg) = P ( c + τag). Therefore, τ aeg cannot survive to the E -page, and d 3 (τ aeg) must equal P h d. Essentially the same argument shows that d 3 (τ ng ) = h d, using the classical differential d (ng ) = P ( c + ag)d. From the motivic Adams-Novikov spectral sequence for mmf, the element h dg detects an element of π 35, mmf that is τ-free. Therefore, there must be a hidden τ extension from τ h dg to P an. Then there is also a hidden τ extension from τ h dg to P ang. We know from the motivic Adams-Novikov spectral sequence for mmf that h dg detects an element of π 55,33 that is annihilated by τ. Therefore, τp ang must be hit by some differential. The only possibility is that d 3 ( c) equals τp ang.

4 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS Theorem.3. The multiplicative generators of the Adams E -page for mmf are listed in Table 3, together with the values of the d differential on these generators. Proof. The structure of the E -page is completely determined by the d 3 differentials in Theorem.. Then the E -page generators can be determined by naive algebraic considerations. Most of the values of the motivic d differential follow from the analogous classical calculations. One differential requires further explanation. We have a relation P h c = τ P eg. Therefore, P d ( h c) = τ P g d (τ eg) = τ P d g. It follows that d ( h c) must equal τ P d g. Theorem.. The C-motivic Adams spectral sequence for mmf collapses at the E 5 -page, i.e., the E 5 -page equals the E -page. The multiplicative generators of the Adams E -page are listed in Table. Proof. The structure of the E 5 -page is completely determined by the d differentials in Theorem.3. Then the E 5 -page generators can be determined by naive algebraic considerations. For degree reasons, there are no possible d r differentials on these generator for r 5. Having obtained the E -page of the Adams spectral sequence for mmf, the final step is to determine hidden extensions. Theorem.5. Table 5 lists some hidden extensions by τ. All hidden extensions are g and multiples of these. Proof. These hidden extensions are the only possibilities that are consistent with the computations of π, mmf from the motivic Adams-Novikov spectral sequence [7].

5 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS 5 3. Tables Table : E -page multiplicative generators (s, f, w) x d (x) (,, ) h (,, ) h (3,, ) h (, 3, 5) c (,, ) P (, 3, 7) u h c (, 3, ) a P h (,, ) d (5, 3, ) n h d (7,, ) e (,, ) g h d (5, 5, 3) h (3, 7, 7) c + τag (35, 7, 9) u + τng h ( c + τag) (,, ) τ ang Table : E 3 -page multiplicative generators (s, f, w) x d 3 (x) (,, ) h (,, ) h (3,, ) h (, 3, 5) c (,, ) P (,, ) h 3 a (,, ) d (7,, 9) τe P c (,, ) g (,, ) a τp h d (5, 5, 3) h (7,, ) an (3,, ) n τh d (3, 7, ) τ ag (3, 7, 7) c + τag (3,, ) h a 3 (, 9, ) h (9, 9, 5) h τ 3 d g (9,, ) τ aeg (5, 9, ) h P h d (55,, 3) τ ng h d (5,, 9) c τp ang

6 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS Table : E 3 -page multiplicative generators (s, f, w) x d 3 (x) (,, 3) (, 5, ) h 3 a τ c (,, ) h a 3 (9,, ) τ ng Table 3: E -page multiplicative generators (s, f, w) x d (x) (,, ) h (,, ) h (3,, ) h (, 3, 5) c (,, ) P (,, ) h 3 a (,, ) d (,, ) g (, 7, ) h a (5, 5, 3) h (7,, ) an (3,, ) τ de P d (3, 7, ) τ ag (3, 7, 7) c + τag (3,, ) h a 3 (37,, ) τ eg P d (,, ) τ a g P an (, 9, ) h τp h d (9,, 5) τ 3 aeg P ( c + τag) (5,, ) τ n g P and (5, 9, ) h (55,, 9) τ 3 ng P ( c + τag)d (5,, ) τ c (,, 3) (7, 5, 3) h 3 a h a (, 5, ) τ c (,, ) h a 3 (9, 7, ) h (97, 7, 9) h (99, 7, 5) h (, 9, 53) c (,, 5) P (,, 5) (,, 5) h 3 a d (3,, ) an

7 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS 7 Table 3: E -page multiplicative generators (s, f, w) x d (x) (7,, ) τ de P d (, 3, ) τ ag (, 3, 5) ( c + τag) (3,, ) h a 3 (33,, ) τ eg P d (,, 7) τ a g P an (, 5, 7) h τ P h d (5, 7, 73) τ 3 aeg P c (,, 7) h P and (7, 5, 7) h (5, 7, 7) τ c (53,, 7) h c τ P d g (5, 3, 7) (, 3, ) h 3 a h a (7, 3, ) τ c (, 3, 9) h a 3 (9, 3, 9) Table : E -page multiplicative generators (s, f, w) x (,, ) h (,, ) h (3,, ) h (, 3, 5) c (,, ) P (,, ) h 3 a (,, ) d (,, ) g (, 7, ) h a (5, 5, 3) h (7,, ) an (3, 7, ) τ ag (3, 7, 7) c + τag (3,, ) h a 3 (,, ) (5, 9, ) h h (5,, ) τ c (5, 3, ) P h + τ 3 h de (,, 3) (7, 5, 3) h 3 a h a (, 5, ) τ c (,, ) h a 3

8 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS Table : E -page multiplicative generators (s, f, w) x (9, 7, ) h (97, 7, 9) h (99, 7, 5) h (, 9, 53) c (,, 5) P (,, 5) (,, 5) h 3 a d (, 3, ) h a (3,, ) an (, 3, 5) ( c + τag) (, 3, ) τ ag (3,, ) h a 3 (,, 7) (7, 5, 7) h h (5, 7, 7) τ c (5, 9, 7) ( P h + τ 3 h de) (5, 3, 7) (, 3, ) h 3 a h a (7, 3, ) τ c (, 3, 9) h a 3 (9, 3, 9) Table 5: Hidden τ extensions (s, f, w) source target (,, ) h g cd (, 7, 3) cd P d (3, 7, 5) h 3 g h cd (3,, ) h cd P h d (, 7, 7) cg d (9,, ) h cg h d (35, 9, 9) τ h dg P an (, 9, 3) τh g h d (,, ) h d P ( c + τag) (, 9, 3) τ h g and (,, ) h g ( c + τag)d (7,, 7) h 3 g h cd (7,, ) h cd P h d (53,, 3) h cg h d (7, 5, 39) h 3 g h cd (,, ) h g cd (, 3, ) cd P d (9, 3, 3) (9,, ) h 3 g h cd h cd P h d

9 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS 9 Table 5: Hidden τ extensions (s, f, w) source target (, 3, 5) cg d (5,, ) h cg h d (3, 5, 7) τ h dg P an (3, 5, 7) τ h g 5 h d (3,, 7) 5 h d P ( c + τag) (37, 5, 7) τ h g and (,, 7) 5 h g ( c + τag)d (3, 7, 75) 5 h 3 g 5 h cd (3,, 7) 5 h cd 5 P h d (9,, 7) 5 h cg 5 h d (5, 3, 7) τ h g 5 P ( c + τag)d (7, 3, 7) h 3 g h cd. Charts The following charts display the E -page, E 3 -page, E -page, and E -page of the Adams spectral sequence for mmf. The E -page is free as a module over F [ ], where is a class, also known as v, in the 9-stem. The chart shows only elements that are not multiples of. Elements are labelled using the notation from [7]. The E 3 -page, E -page, and E -pages are free as modules over F [ ], where is a class, also known as v 3, in the 9-stem. The charts show only elements that are not multiples of. The E -page is not free as a module over F [g] or F [P ], although it does contain some elements that are g-periodic and P -periodic. One can easily identify the P -periodic families as repeating patterns of slope /. The g-periodic families are harder to identify. Except for multiples of P, the element h a 3 in the -stem is the last element that is annihilated by g. In other words, excluding multiples of P and, the E -page between the -stem and the -stem is the same as the E -page between the -stem and the - stem. No elements can be both P -periodic and g-periodic since P g is zero. Each colored dot indicates a copy of M = F [τ] or M /τ k for some k. Table gives the interpretation of each color. Vertical lines, lines of slope, and lines of slope /3 indicate h multiplications, h multiplications, and h multiplications respectively. Typically, the colors of these lines are determined by the τ torsion of the target. However, magenta lines indicate that a product equals τ times a generator, rather than a generator itself. Also, orange lines indicate that a product equals τ k times a generator, for some k. The exact value of k can be deduced from the weights of the source and target of the extension. Red arrows of slope indicate infinite sequences of elements that are killed by τ and are connected by h -multiplications. Light blue lines with negative slopes indicate differentials. Lines of negative slope in other colors indicate that a differential equals τ k times a generator for some value of k, rather than a generator itself. These colors are compatible with the colors

10 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS listed in Table. For example, a red line indicates that a differential equals τ times a generator, and a blue line indicates that a differential equals τ times a generator. In the E -page, yellow lines indicate hidden τ extensions. Table : Dot color interpretations M M /τ M /τ M /τ 3 M /τ M /τ 5 M /τ M /τ 9 M /τ M /τ gray red blue green pink light green dark blue purple lavender brown References [] Tilman Bauer, Computation of the homotopy of the spectrum tmf, Groups, homotopy and configuration spaces, Geom. Topol. Monogr., vol. 3, Geom. Topol. Publ., Coventry,, pp., DOI./gtm..3.. MR5 (h:55) [] Robert R. Bruner and John Rognes, The mod Adams spectral sequence for topological modular forms, in preparation. [3] Topological modular forms, Mathematical Surveys and Monographs, vol., American Mathematical Society, Providence, RI,. Edited by Christopher L. Douglas, John Francis, André G. Henriques and Michael A. Hill. MR33 [] Bogdan Gheorghe, Daniel C. Isaksen, Achim Krause, and Nicolas Ricka, C-motivic modular forms (), preprint. [5] Bogdan Gheorghe, Guozhen Wang, and Zhouli Xu, The special fiber of the motivic deformation of the stable homotopy category is algebraic (), preprint, available at arxiv: [] Bertrand J. Guillou and Daniel C. Isaksen, The η-local motivic sphere, J. Pure Appl. Algebra 9 (5), no., 7 75, DOI./j.jpaa MR3355 [7] Daniel C. Isaksen, The cohomology of motivic A(), Homology Homotopy Appl. (9), no., 5 7. MR599 (c:553) [], Stable stems, Mem. Amer. Math. Soc., to appear. [9] J. Peter May, The cohomology of restricted Lie algebras and of Hopf algebras; application to the Steenrod algebra, Ph.D. dissertation, Princeton Univ., 9. [] Haynes Robert Miller, SOME ALGEBRAIC ASPECTS OF THE ADAMS-NOVIKOV SPECTRAL SEQUENCE, ProQuest LLC, Ann Arbor, MI, 975. Thesis (Ph.D.) Princeton University. MR53 [] S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 3 (97), (Russian). MR59 [] Nobuo Shimada and Akira Iwai, On the cohomology of some Hopf algebras, Nagoya Math. J. 3 (97), 3. MR59

11 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS 5 Adams E -page over C P 3 P c P u P a 5 5 P P d P e P g P c P u P a P cd P n P ce P ad P cg 3 P a P an P h P 9 a 3 P P d P e P g P 9 de P 9 dg P c P u P a P 9 cd P n P 9 ce P 9 ad P 9 cg P 9 ae P 9 ug P 9 ag P 9 c P cdg P 9 ng P 9 u P 9 a P 9 an P 9 n P a e P a g P 9 h P a 3 P h d P h e P P 9 d P 9 e P 9 g P de P dg P eg P g P 7 deg P 7 ug P 9 c P 9 u P 9 a P cd P 9 n P ce P ad P cg P ae P ug P ag P c P 7 cdg P ng P u P 7 ceg P 7 adg P 7 cd P 7 cg P 7 aeg P 7 ce P 7 ag P 7 cg 3 9 P a P an P n P 7 a e P 7 a g P 7 ang P 7 n g P h P 7 a 3 P 7 h d P 7 h e P 7 h g P h de P h dg 3 P 9 P d P e P g P 7 de P 7 dg P 7 eg P 7 g P deg P dg P 7 P eg P g 3 P ug P 5 ceg P u P 5 cg 3 P c P u P a P 7 cd P n P 7 ce P 7 ad P 7 cg P 7 ae P 7 ug P 7 ag P 7 c P cdg P 7 ng P 7 u P ceg P adg P cd P cg P aeg P ce P ag P cg P 5 cdg P ng P ug P c P 5 adg P 5 cdg P a 3 7 P 7 a P 7 an P 7 n P a e P a g P ang P n g P 5 a eg P 5 a g P 5 ang P 7 h P a 3 P h d P h e P h g P 5 h de P 5 h dg P 5 h eg P 5 h g P h deg 3 P P 7 d P 7 e P 7 g P de P dg P eg P g P 5 deg P 5 dg P P 5 eg P 5 g 3 P 5 d P deg P 5 e P dg 3 P 5 g P 5 ug P ceg P 5 u P cg 3 P cd P ug 3 P ce P 3 cdg 3 P cg P 7 c P 7 u P 7 a P cd P 7 n P ce P ad P cg P ae P ug P ag P c P 5 cdg P ng P u P 5 ceg P 5 adg P 5 cd P 5 cg P 5 aeg P 5 ce P 5 ag P 5 cg P cdg P 5 ng P 5 ug P 5 c P adg P cdg P 5 a P aeg P ceg P 5 n P ag 3 P cg P ad P ng 3 P ug 3 5 P a P an P n P 5 a e P 5 a g P 5 ang P 5 n g P a eg P a g P ang P n g P a P 3 a eg P an P 3 a g 3 P 3 h eg P h P 5 a 3 P 5 h d P 5 h e P 5 h g P h de P h dg P h eg P h g P 3 h deg P 3 h dg P h P 3 a 3 P 7 P d P e P g P 5 de P 5 dg P 5 eg P 5 g P deg P dg P 5 P eg P g 3 P d P 3 deg P e P 3 dg 3 P g P 3 eg 3 P 3 de P 3 g P 3 dg P deg 3 P ug P 3 ceg P u P 3 cg 3 P 3 cd P 3 ug 3 P 3 ce P cdg 3 P 3 cg P ceg 3 P 3 ug P 3 ag P ceg P cdg P 3 ng P cg 3 P c P u P a P 5 cd P n P 5 ce P 5 ad P 5 cg P 5 ae P 5 ug P 5 ag P 5 c P cdg P 5 ng P 5 u P ceg P adg P cd P cg P aeg P ce P ag P cg P 3 cdg P ng P ug P c P 3 adg P 3 cdg P a P 3 aeg P 3 ceg P n P 3 ag 3 P 3 cg P 3 ad P 3 ng 3 P 3 ug P 3 aep adg 3 P cdg P 3 cp cg P aeg 3 P 3 up ug P ag 3 P 5 a P 5 an P 5 n P a e P a g P ang P n g P 3 a eg P 3 a g P 3 ang P 3 n g P 3 a P a eg P 3 an P a g 3 P 3 n P ang 3 P a e P n g 3 P a g P h eg P h deg P 5 h P a 3 P h d P h e P h g P 3 h de P 3 h dg P 3 h eg P 3 h g P h deg P h dg P 3 h P a 3 P h g 3 P h d P h ep h dg 3 P P 5 d P 5 e P 5 g P de P dg P eg P g P 3 deg P 3 dg P P 3 eg P 3 g 3 P 3 d P deg P 3 e P dg 3 P 3 g P eg 3 P de P g P dg P deg 3 P eg P dg P g P eg P deg P g 5 P 3 ug P ceg P 3 u P cg 3 P cd P ug 3 P ce P cdg 3 P cg P ceg 3 P ug P ag P ceg P cdg P ng P cg 3 P ceg P adg P ug 3 P cg P aeg cdg 3 P ug P ag P 5 c P 5 u P 5 a P cd P 5 n P ce P ad P cg P ae P ug P ag P c P 3 cdg P ng P u P 3 ceg P 3 adg P 3 cd P 3 cg P 3 aeg P 3 ce P 3 ag P 3 cg P cdg P 3 ng P 3 ug P 3 c P adg P cdg P 3 a P aeg P ceg P 3 n P ag 3 P cg P ad P ng 3 P ug P ae P adg 3 P cdg P c P cg P aeg 3 P u P ug P ag P cd cdg P ng ceg P ce adg P cg cg 5 P a P an P n P 3 a e P 3 a g P 3 ang P 3 n g P a eg P a g P ang P n g P a P a eg P an P a g 3 P n P ang 3 P a e P n g 3 P a g a eg 3 P ang a g P n g ang P h eg h deg P h P 3 a 3 P 3 h d P 3 h e P 3 h g P h de P h dg P h eg P h g P h deg P h dg P h P a 3 P h g 3 P h d P h e h dg 3 P h g h eg 3 h de h g h dg P 5 P d P e P g P 3 de P 3 dg P 3 eg P 3 g P deg P dg P 3 P eg P g 3 P d P deg P e P dg 3 P g P eg 3 P de P g P dg deg 3 P eg dg P g eg deg g 5 dg eg g 3 P ug P u P cg 3 P cd P ug 3 P ce P cg P ug P ag cdg P ng ug 3 P c P u P a P 3 cd P n P 3 ce P 3 ad P 3 cg P 3 ae P 3 ug P 3 ag P 3 c P cdg P 3 ng P 3 u P ceg P adg P cd P cg P aeg P ce P ag P cg P cdg P ng P ug P c P ceg P adg P cdg P a P aeg P ceg P n P ag 3 P cg P ad cdg 3 P ng 3 P ug P ae ceg 3 adg 3 cdg P c cg aeg 3 ceg P u ug ag cg 3 ceg cd adg ng cg aeg ce ug cg ag ng ug 9 P 3 a P 3 an P 3 n P a e P a g P ang P n g P a eg P a g P ang P n g P a a eg P an a g 3 P n ang 3 a e n g 3 a g ang n g h eg P 3 h P a 3 P h d P h e P h g P h de P h dg P h eg P h g h deg h dg P h a 3 h g 3 h d h e h g P P 3 d P 3 e P 3 g P de P dg P eg P g P deg P dg P P eg P g 3 P d deg P e dg 3 P g eg 3 de g dg eg g P ug P 3 c P 3 u P 3 a P cd P 3 n P ce P ad P cg P ae P ug P ag P c P cdg P ng P u P ceg P adg P cd P cg P aeg P ce P ag P cg cdg P ng P ug P c ceg adg cdg P u P a cg 3 aeg ceg cd P n ug 3 ag 3 cg ce ad ng 3 ug cg ae ug c ag ng u 7 P a P an P n P a e P a g P ang P n g a eg a g ang n g a an n P h P a 3 P h d P h e P h g h de h dg h eg h g h P 3 P d P e P g P de P dg P eg P g deg dg P eg g 3 d e g ug P c P u P a P cd P n P ce P ad P cg P ae P ug P ag P c cdg P ng P u ceg adg cd cg aeg ce ag cg ng ug c u a n 5 P a P an P n a e a g ang n g P h a 3 h d h e h g P P d P e P g de dg eg g P c P u P a cd P n ce ad cg ae ug ag c ng u 3 a an n h P d e g c u a n

12 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS Adams E 3-page over C c P P P 3 P P 5 P P 7 P P 9 P P P P 3 P P 5 P P 7 P P 9 P P P P 3 h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a P 7 h 3 a P h 3 a P 9 h 3 a P h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a P 7 h 3 a P h 3 a P 9 h 3 a P h 3 a P h 3 a P h 3 a d dg dg P c τ e g g g 3 g g 5 cd cdg cdg cdg 3 cdg cdg 5 cdg cdg 7 cdg P d P d P 3 d P d P 5 d P d P 7 d P d P 9 d P d P d P d P 3 d P d P 5 d P d P 7 d P d P 9 d P d P d P d a P c P 3 c P c P 5 c P c P 7 c P c P 9 c P c P c P c P 3 c P c P 5 c P c P 7 c P c P 9 c P c P c P c h P h P h P 3 h P h P 5 h P h P 7 h P h P 9 h P h P h P h P 3 h P h P 5 h P h P 7 h P h P 9 h P h τ P e τ P e τ P 3 e τ P e τ P 5 e τ P e τ P 7 e τ P e τ P 9 e τ P e τ P e τ P e τ P 3 e τ P e τ P 5 e τ P e τ P 7 e τ P e τ P 9 e τ P e τ P e an cg cg cg 3 cg cg 5 cg cg 7 cg cg 9 d P d P d P 3 d P d P 5 d P d P 7 d P d P 9 d P d P d P d P 3 d P d P 5 d P d P 7 d P d P 9 d P d n P n P n P 3 n P n P 5 n P n P 7 n P n P 9 n P n P n P n P 3 n P n P 5 n P n P 7 n P n P 9 n P n P cd P cdg P cd P cdg P 3 cd P 3 cdg P cd P cdg P 5 cd P 5 cdg P cd P cdg P 7 cd P 7 cdg P cd P cdg P 9 cd P 9 cdg P cd P cdg P cd P cdg P cd P cdg P 3 cd P 3 cdg P cd P cdg P 5 cd P 5 cdg P cd P cdg P 7 cd P 7 cdg P cd P cdg P 9 cd P cd P cd τ de τ deg τ P de τ P deg τ P de τ P deg τ P 3 de τ P 3 deg τ P de τ P deg τ P 5 de τ P 5 deg τ P de τ P deg τ P 7 de τ P 7 deg τ P de τ P deg τ P 9 de τ P 9 deg τ P de τ P deg τ P de τ P deg τ P de τ P deg τ P 3 de τ P 3 deg τ P de τ P deg τ P 5 de τ P 5 deg τ P de τ P deg τ P 7 de τ P 7 deg τ P de τ P 9 de ( c+τ ag) ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 3 ( c+τ ag) P 3 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 5 ( c+τ ag) P 5 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 7 ( c+τ ag) P 7 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 9 ( c+τ ag) P 9 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 3 ( c+τ ag) P 3 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 5 ( c+τ ag) P 5 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 7 ( c+τ ag) P 7 ( c+τ ag)g P ( c+τ ag) P 9 ( c+τ ag) τ ag τ P ag τ P ag τ P 3 ag τ P ag τ P 5 ag τ P ag τ P 7 ag τ P ag τ P 9 ag τ P ag τ P ag τ P ag τ P 3 ag τ P ag τ P 5 ag τ P ag τ P 7 ag τ P ag τ P 9 ag P a P a P 3 a P a P 5 a P a P 7 a P a P 9 a P a P a P a P 3 a P a P 5 a P a P 7 a P a P 9 a P a P an P an P 3 an P an P 5 an P an P 7 an P an P 9 an P an P an P an P 3 an P an P 5 an P an P 7 an P an P 9 an P an h a 3 P h a 3 P h a 3 P 3 h a 3 P h a 3 P 5 h a 3 P h a 3 P 7 h a 3 P h a 3 P 9 h a 3 P h a 3 P h a 3 P h a 3 P 3 h a 3 P h a 3 P 5 h a 3 P h a 3 P 7 h a 3 P h a 3 P 9 h a 3 P cg P cg τ eg τ eg h d h dg P h d P h dg P h d P h dg P 3 h d P 3 h dg P h d P h dg P 5 h d P 5 h dg P h d P h dg P 7 h d P 7 h dg P h d P h dg P 9 h d P 9 h dg P h d P h dg P h d P h dg P h d P h dg P 3 h d P 3 h dg P h d P h dg P 5 h d P 5 h dg P h d P h dg P 7 h d P h d and P and P and P 3 and P and P 5 and P and P 7 and P and P 9 and P and P and P and P 3 and P and P 5 and P and P 7 and P and τ h e τ P h e τ P h e τ P 3 h e τ P h e τ P 5 h e τ P h e τ P 7 h e τ P h e τ P 9 h e τ P h e τ P h e τ P h e τ P 3 h e τ P h e τ P 5 h e τ P h e τ P 7 h e τ P h e P dg P dg P 3 dg P dg P 5 dg P dg P 7 dg P dg P 9 dg P dg P dg P dg P 3 dg P dg P 5 dg P dg P 7 dg P dg P 9 dg a g P a g P a g P 3 a g P a g P 5 a g P a g P 7 a g P a g P 9 a g P a g P a g P a g P 3 a g P a g P 5 a g P a g P 7 a g P a g P cg P 3 cg P cg P 5 cg P cg P 7 cg P cg P 9 cg P cg P cg P cg P 3 cg P cg P 5 cg P cg P 7 cg P cg P 9 cg P cg h g h g h g 3 h g τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg τ P 7 eg τ P eg τ P 9 eg τ P eg τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg τ P 7 eg τ P eg τ P 9 eg ( c+τ ag)d ( c+τ ag)dg P ( c+τ ag)d P ( c+τag)dg P ( c+τ ag)d P ( c+τ ag)dg P 3 ( c+τ ag)d P 3 ( c+τ ag)dg P ( c+τ ag)d P ( c+τ ag)dg P 5 ( c+τ ag)d P 5 ( c+τ ag)dg P ( c+τ ag)d P ( c+τ ag)dg P 7 ( c+τ ag)d P 7 ( c+τ ag)dg P ( c+τ ag)d P ( c+τ ag)dg P 9 ( c+τ ag)d P 9 ( c+τ ag)dg P ( c+τ ag)d P ( c+τ ag)dg P ( c+τ ag)d P ( c+τ ag)dg P ( c+τ ag)d P ( c+τ ag)dg P 3 ( c+τ ag)d P 3 ( c+τ ag)dg P ( c+τ ag)d P ( c+τ ag)dg P 5 ( c+τ ag)d P 5 ( c+τ ag)dg P ( c+τ ag)d P 7 ( c+τ ag)d P ( c+τ ag)d ang ang ang 3 ang ang 5 ang ang 7 ang h h g d g P d g P d g P 3 d g P d g P 5 d g P d g P 7 d g P d g P 9 d g P d g P d g P d g P 3 d g P d g P 5 d g P d g P 7 d g h P h P h P 3 h P h P 5 h P h P 7 h P h P 9 h P h P h P h P 3 h P h P 5 h P h P 7 h τ aeg τ aeg τ P aeg τ P aeg τ P aeg τ P aeg τ P 3 aeg τ P 3 aeg τ P aeg τ P aeg τ P 5 aeg τ P 5 aeg τ P aeg τ P aeg τ P 7 aeg τ P 7 aeg τ P aeg τ P aeg τ P 9 aeg τ P 9 aeg τ P aeg τ P aeg τ P aeg τ P aeg τ P aeg τ P aeg τ P 3 aeg τ P 3 aeg τ P aeg τ P aeg τ P 5 aeg τ P 5 aeg τ P aeg τ P 7 aeg n g P n g P n g P 3 n g P n g P 5 n g P n g P 7 n g P n g P 9 n g P n g P n g P n g P 3 n g P n g P 5 n g P n g P 7 n g h h d P h d P h d P 3 h d P h d P 5 h d P h d P 7 h d P h d P 9 h d P h d P h d P h d P 3 h d P h d P 5 h d P h d P 7 h d τ ng τ P ng τ P ng τ P 3 ng τ P ng τ P 5 ng τ P ng τ P 7 ng τ P ng τ P 9 ng τ P ng τ P ng τ P ng τ P 3 ng τ P ng τ P 5 ng τ P ng P ang P ang P 3 ang P ang P 5 ang P ang P 7 ang P ang P 9 ang P ang P ang P ang P 3 ang P ang P 5 ang P ang P 7 ang c P c P c P 3 c P c P 5 c P c P 7 c P c P 9 c P c P c P c P 3 c P c P 5 c P c τ h de τ h deg τ P h de τ P h deg τ P h de τ P h deg τ P 3 h de τ P 3 h deg τ P h de τ P h deg τ P 5 h de τ P 5 h deg τ P h de τ P h deg τ P 7 h de τ P 7 h deg τ P h de τ P h deg τ P 9 h de τ P 9 h deg τ P h de τ P h deg τ P h de τ P h deg τ P h de τ P h deg τ P 3 h de τ P 3 h deg τ P h de τ P h deg τ P 5 h de τ P h de P h P h P 3 h P h P 5 h P h P 7 h P h P 9 h P h P h P h P 3 h P h P 5 h P h P 7 h h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a P 7 h 3 a P h 3 a P 9 h 3 a P h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a andg andg andg 3 andg andg 5 andg andg 7 τ h eg τ h eg τ P h eg τ P h eg τ P h eg τ P h eg τ P 3 h eg τ P 3 h eg τ P h eg τ P h eg τ P 5 h eg τ P 5 h eg τ P h eg τ P h eg τ P 7 h eg τ P 7 h eg τ P h eg τ P h eg τ P 9 h eg τ P 9 h eg τ P h eg τ P h eg τ P h eg τ P h eg τ P h eg τ P h eg τ P 3 h eg τ P 3 h eg τ P h eg τ P 5 h eg τ P h eg P dg P dg P 3 dg P dg P 5 dg P dg P 7 dg P dg P 9 dg P dg P dg P dg P 3 dg P dg P 5 dg P dg P 7 dg h d P h d P h d P 3 h d P h d P 5 h d P h d P 7 h d P h d P 9 h d P h d P h d P h d P 3 h d P h d P 5 h d a g a g 3 a g a g 5 a g a g 7 a g P a g P a g 3 P a g P a g 5 P a g P a g 7 P a g P a g 3 P a g P a g 5 P a g P a g 7 P 3 a g P 3 a g 3 P 3 a g P 3 a g 5 P 3 a g P 3 a g 7 P a g P a g 3 P a g P a g 5 P a g P 5 a g P 5 a g 3 P 5 a g P 5 a g 5 P 5 a g P a g P a g 3 P a g P a g 5 P 7 a g P 7 a g 3 P 7 a g P 7 a g 5 P a g P a g 3 P a g P a g 5 P 9 a g P 9 a g 3 P 9 a g P a g P a g 3 P a g P a g P a g 3 P a g P a g 3 P 3 a g P 3 a g 3 P a g P 5 a g P cg P 3 cg P cg P 5 cg P cg P 7 cg P cg P 9 cg P cg P cg P cg P 3 cg P cg P 5 cg P cg P 7 cg h d τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg τ P 7 eg τ P eg τ P 9 eg τ P eg τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg τ h e τ P h e τ P h e τ P 3 h e τ P h e τ P 5 h e τ P h e τ P 7 h e τ P h e τ P 9 h e τ P h e τ P h e τ P h e τ P 3 h e τ P h e τ P 5 h e d g h g P andg P andg P andg 3 P andg P andg 5 P andg P andg 7 P andg P andg P andg 3 P andg P andg 5 P andg P 3 andg P 3 andg P 3 andg 3 P 3 andg P 3 andg 5 P 3 andg P andg P andg P andg 3 P andg P andg 5 P 5 andg P 5 andg P 5 andg 3 P 5 andg P 5 andg 5 P andg P andg P andg 3 P andg P andg 5 P 7 andg P 7 andg P 7 andg 3 P 7 andg P andg P andg P andg 3 P andg P 9 andg P 9 andg P 9 andg 3 P andg P andg P andg 3 P andg P andg P andg 3 P andg P andg P 3 andg P 3 andg P andg P 5 andg P andg n g n g 3 n g n g 5 cd cdg cdg cdg 3 cdg cdg 5 cdg P cd P cdg P cdg P cdg 3 P cdg P cdg 5 P cd P cdg P cdg P cdg 3 P cdg P cdg 5 P 3 cd P 3 cdg P 3 cdg P 3 cdg 3 P 3 cdg P cd P cdg P cdg P cdg 3 P cdg P 5 cd P 5 cdg P 5 cdg P 5 cdg 3 P 5 cdg P cd P cdg P cdg P cdg 3 P 7 cd P 7 cdg P 7 cdg P 7 cdg 3 P cd P cdg P cdg P 9 cd P 9 cdg P 9 cdg P cd P cdg P cdg P cd P cdg P cd P cdg P 3 cd P cd P 5 cd P cdg P cdg 3 P cdg P cdg 5 P cdg P cdg 7 P cdg h g h g h g 3 h g h g 5 h g τ deg τ deg 3 τ deg τ deg 5 τ deg τ deg 7 ( c+τ ag)g ( c+τ ag)g 3 ( c+τ ag)g ( c+τ ag)g 5 ( c+τ ag)g ( c+τ ag)g 7 h a P h a P h a P 3 h a P h a P 5 h a P h a P 7 h a P h a P 9 h a P h a P h a P h a P 3 h a P h a h d g h dg 3 dg dg 5 dg dg 7 dg τ ng 3 P ang P ang 3 P ang P ang 5 P ang P ang 7 P ang P ang 3 P ang P ang 5 P ang P ang 7 P 3 ang P 3 ang 3 P 3 ang P 3 ang 5 P 3 ang P ang P ang 3 P ang P ang 5 P ang P 5 ang P 5 ang 3 P 5 ang P 5 ang 5 P 5 ang P ang P ang 3 P ang P ang 5 P 7 ang P 7 ang 3 P 7 ang P 7 ang 5 P ang P ang 3 P ang P 9 ang P 9 ang 3 P 9 ang P ang P ang 3 P ang P ang P ang 3 P ang P ang 3 P 3 ang P ang P 5 ang cg cg cg 3 cg cg 5 cg P cg P cg P cg 3 P cg P cg 5 P cg P cg P cg P cg 3 P cg P cg 5 P 3 cg P 3 cg P 3 cg 3 P 3 cg P 3 cg 5 P cg P cg P cg 3 P cg P cg 5 P 5 cg P 5 cg P 5 cg 3 P 5 cg P cg P cg P cg 3 P cg P 7 cg P 7 cg P 7 cg 3 P cg P cg P cg 3 P 9 cg P 9 cg P 9 cg 3 P cg P cg P cg P cg P cg P 3 cg P cg P cg 3 P cg P cg 5 P cg P cg 7 P cg P d g P d g P 3 d g P d g P 5 d g P d g P 7 d g P d g P 9 d g P d g P d g P d g P 3 d g P d g P 5 d g τ eg 3 τ eg τ eg 5 τ eg τ eg 7 τ eg h d P h d P h d P 3 h d P h d P 5 h d P h d P 7 h d P h d P 9 h d P h d P h d P h d P 3 h d P h d P n g P n g 3 P n g P n g 5 P n g P n g 3 P n g P n g 5 P 3 n g P 3 n g 3 P 3 n g P 3 n g 5 P n g P n g 3 P n g P n g 5 P 5 n g P 5 n g 3 P 5 n g P 5 n g 5 P n g P n g 3 P n g P n g 5 P 7 n g P 7 n g 3 P 7 n g P 7 n g 5 P n g P n g 3 P n g P 9 n g P 9 n g 3 P 9 n g P n g P n g 3 P n g P n g P n g 3 P n g P n g 3 P 3 n g P n g P 5 n g P cdg P 3 cdg P cdg P 5 cdg P cdg P 7 cdg P cdg P 9 cdg P cdg P cdg P cdg P 3 cdg P cdg P 5 cdg P cdg h dg h dg 3 h dg h dg 5 h dg h dg 7 τ P deg τ P deg τ P 3 deg τ P deg τ P 5 deg τ P deg τ P 7 deg τ P deg τ P 9 deg τ P deg τ P deg τ P deg τ P 3 deg τ P deg τ c τ P c τ P c τ P 3 c τ P c τ P 5 c τ P c τ P 7 c τ P c τ P 9 c τ P c τ P c τ P c τ P 3 c τ h de τ P h de τ P h de τ P 3 h de τ P h de τ P 5 h de τ P h de τ P 7 h de τ P h de τ P 9 h de τ P h de τ P h de τ P h de τ P 3 h de P ( c+τ ag)g P ( c+τ ag)g P 3 ( c+τ ag)g P ( c+τ ag)g P 5 ( c+τ ag)g P ( c+τ ag)g P 7 ( c+τ ag)g P ( c+τ ag)g P 9 ( c+τ ag)g P ( c+τ ag)g P ( c+τ ag)g P ( c+τ ag)g P 3 ( c+τ ag)g P ( c+τ ag)g h c P h c P h c P 3 h c P h c P 5 h c P h c P 7 h c P h c P 9 h c P h c P h c P h c P 3 h c P h d g P h d g P 3 h d g P h d g P 5 h d g P h d g P 7 h d g P h d g P 9 h d g P h d g P h d g P h d g P 3 h d g P h d g P h P h P 3 h P h P 5 h P h P 7 h P h P 9 h P h P h P h P 3 h P h P dg 3 P dg P dg 5 P dg P dg 7 P dg P dg 3 P dg P dg 5 P dg P dg 7 P dg P 3 dg 3 P 3 dg P 3 dg 5 P 3 dg P 3 dg 7 P dg 3 P dg P dg 5 P dg P dg 7 P 5 dg 3 P 5 dg P 5 dg 5 P 5 dg P dg 3 P dg P dg 5 P dg P 7 dg 3 P 7 dg P 7 dg 5 P 7 dg P dg 3 P dg P dg 5 P 9 dg 3 P 9 dg P 9 dg 5 P dg 3 P dg P dg 3 P dg P dg 3 P dg P 3 dg 3 P dg 3 h dg h dg h dg 3 h dg h dg 5 h dg P h dg P h dg P h dg 3 P h dg P h dg 5 P h dg P h dg P h dg 3 P h dg P h dg 5 P 3 h dg P 3 h dg P 3 h dg 3 P 3 h dg P 3 h dg 5 P h dg P h dg P h dg 3 P h dg P 5 h dg P 5 h dg P 5 h dg 3 P 5 h dg P h dg P h dg P h dg 3 P 7 h dg P 7 h dg P 7 h dg 3 P h dg P h dg P h dg 3 P 9 h dg P 9 h dg P h dg P h dg P h dg P h dg P 3 h dg τ P ng 3 τ P ng 3 τ P 3 ng 3 τ P ng 3 τ P 5 ng 3 τ P ng 3 τ P 7 ng 3 τ P ng 3 τ P 9 ng 3 τ P ng 3 τ P ng 3 τ P ng 3 τ P 3 ng 3 τ P ng 3 h a 3 P h a 3 P h a 3 P 3 h a 3 P h a 3 P 5 h a 3 P h a 3 P 7 h a 3 P h a 3 P 9 h a 3 P h a 3 P h a 3 P h a 3 P 3 h a 3 P cg 3 P cg P cg 5 P cg P cg 7 P cg P 3 cg 3 P 3 cg P 3 cg 5 P 3 cg P 3 cg 7 P cg 3 P cg P cg 5 P cg P cg 7 P 5 cg 3 P 5 cg P 5 cg 5 P 5 cg P 5 cg 7 P cg 3 P cg P cg 5 P cg P 7 cg 3 P 7 cg P 7 cg 5 P 7 cg P cg 3 P cg P cg 5 P 9 cg 3 P 9 cg P 9 cg 5 P cg 3 P cg P cg 5 P cg 3 P cg P cg 3 P cg P 3 cg 3 P cg 3 P 5 cg 3 h dg h dg h dg 3 h dg h dg 5 h dg τ P eg 3 τ P eg τ P eg 5 τ P eg τ P eg 7 τ P eg τ P eg 3 τ P eg τ P eg 5 τ P eg τ P eg 7 τ P 3 eg 3 τ P 3 eg τ P 3 eg 5 τ P 3 eg τ P 3 eg 7 τ P eg 3 τ P eg τ P eg 5 τ P eg τ P eg 7 τ P 5 eg 3 τ P 5 eg τ P 5 eg 5 τ P 5 eg τ P eg 3 τ P eg τ P eg 5 τ P eg τ P 7 eg 3 τ P 7 eg τ P 7 eg 5 τ P eg 3 τ P eg τ P eg 5 τ P 9 eg 3 τ P 9 eg τ P 9 eg 5 τ P eg 3 τ P eg τ P eg 3 τ P eg τ P eg 3 τ P 3 eg 3 τ P eg 3 τ h eg τ h eg τ h eg 3 τ h eg τ h eg 5 τ h eg τ P h eg τ P h eg τ P h eg 3 τ P h eg τ P h eg 5 τ P h eg τ P h eg τ P h eg 3 τ P h eg τ P h eg 5 τ P 3 h eg τ P 3 h eg τ P 3 h eg 3 τ P 3 h eg τ P 3 h eg 5 τ P h eg τ P h eg τ P h eg 3 τ P h eg τ P 5 h eg τ P 5 h eg τ P 5 h eg 3 τ P 5 h eg τ P h eg τ P h eg τ P h eg 3 τ P 7 h eg τ P 7 h eg τ P 7 h eg 3 τ P h eg τ P h eg τ P h eg 3 τ P 9 h eg τ P 9 h eg τ P h eg τ P h eg τ P h eg τ P h eg τ P 3 h eg ( c+τ ag)dg ( c+τ ag)dg 3 ( c+τ ag)dg ( c+τ ag)dg 5 ( c+τ ag)dg ( c+τ ag)dg 7 P h dg P h dg 3 P h dg P h dg 5 P h dg P h dg 7 P h dg P h dg 3 P h dg P h dg 5 P h dg P 3 h dg P 3 h dg 3 P 3 h dg P 3 h dg 5 P 3 h dg P h dg P h dg 3 P h dg P h dg 5 P 5 h dg P 5 h dg 3 P 5 h dg P 5 h dg 5 P h dg P h dg 3 P h dg P h dg 5 P 7 h dg P 7 h dg 3 P 7 h dg P h dg P h dg 3 P h dg P 9 h dg P 9 h dg 3 P h dg P h dg 3 P h dg P h dg 3 P h dg P 3 h dg h g h g 3 h g h g 5 h g h g 7 h d h dg h dg h dg3 h dg h dg5 P h d P h dg P h dg P h dg3 P h dg P h d P h dg P h dg P h dg3 P h dg P 3 h d P 3 h dg P 3 h dg P 3 h dg3 P h d P h dg P h dg P h dg3 P 5 h d P 5 h dg P 5 h dg P 5 h dg3 P h d P h dg P h dg P 7 h d P 7 h dg P 7 h dg P h d P h dg P 9 h d P 9 h dg P h d P h dg P h d P h d d g 3 d g d g 5 d g d g 7 d g h g h g 3 h g h g 5 h g h g 7 τ aeg 3 τ aeg τ aeg 5 τ aeg τ aeg 7 τ aeg τ P aeg 3 τ P aeg τ P aeg 5 τ P aeg τ P aeg 7 τ P aeg 3 τ P aeg τ P aeg 5 τ P aeg τ P aeg 7 τ P 3 aeg 3 τ P 3 aeg τ P 3 aeg 5 τ P 3 aeg τ P aeg 3 τ P aeg τ P aeg 5 τ P aeg τ P 5 aeg 3 τ P 5 aeg τ P 5 aeg 5 τ P 5 aeg τ P aeg 3 τ P aeg τ P aeg 5 τ P 7 aeg 3 τ P 7 aeg τ P 7 aeg 5 τ P aeg 3 τ P aeg τ P 9 aeg 3 τ P 9 aeg τ P aeg 3 τ P aeg τ P aeg 3 τ P aeg 3 h d g h d g 3 h d g h d g 5 h d g h g h g h g3 h g h g5 P ( c+τ ag)dg P ( c+τ ag)dg 3 P ( c+τ ag)dg P ( c+τ ag)dg 5 P ( c+τ ag)dg P ( c+τ ag)dg P ( c+τ ag)dg 3 P ( c+τ ag)dg P ( c+τ ag)dg 5 P ( c+τ ag)dg P 3 ( c+τ ag)dg P 3 ( c+τ ag)dg 3 P 3 ( c+τ ag)dg P 3 ( c+τ ag)dg 5 P 3 ( c+τ ag)dg P ( c+τ ag)dg P ( c+τ ag)dg 3 P ( c+τ ag)dg P ( c+τ ag)dg 5 P 5 ( c+τ ag)dg P 5 ( c+τ ag)dg 3 P 5 ( c+τ ag)dg P 5 ( c+τ ag)dg 5 P ( c+τ ag)dg P ( c+τ ag)dg 3 P ( c+τ ag)dg P 7 ( c+τ ag)dg P 7 ( c+τ ag)dg 3 P 7 ( c+τ ag)dg P ( c+τ ag)dg P ( c+τ ag)dg 3 P ( c+τ ag)dg P 9 ( c+τ ag)dg P 9 ( c+τ ag)dg 3 P ( c+τ ag)dg P ( c+τ ag)dg 3 P ( c+τ ag)dg P ( c+τ ag)dg P 3 ( c+τ ag)dg τ ng h cd h cdg h cdg h cdg 3 h cdg P h cd P h cdg P h cdg P h cdg 3 P h cdg P h cd P h cdg P h cdg P h cdg 3 P 3 h cd P 3 h cdg P 3 h cdg P 3 h cdg 3 P h cd P h cdg P h cdg P h cdg 3 P 5 h cd P 5 h cdg P 5 h cdg P h cd P h cdg P h cdg P 7 h cd P 7 h cdg P h cd P h cdg P 9 h cd P 9 h cdg P h cd P h cd τ h deg τ h deg 3 τ h deg τ h deg 5 τ h deg τ P h deg τ P h deg 3 τ P h deg τ P h deg 5 τ P h deg τ P h deg τ P h deg 3 τ P h deg τ P h deg 5 τ P 3 h deg τ P 3 h deg 3 τ P 3 h deg τ P 3 h deg 5 τ P h deg τ P h deg 3 τ P h deg τ P h deg 5 τ P 5 h deg τ P 5 h deg 3 τ P 5 h deg τ P h deg τ P h deg 3 τ P h deg τ P 7 h deg τ P 7 h deg 3 τ P h deg τ P h deg 3 τ P 9 h deg τ P 9 h deg 3 τ P h deg τ P h deg P d g 3 P d g P d g 5 P d g P d g 7 P d g 3 P d g P d g 5 P d g P d g 7 P 3 d g 3 P 3 d g P 3 d g 5 P 3 d g P d g 3 P d g P d g 5 P d g P 5 d g 3 P 5 d g P 5 d g 5 P 5 d g P d g 3 P d g P d g 5 P 7 d g 3 P 7 d g P 7 d g 5 P d g 3 P d g P 9 d g 3 P 9 d g P d g 3 P d g P d g 3 P d g 3 h d g h d g h d g 3 h d g h d g 5 P h d g P h d g P h d g 3 P h d g P h d g 5 P h d g P h d g P h d g 3 P h d g P 3 h d g P 3 h d g P 3 h d g 3 P 3 h d g P h d g P h d g P h d g 3 P h d g P 5 h d g P 5 h d g P 5 h d g 3 P h d g P h d g P h d g 3 P 7 h d g P 7 h d g P h d g P h d g P 9 h d g P 9 h d g P h d g P h d g P cdg 3 P cdg P cdg 5 P cdg P cdg 7 P 3 cdg 3 P 3 cdg P 3 cdg 5 P 3 cdg P 3 cdg 7 P cdg 3 P cdg P cdg 5 P cdg P 5 cdg 3 P 5 cdg P 5 cdg 5 P 5 cdg P cdg 3 P cdg P cdg 5 P cdg P 7 cdg 3 P 7 cdg P 7 cdg 5 P cdg 3 P cdg P cdg 5 P 9 cdg 3 P 9 cdg P cdg 3 P cdg P cdg 3 P cdg P cdg 3 P 3 cdg 3 τ P deg 3 τ P deg τ P deg 5 τ P deg τ P deg 7 τ P deg 3 τ P deg τ P deg 5 τ P deg τ P deg 7 τ P 3 deg 3 τ P 3 deg τ P 3 deg 5 τ P 3 deg τ P deg 3 τ P deg τ P deg 5 τ P deg τ P 5 deg 3 τ P 5 deg τ P 5 deg 5 τ P deg 3 τ P deg τ P deg 5 τ P 7 deg 3 τ P 7 deg τ P 7 deg 5 τ P deg 3 τ P deg τ P 9 deg 3 τ P 9 deg τ P deg 3 τ P deg 3 τ P deg 3 τ h deg τ h deg τ h deg 3 τ h deg τ h deg 5 τ P h deg τ P h deg τ P h deg 3 τ P h deg τ P h deg 5 τ P h deg τ P h deg τ P h deg 3 τ P h deg τ P 3 h deg τ P 3 h deg τ P 3 h deg 3 τ P 3 h deg τ P h deg τ P h deg τ P h deg 3 τ P 5 h deg τ P 5 h deg τ P 5 h deg 3 τ P h deg τ P h deg τ P h deg 3 τ P 7 h deg τ P 7 h deg τ P h deg τ P h deg τ P 9 h deg τ P h deg τ P h deg P ( c+τ ag)g 3 P ( c+τ ag)g P ( c+τ ag)g 5 P ( c+τ ag)g P ( c+τ ag)g 7 P ( c+τ ag)g 3 P ( c+τ ag)g P ( c+τ ag)g 5 P ( c+τ ag)g P ( c+τ ag)g 7 P 3 ( c+τ ag)g 3 P 3 ( c+τ ag)g P 3 ( c+τ ag)g 5 P 3 ( c+τ ag)g P ( c+τ ag)g 3 P ( c+τ ag)g P ( c+τ ag)g 5 P ( c+τ ag)g P 5 ( c+τ ag)g 3 P 5 ( c+τ ag)g P 5 ( c+τ ag)g 5 P ( c+τ ag)g 3 P ( c+τ ag)g P ( c+τ ag)g 5 P 7 ( c+τ ag)g 3 P 7 ( c+τ ag)g P 7 ( c+τ ag)g 5 P ( c+τ ag)g 3 P ( c+τ ag)g P 9 ( c+τ ag)g 3 P 9 ( c+τ ag)g P ( c+τ ag)g 3 P ( c+τ ag)g 3 P ( c+τ ag)g 3 h cg h cg h cg 3 h cg h cg 5 P h cg P h cg P h cg 3 P h cg P h cg 5 P h cg P h cg P h cg 3 P h cg P 3 h cg P 3 h cg P 3 h cg 3 P 3 h cg P h cg P h cg P h cg 3 P 5 h cg P 5 h cg P 5 h cg 3 P h cg P h cg P h cg 3 P 7 h cg P 7 h cg P h cg P h cg P 9 h cg P h cg P h cg P h d g P h d g 3 P h d g P h d g 5 P h d g P h d g P h d g 3 P h d g P h d g 5 P h d g P 3 h d g P 3 h d g 3 P 3 h d g P 3 h d g 5 P h d g P h d g 3 P h d g P h d g 5 P 5 h d g P 5 h d g 3 P 5 h d g P h d g P h d g 3 P h d g P 7 h d g P 7 h d g 3 P 7 h d g P h d g P h d g 3 P 9 h d g P 9 h d g 3 P h d g P h d g P h d g τ h eg 3 τ h eg τ h eg 5 τ h eg τ h eg 7 τ P h eg 3 τ P h eg τ P h eg 5 τ P h eg τ P h eg 7 τ P h eg 3 τ P h eg τ P h eg 5 τ P h eg τ P 3 h eg 3 τ P 3 h eg τ P 3 h eg 5 τ P 3 h eg τ P h eg 3 τ P h eg τ P h eg 5 τ P 5 h eg 3 τ P 5 h eg τ P 5 h eg 5 τ P h eg 3 τ P h eg τ P h eg 5 τ P 7 h eg 3 τ P 7 h eg τ P h eg 3 τ P h eg τ P 9 h eg 3 τ P h eg 3 τ P h eg 3 h d h d g h d g h d g 3 h d g P h d P h d g P h d g P h d g 3 P h d g P h d P h d g P h d g P h d g 3 P 3 h d P 3 h d g P 3 h d g P 3 h d g 3 P h d P h d g P h d g P 5 h d P 5 h d g P 5 h d g P h d P h d g P h d g P 7 h d P 7 h d g P h d P h d g P 9 h d P h d P h d τ P ng τ P ng 5 τ P ng τ P ng 7 τ P ng τ P ng τ P ng 5 τ P ng τ P ng 7 τ P 3 ng τ P 3 ng 5 τ P 3 ng τ P 3 ng 7 τ P ng τ P ng 5 τ P ng τ P ng 7 τ P 5 ng τ P 5 ng 5 τ P 5 ng τ P ng τ P ng 5 τ P ng τ P 7 ng τ P 7 ng 5 τ P ng τ P ng 5 τ P 9 ng τ P 9 ng 5 τ P ng τ P ng c P P P 3 P P 5 P P 7 P P 9 P P h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a P 7 h 3 a P h 3 a P 9 h 3 a P h 3 a d dg dg P c τ e τ ng 5 τ ng τ ng 7 τ ng g g g 3 g cd cdg cdg cdg 3 P d P dg P d P dg P 3 d P 3 dg P d P dg P 5 d P 5 dg P d P dg P 7 d P 7 dg P d P 9 d P d a g P c P 3 c P c P 5 c P c P 7 c P c P 9 c P c h τ P e τ P e τ P 3 e τ P e τ P 5 e τ P e τ P 7 e τ P e τ P 9 e an cg cg cg 3 cg d P d P d P 3 d P d P 5 d P d P 7 d P d h g 5 n P cd P cdg P cd P cdg P 3 cd P 3 cdg P cd P cdg P 5 cd P 5 cdg P cd P cdg P 7 cd P cd P 9 cd τ de τ deg τ P de τ P deg τ P de τ P deg τ P 3 de τ P 3 deg τ P de τ P deg τ P 5 de τ P 5 deg τ P de τ P 7 de ( c+τ ag) ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 3 ( c+τ ag) P 3 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 5 ( c+τ ag) P 5 ( c+τ ag)g P ( c+τ ag) P 7 ( c+τ ag) τ ag τ P ag τ P ag τ P 3 ag τ P ag τ P 5 ag τ P ag τ P 7 ag P a P a P 3 a P a P 5 a P a P 7 a P a P h P h P 3 h P h P 5 h P h P 7 h P h P an P an P 3 an P an P 5 an P an P 7 an P an h a 3 P h a 3 P h a 3 P 3 h a 3 P h a 3 P 5 h a 3 P h a 3 P 7 h a 3 P cg P cg τ eg τ eg P n P n P 3 n P n P 5 n P n P 7 n P n h d h dg P h d P h dg P h d P h dg P 3 h d P 3 h dg P h d P h dg P 5 h d P h d and P and P and P 3 and P and P 5 and P and τ h e τ P h e τ P h e τ P 3 h e τ P h e τ P 5 h e τ P h e a g P a g P a g P 3 a g P a g P 5 a g P a g g 7 g g 9 P cg P 3 cg P cg P 5 cg P cg P 7 cg P cg h g h g h g 3 τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg τ P 7 eg ( c+τ ag)d ( c+τ ag)dg P ( c+τ ag)d P ( c+τ ag)dg P ( c+τ ag)d P ( c+τ ag)dg P 3 ( c+τ ag)d P 3 ( c+τ ag)dg P ( c+τ ag)d P 5 ( c+τ ag)d P ( c+τ ag)d ang ang ang 3 h h g d g P d g P d g P 3 d g P d g P 5 d g h P h P h P 3 h P h P 5 h τ aeg τ aeg τ P aeg τ P aeg τ P aeg τ P aeg τ P 3 aeg τ P 3 aeg τ P aeg τ P 5 aeg h g n g h h d P h d P h d P 3 h d P h d P 5 h d n g τ ng P ang P ang P 3 ang P ang P 5 ang c P c P c P 3 c P c τ h de τ h deg τ P h de τ P h deg τ P h de τ P h deg τ P 3 h de τ P h de P h P h P 3 h P h P 5 h P n g P n g P 3 n g P n g P 5 n g h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a andg andg τ h eg τ h eg τ P h eg τ P h eg τ P h eg τ P 3 h eg τ P h eg P dg P dg P 3 dg P dg P 5 dg P n g P n g P 3 n g P n g P 5 n g h d P h d P h d P 3 h d τ P ng τ P ng τ P 3 ng τ P ng a g a g 3 P a g P a g 3 P a g P 3 a g P cg P 3 cg P cg P 5 cg h d τ P eg τ P eg τ P 3 eg τ P eg τ h e τ P h e τ P h e τ P 3 h e d g h g h g 7 h g P andg P andg P andg P 3 andg P andg n g n g 3 cd cdg P cd P cd P 3 cd P cdg P cdg 3 h g h g τ deg τ deg 3 ( c+τ ag)g ( c+τ ag)g 3 h a P h a P h a h d g h dg 3 dg n g 7 n g τ ng 3 P ang P ang P 3 ang cg P cg P cg P cg 3 P d g P d g P 3 d g τ eg 3 h d P h d P h d P n g P n g P 3 n g P cdg P 3 cdg P cdg h dg τ P deg τ P deg τ c τ P c τ h ag τ P h ag τ h de τ P h de P ( c+τ ag)g P ( c+τ ag)g h c P h c P h d g P h d g P h P h P dg 3 P dg 3 P n g 7 P n g 7 h dg P h dg τ P ng 3 τ P ng 3 P (τ 5 ng 3 + h 3 ) P (τ 5 ng 3 + h 3 ) h a 3 P h a 3 P cg 3 P 3 cg 3 h dg τ P eg 3 τ P eg 3 τ h eg τ P h eg ( c+τ ag)dg P h dg h g h d d g 3 h g τ aeg 3 h d g h g P ( c+τ ag)dg

13 THE HOMOTOPY OF C-MOTIVIC MODULAR FORMS Adams E -page over C h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a P 7 h 3 a P h 3 a P 9 h 3 a P h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a P 7 h 3 a P h 3 a P 9 h 3 a P h 3 a P h 3 a P h 3 a h a P h a P h a P 3 h a P h a P 5 h a P h a P 7 h a P h a P 9 h a P h a P h a P h a P 3 h a P h a P 5 h a P h a P 7 h a P h a P 9 h a P h a h a 3 P h a 3 P h a 3 P 3 h a 3 P h a 3 P 5 h a 3 P h a 3 P 7 h a 3 P h a 3 P 9 h a 3 P h a 3 P h a 3 P h a 3 P 3 h a 3 P h a 3 P 5 h a 3 P h a 3 P 7 h a 3 P h a 3 P 9 h a 3 h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a P 7 h 3 a P h 3 a P 9 h 3 a P h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a h a P h a P h a P 3 h a P h a P 5 h a P h a P 7 h a P h a P 9 h a P h a P h a P h a P 3 h a P h a h a 3 P h a 3 P h a 3 P 3 h a 3 P h a 3 P 5 h a 3 P h a 3 P 7 h a 3 P h a 3 P 9 h a 3 P h a 3 P h a 3 P h a 3 P 3 h a 3 h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a P 5 h 3 a P h 3 a P 7 h 3 a P h 3 a P 9 h 3 a P h 3 a h a P h a P h a P 3 h a P h a P 5 h a P h a P 7 h a P h a h a 3 P h a 3 P h a 3 P 3 h a 3 P h a 3 P 5 h a 3 P h a 3 P 7 h a 3 h 3 a P h 3 a P h 3 a P 3 h 3 a P h 3 a h a P h a P h a h a 3 P h a 3 c P P P 3 P P 5 P P 7 P P 9 P P P P 3 P P 5 P P 7 P P 9 P P P P 3 d dg dg g g g 3 g g 5 cd cdg cdg cdg 3 cdg cdg 5 cdg cdg 7 cdg P d h P h P h P 3 h P h P 5 h P h P 7 h P h P 9 h P h P h P h P 3 h P h P 5 h P h P 7 h P h P 9 h P h an cg cg cg 3 cg cg 5 cg cg 7 cg cg 9 d P d P 3 d P d P 5 d P d P 7 d P d P 9 d P d P d P d P 3 d P d P 5 d P d P 7 d P d P 9 d P d P d P d τ de τ P de τ P de τ P 3 de τ P de τ P 5 de τ P de τ P 7 de τ P de τ P 9 de τ P de τ P de τ P de τ P 3 de τ P de τ P 5 de τ P de τ P 7 de τ P de τ P 9 de τ ag τ P ag τ P ag τ P 3 ag τ P ag τ P 5 ag τ P ag τ P 7 ag τ P ag τ P 9 ag τ P ag τ P ag τ P ag τ P 3 ag τ P ag τ P 5 ag τ P ag τ P 7 ag τ P ag τ P 9 ag ( c+τ ag) ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P an P d τ eg h d h dg and P dg P an P 3 an P an P 5 an P an P 7 an P an P 9 an P an P an P an P 3 an P an P 5 an P an P 7 an P an P 9 an P an τ a g τ P a g τ P a g τ P 3 a g τ P a g τ P 5 a g τ P a g τ P 7 a g τ P a g τ P 9 a g τ P a g τ P a g τ P a g τ P 3 a g τ P a g τ P 5 a g τ P a g τ P 7 a g τ P a g P d P 3 d P d P 5 d P d P 7 d P d P 9 d P d P d P d P 3 d P d P 5 d P d P 7 d P d P 9 d P d h g h g h g 3 h g τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg τ P 7 eg τ P eg τ P 9 eg τ P eg τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg τ P 7 eg τ P eg τ P 9 eg ( c+τ ag)d ( c+τ ag)dg ang ang ang 3 ang ang 5 ang ang 7 ang P h d P h dg h h g d g P ( c+τ ag) P ( c+τ ag)g P 3 ( c+τ ag) P 3 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 5 ( c+τ ag) P 5 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 7 ( c+τ ag) P 7 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 9 ( c+τ ag) P 9 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 3 ( c+τ ag) P 3 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 5 ( c+τ ag) P 5 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 7 ( c+τ ag) P 7 ( c+τ ag)g P ( c+τ ag) P 9 ( c+τ ag) τ 3 aeg τ 3 aeg τ 3 P aeg τ 3 P aeg τ 3 P aeg τ 3 P aeg τ 3 P 3 aeg τ 3 P 3 aeg τ 3 P aeg τ 3 P aeg τ 3 P 5 aeg τ 3 P 5 aeg τ 3 P aeg τ 3 P aeg τ 3 P 7 aeg τ 3 P 7 aeg τ 3 P aeg τ 3 P aeg τ 3 P 9 aeg τ 3 P 9 aeg τ 3 P aeg τ 3 P aeg τ 3 P aeg τ 3 P aeg τ 3 P aeg τ 3 P aeg τ 3 P 3 aeg τ 3 P 3 aeg τ 3 P aeg τ 3 P aeg τ 3 P 5 aeg τ 3 P 5 aeg τ 3 P aeg τ 3 P 7 aeg P and P and P 3 and P and P 5 and P and P 7 and P and P 9 and P and P and P and P 3 and P and P 5 and P and P 7 and P and τ n g τ P n g τ P n g τ P 3 n g τ P n g τ P 5 n g τ P n g τ P 7 n g τ P n g τ P 9 n g τ P n g τ P n g τ P n g τ P 3 n g τ P n g τ P 5 n g τ P n g τ P 7 n g ( h ) P dg P 3 dg P dg P 5 dg P dg P 7 dg P dg P 9 dg P dg P dg P dg P 3 dg P dg P 5 dg P dg P 7 dg P dg P 9 dg h τ deg τ P deg τ P deg τ P 3 deg τ P deg τ P 5 deg τ P deg τ P 7 deg τ P deg τ P 9 deg τ P deg τ P deg τ P deg τ P 3 deg τ P deg τ P 5 deg τ P deg τ P 7 deg h d P ( c+τ ag)d P ( c+τ ag)d P 3 ( c+τ ag)d P ( c+τ ag)d P 5 ( c+τ ag)d P ( c+τ ag)d P 7 ( c+τ ag)d P ( c+τ ag)d P 9 ( c+τ ag)d P ( c+τ ag)d P ( c+τ ag)d P ( c+τ ag)d P 3 ( c+τ ag)d P ( c+τ ag)d P 5 ( c+τ ag)d P ( c+τ ag)d P 7 ( c+τ ag)d P ( c+τ ag)d τ 3 ng τ 3 P ng τ 3 P ng τ 3 P 3 ng τ 3 P ng τ 3 P 5 ng τ 3 P ng τ 3 P 7 ng τ 3 P ng τ 3 P 9 ng τ 3 P ng τ 3 P ng τ 3 P ng τ 3 P 3 ng τ 3 P ng τ 3 P 5 ng τ 3 P ng P ang P h d P h dg P 3 h d P 3 h dg P h d P h dg P 5 h d P 5 h dg P h d P h dg P 7 h d P 7 h dg P h d P h dg P 9 h d P 9 h dg P h d P h dg P h d P h dg P h d P h dg P 3 h d P 3 h dg P h d P h dg P 5 h d P 5 h dg P h d P h dg P 7 h d P h d τ c P ( P h +τ 3 h de) P ( P h +τ 3 h de) P 3 ( P h +τ 3 h de) P ( P h +τ 3 h de) P 5 ( P h +τ 3 h de) P ( P h +τ 3 h de) P 7 ( P h +τ 3 h de) P ( P h +τ 3 h de) P 9 ( P h +τ 3 h de) P ( P h +τ 3 h de) P ( P h +τ 3 h de) P ( P h +τ 3 h de) P 3 ( P h +τ 3 h de) P ( P h +τ 3 h de) P 5 ( P h +τ 3 h de) P ( P h +τ 3 h de) P 7 ( P h +τ 3 h de) τ h de τ h deg τ P h de τ P h deg τ P h de τ P h deg τ P 3 h de τ P 3 h deg τ P h de τ P h deg τ P 5 h de τ P 5 h deg τ P h de τ P h deg τ P 7 h de τ P 7 h deg τ P h de τ P h deg τ P 9 h de τ P 9 h deg τ P h de τ P h deg τ P h de τ P h deg τ P h de τ P h deg τ P 3 h de τ P 3 h deg τ P h de τ P h deg τ P 5 h de τ P h de P d g τ eg h c P ( h ) P ( h ) P 3 ( h ) P ( h ) P 5 ( h ) P ( h ) P 7 ( h ) P ( h ) P 9 ( h ) P ( h ) P ( h ) P ( h ) P 3 ( h ) P ( h ) P 5 ( h ) P ( h ) P 7 ( h ) andg andg andg 3 andg andg 5 andg andg 7 P h d P h d P 3 h d P h d P 5 h d P h d P 7 h d P h d P 9 h d P h d P h d P h d P 3 h d P h d P 5 h d P h d P 7 h d τ h eg τ P h eg τ P h eg τ P 3 h eg τ P h eg τ P 5 h eg τ P h eg τ P 7 h eg τ P h eg τ P 9 h eg τ P h eg τ P h eg τ P h eg τ P 3 h eg τ P h eg τ P 5 h eg τ P h eg P dg P ang P 3 ang P ang P 5 ang P ang P 7 ang P ang P 9 ang P ang P ang P ang P 3 ang P ang P 5 ang P ang P 7 ang τ a g τ P a g τ P a g τ P 3 a g τ P a g τ P 5 a g τ P a g τ P 7 a g τ P a g τ P 9 a g τ P a g τ P a g τ P a g τ P 3 a g τ P a g τ P 5 a g τ P c τ P c τ P 3 c τ P c τ P 5 c τ P c τ P 7 c τ P c τ P 9 c τ P c τ P c τ P c τ P 3 c τ P c τ P 5 c τ P c P d g P 3 d g P d g P 5 d g P d g P 7 d g P d g P 9 d g P d g P d g P d g P 3 d g P d g P 5 d g P d g P 7 d g h d τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg τ P 7 eg τ P eg τ P 9 eg τ P eg τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg d g P andg P andg P andg 3 P andg τ n g τ n g 3 τ n g τ n g 5 ( h ) g ( h ) g ( h ) g 3 ( h ) g ( h ) g 5 ( h ) g ( h ) g 7 P dg h g h g h g 3 h g h g 5 h g τ deg ( h c+τ eg )d ( h c+τ eg )dg ( h c+τ eg )dg ( h c+τ eg )dg 3 ( h c+τ eg )dg ( h c+τ eg )dg 5 ( c+τ ag)g ( c+τ ag)g 3 ( c+τ ag)g ( c+τ ag)g 5 ( c+τ ag)g ( c+τ ag)g 7 h d g dg 3 dg dg 5 dg dg 7 dg P ( c+τag)dg τ 3 ng 3 ( h ) 3 P ang P ang 3 P ang P ang 5 P ang P ang 7 P d g τ eg 3 ( h c+τ eg )g ( h c+τ eg )g ( h c+τ eg )g 3 ( h c+τ eg )g ( h c+τ eg )g 5 ( h c+τ eg )g P andg P andg P andg 3 P andg P 3 andg P 3 andg P 3 andg 3 P 3 andg P andg P andg P andg 3 P andg P 5 andg P 5 andg P 5 andg 3 P 5 andg P andg P andg P andg 3 P andg P 7 andg P 7 andg P 7 andg 3 P 7 andg P andg P andg P andg 3 P andg P 9 andg P 9 andg P 9 andg 3 P andg P andg P andg 3 P andg P andg P andg 3 P andg P andg P 3 andg P 3 andg P andg P 5 andg P andg τ P n g τ P n g 3 τ P n g τ P n g 5 τ P n g τ P n g 3 τ P n g τ P n g 5 τ P 3 n g τ P 3 n g 3 τ P 3 n g τ P 3 n g 5 τ P n g τ P n g 3 τ P n g τ P n g 5 τ P 5 n g τ P 5 n g 3 τ P 5 n g τ P 5 n g 5 τ P n g τ P n g 3 τ P n g τ P n g 5 τ P 7 n g τ P 7 n g 3 τ P 7 n g τ P 7 n g 5 τ P n g τ P n g 3 τ P n g τ P 9 n g τ P 9 n g 3 τ P 9 n g τ P n g τ P n g 3 τ P n g τ P n g τ P n g 3 τ P n g τ P n g 3 τ P 3 n g τ P n g τ P 5 n g P 3 dg P dg P 5 dg P dg P 7 dg P dg P 9 dg P dg P dg P dg P 3 dg P dg P 5 dg P dg P 7 dg h dg h dg 3 h dg h dg 5 h dg h dg 7 τ P deg τ P deg τ P 3 deg τ P deg τ P 5 deg τ P deg τ P 7 deg τ P deg τ P 9 deg τ P deg τ P deg τ P deg τ P 3 deg τ P deg τ c τ P c τ P c τ P 3 c τ P c τ P 5 c τ P c τ P 7 c τ P c τ P 9 c τ P c τ P c τ P c τ P 3 c P ( c+τ ag)g P h d g P h d g P 3 h d g P h d g P 5 h d g P h d g P 7 h d g P h d g P 9 h d g P h d g P h d g P h d g P 3 h d g P h d g τ h eg τ P h eg τ P h eg τ P 3 h eg τ P h eg τ P 5 h eg τ P h eg τ P 7 h eg τ P h eg τ P 9 h eg τ P h eg τ P h eg τ P h eg τ P 3 h eg P dg 3 P dg P dg 5 P dg P dg 7 P dg P ( c+τ ag)dg P 3 ( c+τ ag)dg P ( c+τ ag)dg P 5 ( c+τ ag)dg P ( c+τ ag)dg P 7 ( c+τ ag)dg P ( c+τ ag)dg P 9 ( c+τ ag)dg P ( c+τ ag)dg P ( c+τ ag)dg P ( c+τ ag)dg P 3 ( c+τ ag)dg P ( c+τ ag)dg P 5 ( c+τ ag)dg τ 3 P ng 3 τ 3 P ng 3 τ 3 P 3 ng 3 τ 3 P ng 3 τ 3 P 5 ng 3 τ 3 P ng 3 τ 3 P 7 ng 3 τ 3 P ng 3 τ 3 P 9 ng 3 τ 3 P ng 3 τ 3 P ng 3 τ 3 P ng 3 τ 3 P 3 ng 3 τ 3 P ng 3 P ( h ) 3 P ( h ) 3 P 3 ( h ) 3 P ( h ) 3 P 5 ( h ) 3 P ( h ) 3 P 7 ( h ) 3 P ( h ) 3 P 9 ( h ) 3 P ( h ) 3 P ( h ) 3 P ( h ) 3 P 3 ( h ) 3 P ( h ) 3 P ang P ang 3 P ang P ang 5 P ang P ang 7 P 3 ang P 3 ang 3 P 3 ang P 3 ang 5 P 3 ang P ang P ang 3 P ang P ang 5 P ang P 5 ang P 5 ang 3 P 5 ang P 5 ang 5 P 5 ang P ang P ang 3 P ang P ang 5 P 7 ang P 7 ang 3 P 7 ang P 7 ang 5 P ang P ang 3 P ang P 9 ang P 9 ang 3 P 9 ang P ang P ang 3 P ang P ang P ang 3 P ang P ang 3 P 3 ang P ang P 5 ang τ a g 3 τ a g τ a g 5 τ a g τ a g 7 τ a g τ P a g 3 τ P a g τ P a g 5 τ P a g τ P a g 7 τ P a g 3 τ P a g τ P a g 5 τ P a g τ P a g 7 τ P 3 a g 3 τ P 3 a g τ P 3 a g 5 τ P 3 a g τ P 3 a g 7 τ P a g 3 τ P a g τ P a g 5 τ P a g τ P 5 a g 3 τ P 5 a g τ P 5 a g 5 τ P 5 a g τ P a g 3 τ P a g τ P a g 5 τ P 7 a g 3 τ P 7 a g τ P 7 a g 5 τ P a g 3 τ P a g τ P a g 5 τ P 9 a g 3 τ P 9 a g τ P a g 3 τ P a g τ P a g 3 τ P a g 3 τ P 3 a g 3 P d g P 3 d g P d g P 5 d g P d g P 7 d g P d g P 9 d g P d g P d g P d g P 3 d g P d g P 5 d g h dg h dg h dg 3 h dg h dg 5 h dg τ P eg 3 τ P eg 3 τ P 3 eg 3 τ P eg 3 τ P 5 eg 3 τ P eg 3 τ P 7 eg 3 τ P eg 3 τ P 9 eg 3 τ P eg 3 τ P eg 3 τ P eg 3 τ P 3 eg 3 τ P eg 3 ( c+τ ag)dg ( c+τ ag)dg 3 ( c+τ ag)dg ( c+τ ag)dg 5 ( c+τ ag)dg ( c+τ ag)dg 7 P h dg P h dg 3 P h dg P h dg 5 P h dg P h dg 7 h g h g 3 h g h g 5 h g h g 7 d g 3 d g d g 5 d g d g 7 d g P ( c+τ ag)g P 3 ( c+τ ag)g P ( c+τ ag)g P 5 ( c+τ ag)g P ( c+τ ag)g P 7 ( c+τ ag)g P ( c+τ ag)g P 9 ( c+τ ag)g P ( c+τ ag)g P ( c+τ ag)g P ( c+τ ag)g P 3 ( c+τ ag)g P ( c+τ ag)g τ 3 aeg 3 τ 3 P aeg 3 τ 3 P aeg 3 τ 3 P 3 aeg 3 τ 3 P aeg 3 τ 3 P 5 aeg 3 τ 3 P aeg 3 τ 3 P 7 aeg 3 τ 3 P aeg 3 τ 3 P 9 aeg 3 τ 3 P aeg 3 τ 3 P aeg 3 τ 3 P aeg 3 P dg 3 P dg P dg 5 P dg P dg 7 P dg τ deg 3 τ deg τ deg 5 τ deg τ deg 7 P h d g P h d g 3 P h d g P h d g 5 P h d g P ( c+τ ag)dg τ 3 ng ( h ) 3 g ( h ) 3 g ( h ) 3 g 3 ( h ) 3 g ( h ) 3 g 5 P h dg P h dg 3 P h dg P h dg 5 P h dg P 3 h dg P 3 h dg 3 P 3 h dg P 3 h dg 5 P 3 h dg P h dg P h dg 3 P h dg P h dg 5 P 5 h dg P 5 h dg 3 P 5 h dg P 5 h dg 5 P h dg P h dg 3 P h dg P h dg 5 P 7 h dg P 7 h dg 3 P 7 h dg P h dg P h dg 3 P h dg P 9 h dg P 9 h dg 3 P h dg P h dg 3 P h dg P h dg 3 P h dg P 3 h dg h h g τ h deg τ h deg 3 τ h deg τ h deg 5 τ h deg τ P h deg τ P h deg 3 τ P h deg τ P h deg 5 τ P h deg τ P h deg τ P h deg 3 τ P h deg τ P h deg 5 τ P 3 h deg τ P 3 h deg 3 τ P 3 h deg τ P 3 h deg 5 τ P h deg τ P h deg 3 τ P h deg τ P h deg 5 τ P 5 h deg τ P 5 h deg 3 τ P 5 h deg τ P h deg τ P h deg 3 τ P h deg τ P 7 h deg τ P 7 h deg 3 τ P h deg τ P h deg 3 τ P 9 h deg τ P 9 h deg 3 τ P h deg τ P h deg P d g 3 P d g P d g 5 P d g P d g 7 h τ eg τ eg 5 τ eg τ eg 7 τ eg P 3 dg 3 P 3 dg P 3 dg 5 P 3 dg P 3 dg 7 P dg 3 P dg P dg 5 P dg P dg 7 P 5 dg 3 P 5 dg P 5 dg 5 P 5 dg P dg 3 P dg P dg 5 P dg P 7 dg 3 P 7 dg P 7 dg 5 P 7 dg P dg 3 P dg P dg 5 P 9 dg 3 P 9 dg P 9 dg 5 P dg 3 P dg P dg 3 P dg P dg 3 P dg P 3 dg 3 P dg 3 h τ P deg 3 τ P deg τ P deg 5 τ P deg τ P deg 7 τ P deg 3 τ P deg τ P deg 5 τ P deg τ P deg 7 τ P 3 deg 3 τ P 3 deg τ P 3 deg 5 τ P 3 deg τ P deg 3 τ P deg τ P deg 5 τ P deg τ P 5 deg 3 τ P 5 deg τ P 5 deg 5 τ P deg 3 τ P deg τ P deg 5 τ P 7 deg 3 τ P 7 deg τ P 7 deg 5 τ P deg 3 τ P deg τ P 9 deg 3 τ P 9 deg τ P deg 3 τ P deg 3 τ P deg 3 P ( c+τ ag)g 3 P ( c+τ ag)g P ( c+τ ag)g 5 P ( c+τ ag)g P ( c+τ ag)g 7 P h d g P h d g 3 P h d g P h d g 5 P h d g P 3 h d g P 3 h d g 3 P 3 h d g P 3 h d g 5 P 3 h d g P h d g P h d g 3 P h d g P h d g 5 P 5 h d g P 5 h d g 3 P 5 h d g P 5 h d g 5 P h d g P h d g 3 P h d g P 7 h d g P 7 h d g 3 P 7 h d g P h d g P h d g 3 P h d g P 9 h d g P 9 h d g 3 P h d g P h d g 3 P h d g P h d g P 3 h d g τ h eg 3 τ h eg τ h eg 5 τ h eg τ h eg 7 τ P h eg 3 τ P h eg τ P h eg 5 τ P h eg τ P h eg 7 τ P h eg 3 τ P h eg τ P h eg 5 τ P h eg τ P 3 h eg 3 τ P 3 h eg τ P 3 h eg 5 τ P 3 h eg τ P h eg 3 τ P h eg τ P h eg 5 τ P 5 h eg 3 τ P 5 h eg τ P 5 h eg 5 τ P h eg 3 τ P h eg τ P h eg 5 τ P 7 h eg 3 τ P 7 h eg τ P h eg 3 τ P h eg τ P 9 h eg 3 τ P h eg 3 τ P h eg 3 P ( c+τ ag)dg P 3 ( c+τ ag)dg P ( c+τ ag)dg P 5 ( c+τ ag)dg P ( c+τ ag)dg P 7 ( c+τ ag)dg P ( c+τ ag)dg P 9 ( c+τ ag)dg P ( c+τ ag)dg P ( c+τ ag)dg P ( c+τ ag)dg P 3 ( c+τ ag)dg τ 3 P ng τ 3 P ng τ 3 P 3 ng τ 3 P ng τ 3 P 5 ng τ 3 P ng τ 3 P 7 ng τ 3 P ng τ 3 P 9 ng τ 3 P ng τ 3 P ng c P P P 3 P P 5 P P 7 P P 9 P P P d g 3 P d g P d g 5 P d g P d g 7 P 3 d g 3 P 3 d g P 3 d g 5 P 3 d g P d g 3 P d g P d g 5 P d g P 5 d g 3 P 5 d g P 5 d g 5 P 5 d g P d g 3 P d g P d g 5 P 7 d g 3 P 7 d g P 7 d g 5 P d g 3 P d g P 9 d g 3 P 9 d g P d g 3 P d g P d g 3 P d g 3 τ P eg τ P eg 5 τ P eg τ P eg 7 τ P eg τ P eg τ P eg 5 τ P eg τ P eg 7 τ P 3 eg τ P 3 eg 5 τ P 3 eg τ P 3 eg 7 τ P eg τ P eg 5 τ P eg τ P eg 7 τ P 5 eg τ P 5 eg 5 τ P 5 eg τ P eg τ P eg 5 τ P eg τ P 7 eg τ P 7 eg 5 τ P eg τ P eg 5 τ P 9 eg τ P 9 eg 5 τ P eg τ P eg P ( c+τ ag)g 3 P ( c+τ ag)g P ( c+τ ag)g 5 P ( c+τ ag)g P ( c+τ ag)g 7 P 3 ( c+τ ag)g 3 P 3 ( c+τ ag)g P 3 ( c+τ ag)g 5 P 3 ( c+τ ag)g P ( c+τ ag)g 3 P ( c+τ ag)g P ( c+τ ag)g 5 P ( c+τ ag)g P 5 ( c+τ ag)g 3 P 5 ( c+τ ag)g P 5 ( c+τ ag)g 5 P ( c+τ ag)g 3 P ( c+τ ag)g P ( c+τ ag)g 5 P 7 ( c+τ ag)g 3 P 7 ( c+τ ag)g P 7 ( c+τ ag)g 5 P ( c+τ ag)g 3 P ( c+τ ag)g P 9 ( c+τ ag)g 3 P 9 ( c+τ ag)g P ( c+τ ag)g 3 P ( c+τ ag)g 3 P ( c+τ ag)g 3 τ 3 aeg τ 3 aeg 5 τ 3 aeg τ 3 aeg 7 τ 3 aeg τ 3 P aeg τ 3 P aeg 5 τ 3 P aeg τ 3 P aeg 7 τ 3 P aeg τ 3 P aeg 5 τ 3 P aeg τ 3 P aeg 7 τ 3 P 3 aeg τ 3 P 3 aeg 5 τ 3 P 3 aeg τ 3 P aeg τ 3 P aeg 5 τ 3 P aeg τ 3 P 5 aeg τ 3 P 5 aeg 5 τ 3 P 5 aeg τ 3 P aeg τ 3 P aeg 5 τ 3 P 7 aeg τ 3 P 7 aeg 5 τ 3 P aeg τ 3 P 9 aeg τ 3 P aeg d dg dg P ( c+τ ag)dg 3 P ( c+τ ag)dg P ( c+τ ag)dg 5 P ( c+τ ag)dg τ 3 ng 5 τ 3 ng τ 3 ng 7 τ 3 ng h g cd cdg cdg cdg 3 P d P dg h g h g h g 3 h g g h P ( c+τ ag)dg 3 P ( c+τ ag)dg P ( c+τ ag)dg 5 P ( c+τ ag)dg P 3 ( c+τ ag)dg 3 P 3 ( c+τ ag)dg P 3 ( c+τ ag)dg 5 P 3 ( c+τ ag)dg P ( c+τ ag)dg 3 P ( c+τ ag)dg P ( c+τ ag)dg 5 P 5 ( c+τ ag)dg 3 P 5 ( c+τ ag)dg P 5 ( c+τ ag)dg 5 P ( c+τ ag)dg 3 P ( c+τ ag)dg P 7 ( c+τ ag)dg 3 P 7 ( c+τ ag)dg P ( c+τ ag)dg 3 P ( c+τ ag)dg P 9 ( c+τ ag)dg 3 P ( c+τ ag)dg 3 an h 3 τ 3 P ng 5 τ 3 P ng τ 3 P ng 7 τ 3 P ng τ 3 P ng 5 τ 3 P ng τ 3 P ng 7 τ 3 P 3 ng 5 τ 3 P 3 ng τ 3 P 3 ng 7 τ 3 P ng 5 τ 3 P ng τ 3 P ng 7 τ 3 P 5 ng 5 τ 3 P 5 ng τ 3 P ng 5 τ 3 P ng τ 3 P 7 ng 5 τ 3 P ng 5 τ 3 P 9 ng 5 cg cg cg 3 cg d h g 5 ( P h +τ h g )g P d P dg P 3 d P 3 dg P d P dg P 5 d P 5 dg P d P dg P 7 d P 7 dg P d P 9 d P d τ de τ deg τ P de τ P deg τ P de τ P deg τ P 3 de τ P 3 deg τ P de τ P deg τ P 5 de τ P 5 deg τ P de τ P 7 de τ ag τ P ag τ P ag τ P 3 ag τ P ag τ P 5 ag τ P ag τ P 7 ag ( c+τ ag) ( c+τ ag)g P h P h P 3 h P h P 5 h P h P 7 h P h P an P d τ eg h d h dg h g h g 3 h g P ( c+τ ag) P ( c+τ ag)g h g h g 3 h g and P an P 3 an P an P 5 an P an P 7 an P an τ a g τ P a g τ P a g τ P 3 a g τ P a g τ P 5 a g τ P a g g 7 g g 9 P d P 3 d P d P 5 d P d P 7 d P d τ P eg τ P eg τ P 3 eg τ P eg τ P 5 eg τ P eg τ P 7 eg h g h g h g3 ( c+τ ag)d ( c+τ ag)dg ang ang ang 3 P h d P h dg h h g d g P ( c+τ ag) P ( c+τ ag)g P 3 ( c+τ ag) P 3 ( c+τ ag)g P ( c+τ ag) P ( c+τ ag)g P 5 ( c+τ ag) P 5 ( c+τ ag)g P ( c+τ ag) P 7 ( c+τ ag) τ 3 aeg τ 3 aeg τ 3 P aeg τ 3 P aeg τ 3 P aeg τ 3 P aeg τ 3 P 3 aeg τ 3 P 3 aeg τ 3 P aeg τ 3 P 5 aeg h g ( P h +τ h g )g P and h h h d P andg 5 τ n g P ( c+τ ag)d P ang P h d P h dg P 3 h d P 3 h dg P h d P h dg P 5 h d P h d τ c ( P h +τ 3 h de) P ( P h +τ 3 h de) P ( P h +τ 3 h de) P 3 ( P h +τ 3 h de) P ( P h +τ 3 h de) τ h de τ h deg τ P h de τ P h deg τ P h de τ P h deg τ P 3 h de τ P h de P d g τ eg h c P and P 3 and P and P 5 and P and τ P n g τ P n g τ P 3 n g τ P n g τ P 5 n g P ( P h +τ P n g) P ( P h +τ P n g) P 3 ( P h +τ P n g) P ( P h +τ P n g) P 5 ( P h +τ P n g) andg andg P h d P h d P 3 h d P h d P 5 h d P andg 5 P 3 andg 5 P andg 5 P 5 andg 5 P andg 5 τ h eg τ P h eg τ P h eg τ P 3 h eg τ P h eg P dg τ P n g τ P n g τ P 3 n g τ P n g τ P 5 n g P ( c+τ ag)d P 3 ( c+τ ag)d P ( c+τ ag)d P 5 ( c+τ ag)d P ( c+τ ag)d τ 3 P ng τ 3 P ng τ 3 P 3 ng τ 3 P ng P ang P 3 ang P ang P 5 ang τ a g τ P a g τ P a g τ P 3 a g τ P c τ P c τ P 3 c τ P c P d g P 3 d g P d g P 5 d g h d τ P eg τ P eg τ P 3 eg τ P eg d g h g 7 h g P andg P andg h g h g P dg h g h g τ deg h cd ( c+τ ag)g ( c+τ ag)g 3 h d g P andg dg 3 dg τ n g 7 P ( c+τ ag)dg h 3 P ang P d g τ eg 3 h cg P andg P 3 andg P andg τ P n g τ P n g τ P 3 n g P 3 dg P dg P 5 dg h dg τ P deg τ P deg τ c τ P c τ h ag τ P h ag P ( c+τ ag)g P h d g P h d g P andg P 3 andg τ h eg τ P h eg P dg 3 τ P n g 7 τ P n g 7 P ( c+τ ag)dg P 3 ( c+τ ag)dg τ 3 P ng 3 τ 3 P ng 3 P (τ 5 ng 3 + h 3 ) P (τ 5 ng 3 + h 3 ) P ang P 3 ang τ a g 3 τ P a g 3 P d g P 3 d g h dg τ P eg 3 τ P eg 3 ( c+τ ag)dg P h dg h g d g 3 P ( c+τ ag)g τ 3 aeg 3 P dg 3 τ deg 3 h d g P andg 7 τ n g P ( c+τ ag)dg

THE COHOMOLOGY OF MOTIVIC A(2)

THE COHOMOLOGY OF MOTIVIC A(2) Homology, Homotopy and Applications, vol.11(), 009, pp.51 7 THE COHOMOLOGY OF MOTIVIC A() DANIEL C. ISAKSEN (communicated by J. Daniel Christensen) Abstract Working over an algebraically closed field of

More information

arxiv: v1 [math.at] 22 Oct 2014

arxiv: v1 [math.at] 22 Oct 2014 THE STRONG KERVAIRE INVARIANT PROBLEM IN DIMENSION 62 arxiv:1410.6199v1 [math.at] 22 Oct 2014 ZHOULI XU Abstract. Using a Toda bracket computation θ 4,2,σ 2 due to Daniel C. Isaksen [12], we investigate

More information

Detectors in homotopy theory

Detectors in homotopy theory Detectors in homotopy theory Mark Behrens University of Notre Dame An analogy: Particle physics: Homotopy theory: All matter is built from elementary particles Topological spaces (up to homotopy) are built

More information

arxiv: v2 [math.at] 16 Dec 2014

arxiv: v2 [math.at] 16 Dec 2014 Stable Stems arxiv:1407.8418v2 [math.at] 16 Dec 2014 Daniel C. Isaksen Department of Mathematics, Wayne State University, Detroit, MI 48202, USA E-mail address: isaksen@wayne.edu 2010 Mathematics Subject

More information

RESEARCH STATEMENT. 1. Introduction

RESEARCH STATEMENT. 1. Introduction RESEARCH STATEMENT EVA BELMONT. Introduction One of the most fundamental problems in stable homotopy theory is calculating the stable homotopy groups of spheres, πns s = lim n π n+k S n. The simplest theorem

More information

The spectra ko and ku are not Thom spectra: an approach using THH

The spectra ko and ku are not Thom spectra: an approach using THH The spectra ko and ku are not Thom spectra: an approach using THH Vigleik Angeltveit, Michael Hill, Tyler Lawson October 1, Abstract We apply an announced result of Blumberg-Cohen-Schlichtkrull to reprove

More information

A(2) Modules and their Cohomology

A(2) Modules and their Cohomology A(2) Modules and their Cohomology Robert Bruner Department of Mathematics Wayne State University and University of Oslo Topology Symposium University of Bergen June 1, 2017 Robert Bruner (WSU and UiO)

More information

THE MOTIVIC ADAMS SPECTRAL SEQUENCE

THE MOTIVIC ADAMS SPECTRAL SEQUENCE THE MOTIVIC ADAMS SPECTRAL SEQUENCE DANIEL DUGGER AND DANIEL C. ISAKSEN Abstract. We present some data on the cohomology of the motivic Steenrod algebra over an algebraically closed field of characteristic

More information

THE GENERALIZED HOMOLOGY OF PRODUCTS

THE GENERALIZED HOMOLOGY OF PRODUCTS THE GENERALIZED HOMOLOGY OF PRODUCTS MARK HOVEY Abstract. We construct a spectral sequence that computes the generalized homology E ( Q X ) of a product of spectra. The E 2 -term of this spectral sequence

More information

Computation of the homotopy of the spectrum tmf

Computation of the homotopy of the spectrum tmf 11 40 11 arxiv version: fonts, pagination and layout may vary from GTM published version Computation of the homotopy of the spectrum tmf TILMAN BAUER This paper contains a complete computation of the homotopy

More information

The Finiteness Conjecture

The Finiteness Conjecture Robert Bruner Department of Mathematics Wayne State University The Kervaire invariant and stable homotopy theory ICMS Edinburgh, Scotland 25 29 April 2011 Robert Bruner (Wayne State University) The Finiteness

More information

John H. Palmieri Research description 20 September 2001

John H. Palmieri Research description 20 September 2001 John H. Palmieri Research description 20 September 2001 My research is in stable homotopy theory, which is a subfield of topology, one of the main branches of mathematics. Stable homotopy theory is roughly

More information

π (ko) and some of π (tmf) at the prime 2

π (ko) and some of π (tmf) at the prime 2 π (ko) and some of π (tmf) at the prime 2 Catherine Ray Acknowledgements I would like to thank Zhouli Xu for suggesting and helping me through the calculation of π (tmf) up to stem 13; it is his patience

More information

THE FIRST ADAMS-NOVIKOV DIFFERENTIAL FOR THE SPECTRUM T (m)

THE FIRST ADAMS-NOVIKOV DIFFERENTIAL FOR THE SPECTRUM T (m) THE FIRST ADAMS-NOVIKOV DIFFERENTIAL FOR THE SPECTRUM T (m) DOUGLAS C. RAVENEL Abstract. There are p-local spectra T (m) with BP (T (m)) = BP [t,..., t m]. In this paper we determine the first nontrivial

More information

Some topological reflections of the work of Michel André. Lausanne, May 12, Haynes Miller

Some topological reflections of the work of Michel André. Lausanne, May 12, Haynes Miller Some topological reflections of the work of Michel André Lausanne, May 12, 2011 Haynes Miller 1954: Albrecht Dold and Dieter Puppe: To form derived functors of non-additive functors, one can t use chain

More information

Cohomology operations and the Steenrod algebra

Cohomology operations and the Steenrod algebra Cohomology operations and the Steenrod algebra John H. Palmieri Department of Mathematics University of Washington WCATSS, 27 August 2011 Cohomology operations cohomology operations = NatTransf(H n ( ;

More information

A CANONICAL LIFT OF FROBENIUS IN MORAVA E-THEORY. 1. Introduction

A CANONICAL LIFT OF FROBENIUS IN MORAVA E-THEORY. 1. Introduction A CANONICAL LIFT OF FROBENIUS IN MORAVA E-THEORY NATHANIEL STAPLETON Abstract. We prove that the pth Hecke operator on the Morava E-cohomology of a space is congruent to the Frobenius mod p. This is a

More information

Complex Bordism and Cobordism Applications

Complex Bordism and Cobordism Applications Complex Bordism and Cobordism Applications V. M. Buchstaber Mini-course in Fudan University, April-May 2017 Main goals: --- To describe the main notions and constructions of bordism and cobordism; ---

More information

Some remarks on the root invariant

Some remarks on the root invariant Contemporary Mathematics Volume 00, 0000 Some remarks on the root invariant ROBERT R. BRUNER Abstract. We show how the root invariant of a product depends upon the product of the root invariants, give

More information

Realization problems in algebraic topology

Realization problems in algebraic topology Realization problems in algebraic topology Martin Frankland Universität Osnabrück Adam Mickiewicz University in Poznań Geometry and Topology Seminar June 2, 2017 Martin Frankland (Osnabrück) Realization

More information

C(K) = H q+n (Σ n K) = H q (K)

C(K) = H q+n (Σ n K) = H q (K) Chromatic homotopy theory Haynes Miller Copenhagen, May, 2011 Homotopy theory deals with spaces of large but finite dimension. Chromatic homotopy theory is an organizing principle which is highly developed

More information

Exercises on characteristic classes

Exercises on characteristic classes Exercises on characteristic classes April 24, 2016 1. a) Compute the Stiefel-Whitney classes of the tangent bundle of RP n. (Use the method from class for the tangent Chern classes of complex projectives

More information

Motivic C τ Modules. Wang Guozhen. Shanghai Center for Mathematical Sciences

Motivic C τ Modules. Wang Guozhen. Shanghai Center for Mathematical Sciences Motivic C τ Modules Wang Guozhen Shanghai Center for Mathematical Sciences 218-6 Wang Guozhen (Shanghai Center for Mathematical Sciences) Motivic Cτ Modules 218-6 1 / 2 Motivic homotopy theory Homotopy

More information

Cohomology: A Mirror of Homotopy

Cohomology: A Mirror of Homotopy Cohomology: A Mirror of Homotopy Agnès Beaudry University of Chicago September 19, 1 Spectra Definition Top is the category of based topological spaces with based continuous functions rx, Y s denotes the

More information

nx ~p Us x Uns2"'-1,» i

nx ~p Us x Uns2'-1,» i PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 96, Number 4, April 1986 LOOP SPACES OF FINITE COMPLEXES AT LARGE PRIMES C. A. MCGIBBON AND C. W. WILKERSON1 ABSTRACT. Let X be a finite, simply

More information

A note on Samelson products in the exceptional Lie groups

A note on Samelson products in the exceptional Lie groups A note on Samelson products in the exceptional Lie groups Hiroaki Hamanaka and Akira Kono October 23, 2008 1 Introduction Samelson products have been studied extensively for the classical groups ([5],

More information

Equivalent statements of the telescope conjecture

Equivalent statements of the telescope conjecture Equivalent statements of the telescope conjecture Martin Frankland April 7, 2011 The purpose of this expository note is to clarify the relationship between various statements of the telescope conjecture.

More information

The 3-primary Arf-Kervaire invariant problem University of Virginia

The 3-primary Arf-Kervaire invariant problem University of Virginia The 3-primary Arf-Kervaire invariant problem Mike Hill Mike Hopkins Doug Ravenel University of Virginia Harvard University University of Rochester Banff Workshop on Algebraic K-Theory and Equivariant Homotopy

More information

Exotic spheres and topological modular forms. Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins, and Mark Mahowald)

Exotic spheres and topological modular forms. Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins, and Mark Mahowald) Exotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins, and Mark Mahowald) Fantastic survey of the subject: Milnor, Differential topology: 46 years later (Notices

More information

Truncated Brown-Peterson spectra

Truncated Brown-Peterson spectra Truncated Brown-Peterson spectra T. Lawson 1 N. Naumann 2 1 University of Minnesota 2 Universität Regensburg Special session on homotopy theory 2012 T. Lawson, N. Naumann (UMN and UR) Truncated Brown-Peterson

More information

arxiv: v1 [math.at] 25 Feb 2010

arxiv: v1 [math.at] 25 Feb 2010 NON-FACTORISATION OF ARF-KERVAIRE CLASSES THROUGH RP RP arxiv:1002.4845v1 [math.at] 25 Feb 2010 VICTOR P. SNAITH Abstract. As an application of the upper triangular technology method of [8] it is shown

More information

SOME EXERCISES. By popular demand, I m putting up some fun problems to solve. These are meant to give intuition for messing around with spectra.

SOME EXERCISES. By popular demand, I m putting up some fun problems to solve. These are meant to give intuition for messing around with spectra. SOME EXERCISES By popular demand, I m putting up some fun problems to solve. These are meant to give intuition for messing around with spectra. 1. The algebraic thick subcategory theorem In Lecture 2,

More information

Publications of Haynes R. Miller. 1. Some Algebraic Aspects of the Adams-Novikov Spectral Sequence, Thesis, Princeton University, 1974.

Publications of Haynes R. Miller. 1. Some Algebraic Aspects of the Adams-Novikov Spectral Sequence, Thesis, Princeton University, 1974. Publications of Haynes R. Miller 1. Some Algebraic Aspects of the Adams-Novikov Spectral Sequence, Thesis, Princeton University, 1974. 2. (with W. S. Wilson) On Novikov s Ext 1 modulo an invariant prime

More information

arxiv: v2 [math.at] 25 Apr 2017

arxiv: v2 [math.at] 25 Apr 2017 arxiv:1704.04547v2 [math.at] 25 Apr 2017 Motivic modular forms from equivariant stable homotopy theory NICOLAS RICKA In this paper, we produce a cellular motivic spectrum of motivic modular forms over

More information

arxiv: v1 [math.at] 3 Feb 2015

arxiv: v1 [math.at] 3 Feb 2015 LOW DIMENSIONAL MILNOR-WITT STEMS OVER R arxiv:5.7v [math.at] 3 Feb 5 DANIEL DUGGER AND DANIEL C. ISAKSEN Abstract. This article computes some motivic stable homotopy groups over R. For p q 3, we describe

More information

Localizing groups with action

Localizing groups with action Localizing groups with action by Georg Peschke Publicacions Matemátiques 33 (1989) 227 234 1 Localization and genus in group theory and homotopy theory Georg Peschke 1 Abstract: When localizing the semidirect

More information

ALGEBRAIC TOPOLOGY III MAT 9580 SPRING 2015 INTRODUCTION TO THE ADAMS SPECTRAL SEQUENCE

ALGEBRAIC TOPOLOGY III MAT 9580 SPRING 2015 INTRODUCTION TO THE ADAMS SPECTRAL SEQUENCE ALGEBRAIC TOPOLOGY III MAT 9580 SPRING 2015 INTRODUCTION TO THE ADAMS SPECTRAL SEQUENCE JOHN ROGNES Contents 1 The long exact sequence of a pair 2 11 E r -terms and d r -differentials 4 12 Adams indexing

More information

A(2)-modules and the Adams spectral sequence

A(2)-modules and the Adams spectral sequence A(2)-modules and the Adams spectral sequence Robert Bruner Department of Mathematics Wayne State University Equivariant, Chromatic and Motivic Homotopy Theory Northwestern University Evanston, Illinois

More information

Realizing Families of Landweber Exact Theories

Realizing Families of Landweber Exact Theories Realizing Families of Landweber Exact Theories Paul Goerss Department of Mathematics Northwestern University Summary The purpose of this talk is to give a precise statement of 1 The Hopkins-Miller Theorem

More information

AN ELEMENTARY GUIDE TO THE ADAMS-NOVIKOV EXT. The Adams-Novikov spectral sequence for the Brown-Peterson spectrum

AN ELEMENTARY GUIDE TO THE ADAMS-NOVIKOV EXT. The Adams-Novikov spectral sequence for the Brown-Peterson spectrum AN ELEMENTARY GUIDE TO THE ADAMS-NOVIKOV EXT MICHA L ADAMASZEK The Adams-Novikov spectral sequence for the Brown-Peterson spectrum E s,t = Ext s,t BP BP (BP, BP ) = π S s t(s 0 ) (p) has been one of the

More information

The Kervaire Invariant One Problem, Talk 0 (Introduction) Independent University of Moscow, Fall semester 2016

The Kervaire Invariant One Problem, Talk 0 (Introduction) Independent University of Moscow, Fall semester 2016 The Kervaire Invariant One Problem, Talk 0 (Introduction) Independent University of Moscow, Fall semester 2016 January 3, 2017 This is an introductory lecture which should (very roughly) explain what we

More information

The Goodwillie-Weiss Tower and Knot Theory - Past and Present

The Goodwillie-Weiss Tower and Knot Theory - Past and Present The Goodwillie-Weiss Tower and Knot Theory - Past and Present Dev P. Sinha University of Oregon June 24, 2014 Goodwillie Conference, Dubrovnik, Croatia New work joint with Budney, Conant and Koytcheff

More information

KOSZUL DUALITY FOR STRATIFIED ALGEBRAS I. QUASI-HEREDITARY ALGEBRAS

KOSZUL DUALITY FOR STRATIFIED ALGEBRAS I. QUASI-HEREDITARY ALGEBRAS KOSZUL DUALITY FOR STRATIFIED ALGEBRAS I. QUASI-HEREDITARY ALGEBRAS VOLODYMYR MAZORCHUK Abstract. We give a complete picture of the interaction between Koszul and Ringel dualities for quasi-hereditary

More information

arxiv: v1 [math.co] 12 Jan 2018

arxiv: v1 [math.co] 12 Jan 2018 CONFIGURATION SPACES OF C \ K CHRISTOPH SCHIESSL arxiv:1801.09327v1 [math.co] 12 Jan 2018 Abstract. In this note, we collect mostly known formulas and methods to compute the standard and virtual Poincaré

More information

SETS OF DEGREES OF MAPS BETWEEN SU(2)-BUNDLES OVER THE 5-SPHERE

SETS OF DEGREES OF MAPS BETWEEN SU(2)-BUNDLES OVER THE 5-SPHERE SETS OF DEGREES OF MAPS BETWEEN SU(2)-BUNDLES OVER THE 5-SPHERE JEAN-FRANÇOIS LAFONT AND CHRISTOFOROS NEOFYTIDIS ABSTRACT. We compute the sets of degrees of maps between SU(2)-bundles over S 5, i.e. between

More information

REGULARITY OF STRUCTURED RING SPECTRA AND LOCALIZATION IN K-THEORY

REGULARITY OF STRUCTURED RING SPECTRA AND LOCALIZATION IN K-THEORY REGULARITY OF STRUCTURED RING SPECTRA AND LOCALIZATION IN K-THEORY CLARK BARWICK AND TYLER LAWSON Abstract. We introduce a new notion of regularity for structured ring spectra, and we prove, in the presence

More information

AN UNSTABLE CHANGE OF RINGS FOR MORAVA E-THEORY

AN UNSTABLE CHANGE OF RINGS FOR MORAVA E-THEORY AN UNSTABLE CHANGE OF RINGS FOR MORAVA E-THEORY ROBERT THOMPSON Abstract. The Bousfield-Kan (or unstable Adams) spectral sequence can be constructed for various homology theories such as Brown-Peterson

More information

On the Splitting of MO(2) over the Steenrod Algebra. Maurice Shih

On the Splitting of MO(2) over the Steenrod Algebra. Maurice Shih On the Splitting of MO(2) over the Steenrod Algebra Maurice Shih under the direction of John Ullman Massachusetts Institute of Technology Research Science Institute On the Splitting of MO(2) over the Steenrod

More information

The Steenrod algebra

The Steenrod algebra The Steenrod algebra Paul VanKoughnett January 25, 2016 References are the first few chapters of Mosher and Tangora, and if you can read French, Serre s Cohomologie modulo 2 des complexes d Eilenberg-MacLane

More information

A global perspective on stable homotopy theory

A global perspective on stable homotopy theory A global perspective on stable homotopy theory February 9, 018 The goal of this lecture is to give a high-level overview of the chromatic viewpoint on stable homotopy theory, with the Ravenel conjectures

More information

are equivalent in this way if K is regarded as an S-ring spectrum, but not as an E-ring spectrum. If K is central in ß (K ^E K op ), then these Ext gr

are equivalent in this way if K is regarded as an S-ring spectrum, but not as an E-ring spectrum. If K is central in ß (K ^E K op ), then these Ext gr A 1 OBSTRUCTION THEORY AND THE STRICT ASSOCIATIVITY OF E=I VIGLEIKANGELTVEIT Abstract. We prove that for a ring spectrumk with a perfect universalcoefficientformula,theobstructionstoextendingthemultiplication

More information

On the vanishing of Tor of the absolute integral closure

On the vanishing of Tor of the absolute integral closure On the vanishing of Tor of the absolute integral closure Hans Schoutens Department of Mathematics NYC College of Technology City University of New York NY, NY 11201 (USA) Abstract Let R be an excellent

More information

The Kervaire invariant in homotopy theory

The Kervaire invariant in homotopy theory The Kervaire invariant in homotopy theory Mark Mahowald and Paul Goerss June 20, 2011 Abstract In this note we discuss how the first author came upon the Kervaire invariant question while analyzing the

More information

THE HOMOTOPY GROUPS OF TMF

THE HOMOTOPY GROUPS OF TMF THE HOMOTOPY GROUPS OF TMF AKHIL MATHEW 1. Introduction The previous talks of this seminar have built up to the following theorem: Theorem 1 ( TMF theorem ). Let M ell be the moduli stack of stable 1 elliptic

More information

The mod-2 cohomology. of the finite Coxeter groups. James A. Swenson University of Wisconsin Platteville

The mod-2 cohomology. of the finite Coxeter groups. James A. Swenson University of Wisconsin Platteville p. 1/1 The mod-2 cohomology of the finite Coxeter groups James A. Swenson swensonj@uwplatt.edu http://www.uwplatt.edu/ swensonj/ University of Wisconsin Platteville p. 2/1 Thank you! Thanks for spending

More information

New York Journal of Mathematics. Cohomology of Modules in the Principal Block of a Finite Group

New York Journal of Mathematics. Cohomology of Modules in the Principal Block of a Finite Group New York Journal of Mathematics New York J. Math. 1 (1995) 196 205. Cohomology of Modules in the Principal Block of a Finite Group D. J. Benson Abstract. In this paper, we prove the conjectures made in

More information

ON THE HOMOTOPY TYPE OF INFINITE STUNTED PROJECTIVE SPACES FREDERICK R. COHEN* AND RAN LEVI

ON THE HOMOTOPY TYPE OF INFINITE STUNTED PROJECTIVE SPACES FREDERICK R. COHEN* AND RAN LEVI ON THE HOMOTOPY TYPE OF INFINITE STUNTED PROJECTIVE SPACES FREDERICK R. COHEN* AND RAN LEVI 1. introduction Consider the space X n = RP /RP n 1 together with the boundary map in the Barratt-Puppe sequence

More information

DFG-Forschergruppe Regensburg/Freiburg

DFG-Forschergruppe Regensburg/Freiburg DFG-Forschergruppe Regensburg/Freiburg Algebraische Zykel und L-Funktionen Existence and uniqueness of E -structures on motivic K-theory spectra Niko Naumann, Markus Spitzweck and Paul Arne Østvær Preprint

More information

Inverting the Hopf map

Inverting the Hopf map Inverting the Hopf map Michael Andrews and Haynes Miller October 14, 2017 Abstract We calculate the η-localization of the motivic stable homotopy ring over C, confirming a conjecture of Guillou and Isaksen.

More information

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM Proceedings of the Edinburgh Mathematical Society Submitted Paper Paper 14 June 2011 LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM MICHAEL C. CRABB AND PEDRO L. Q. PERGHER Institute of Mathematics,

More information

RECOLLEMENTS GENERATED BY IDEMPOTENTS AND APPLICATION TO SINGULARITY CATEGORIES

RECOLLEMENTS GENERATED BY IDEMPOTENTS AND APPLICATION TO SINGULARITY CATEGORIES RECOLLEMENTS GENERATED BY IDEMPOTENTS AND APPLICATION TO SINGULARITY CATEGORIES DONG YANG Abstract. In this note I report on an ongoing work joint with Martin Kalck, which generalises and improves a construction

More information

arxiv:math/ v1 [math.at] 13 Nov 2001

arxiv:math/ v1 [math.at] 13 Nov 2001 arxiv:math/0111151v1 [math.at] 13 Nov 2001 Miller Spaces and Spherical Resolvability of Finite Complexes Abstract Jeffrey Strom Dartmouth College, Hanover, NH 03755 Jeffrey.Strom@Dartmouth.edu www.math.dartmouth.edu/~strom/

More information

Oxford 13 March Surgery on manifolds: the early days, Or: What excited me in the 1960s. C.T.C.Wall

Oxford 13 March Surgery on manifolds: the early days, Or: What excited me in the 1960s. C.T.C.Wall Oxford 13 March 2017 Surgery on manifolds: the early days, Or: What excited me in the 1960s. C.T.C.Wall In 1956 Milnor amazed the world by giving examples of smooth manifolds homeomorphic but not diffeomorphic

More information

Stable Homotopy Theory A gateway to modern mathematics.

Stable Homotopy Theory A gateway to modern mathematics. Stable Homotopy Theory A gateway to modern mathematics. Sunil Chebolu Department of Mathematics University of Western Ontario http://www.math.uwo.ca/ schebolu 1 Plan of the talk 1. Introduction to stable

More information

Math 752 Week s 1 1

Math 752 Week s 1 1 Math 752 Week 13 1 Homotopy Groups Definition 1. For n 0 and X a topological space with x 0 X, define π n (X) = {f : (I n, I n ) (X, x 0 )}/ where is the usual homotopy of maps. Then we have the following

More information

On the Rothenberg Steenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional Lie group E 8

On the Rothenberg Steenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional Lie group E 8 213 226 213 arxiv version: fonts, pagination and layout may vary from GTM published version On the Rothenberg Steenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional

More information

Cohomology of the classifying spaces of gauge groups over 3-manifolds in low dimensions

Cohomology of the classifying spaces of gauge groups over 3-manifolds in low dimensions Cohomology of the classifying spaces of gauge groups over 3-manifolds in low dimensions by Shizuo Kaji Department of Mathematics Kyoto University Kyoto 606-8502, JAPAN e-mail: kaji@math.kyoto-u.ac.jp Abstract

More information

Publications of Douglas C. Ravenel

Publications of Douglas C. Ravenel ix Publications of Douglas C. Ravenel Books 1. Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, New York, 1986. 2. Nilpotence and periodicity in stable homotopy theory, Annals of

More information

arxiv: v1 [math.kt] 10 Nov 2017

arxiv: v1 [math.kt] 10 Nov 2017 A twisted Version of controlled K-Theory Elisa Hartmann November 13, 2017 arxiv:1711.03746v1 [math.kt] 10 Nov 2017 Abstract This paper studies controlled operator K theory on coarse spaces in light of

More information

A Hodge decomposition spectral sequence for E n-homology

A Hodge decomposition spectral sequence for E n-homology A Hodge decomposition spectral sequence for E n -homology Royal Institute of Technology, Stockholm Women in Homotopy Theory and Algebraic Geometry, Berlin, 14.09.2016 1 2 3 A Hodge spectral sequence for

More information

RESEARCH STATEMENT RUIAN CHEN

RESEARCH STATEMENT RUIAN CHEN RESEARCH STATEMENT RUIAN CHEN 1. Overview Chen is currently working on a large-scale program that aims to unify the theories of generalized cohomology and of perverse sheaves. This program is a major development

More information

58 CHAPTER 2. COMPUTATIONAL METHODS

58 CHAPTER 2. COMPUTATIONAL METHODS 58 CHAPTER 2. COMPUTATIONAL METHODS 23 Hom and Lim We will now develop more properties of the tensor product: its relationship to homomorphisms and to direct limits. The tensor product arose in our study

More information

Towards THH of the algebraic K-theory spectrum of a

Towards THH of the algebraic K-theory spectrum of a Towards THH of the algebraic K-theory spectrum of a finite field Gabe Angelini-Knoll Wayne State University Graduate Student Topology and Geometry Conference March 29, 2015 Gabe Angelini-Knoll (WSU) Towards

More information

TOPOLOGICAL MODULAR FORMS - I. KU Ell(C/R) E n

TOPOLOGICAL MODULAR FORMS - I. KU Ell(C/R) E n TOPOLOGICAL MODULAR FORMS - I JOHN ROGNES 1. Complex cobordism and Elliptic cohomology MU KU Ell(C/R) E n 1.1. Formal group laws. Let G be 1-dimensional Lie group, and let x: U R be a coordinate chart

More information

Complexes of Hilbert C -modules

Complexes of Hilbert C -modules Complexes of Hilbert C -modules Svatopluk Krýsl Charles University, Prague, Czechia Nafpaktos, 8th July 2018 Aim of the talk Give a generalization of the framework for Hodge theory Aim of the talk Give

More information

Level Structures of Drinfeld Modules Closing a Small Gap

Level Structures of Drinfeld Modules Closing a Small Gap Level Structures of Drinfeld Modules Closing a Small Gap Stefan Wiedmann Göttingen 2009 Contents 1 Drinfeld Modules 2 1.1 Basic Definitions............................ 2 1.2 Division Points and Level Structures................

More information

J. P. May. References

J. P. May. References J. P. May References [1] The cohomology of restricted Lie algebras and of Hopf algebras. Bull. Amer. Math. Soc. 71(1965), 372 377. [2] The cohomology of the Steenrod algebra; stable homotopy groups of

More information

In the index (pages ), reduce all page numbers by 2.

In the index (pages ), reduce all page numbers by 2. Errata or Nilpotence and periodicity in stable homotopy theory (Annals O Mathematics Study No. 28, Princeton University Press, 992) by Douglas C. Ravenel, July 2, 997, edition. Most o these were ound by

More information

On the Axiomatic Systems of Steenrod Homology Theory of Compact Spaces

On the Axiomatic Systems of Steenrod Homology Theory of Compact Spaces University of Dayton ecommons Summer Conference on Topology and Its Applications Department of Mathematics 6-2017 On the Axiomatic Systems of Steenrod Homology Theory of Compact Spaces Leonard Mdzinarishvili

More information

Algebraic Cobordism Lecture 1: Complex cobordism and algebraic cobordism

Algebraic Cobordism Lecture 1: Complex cobordism and algebraic cobordism Algebraic Cobordism Lecture 1: Complex cobordism and algebraic cobordism UWO January 25, 2005 Marc Levine Prelude: From homotopy theory to A 1 -homotopy theory A basic object in homotopy theory is a generalized

More information

The Homotopic Uniqueness of BS 3

The Homotopic Uniqueness of BS 3 The Homotopic Uniqueness of BS 3 William G. Dwyer Haynes R. Miller Clarence W. Wilkerson 1 Introduction Let p be a fixed prime number, F p the field with p elements, and S 3 the unit sphere in R 4 considered

More information

Background Toward the homotopy... Construction of the... Home Page. Title Page. Page 1 of 20. Go Back. Full Screen. Close. Quit

Background Toward the homotopy... Construction of the... Home Page. Title Page. Page 1 of 20. Go Back. Full Screen. Close. Quit Page 1 of 20 THE HOMOTOPY GROUPS RELATED TO L 2 T (m)/(v 1 ) Zihong Yuan joint with Xiangjun Wang and Xiugui Liu School of Mathematical Sciences Nankai University Dec.16, 2008 The Second East Asia Conference

More information

THE COHOMOLOGY OF PRINCIPAL BUNDLES, HOMOGENEOUS SPACES, AND TWO-STAGE POSTNIKOV SYSTEMS

THE COHOMOLOGY OF PRINCIPAL BUNDLES, HOMOGENEOUS SPACES, AND TWO-STAGE POSTNIKOV SYSTEMS THE COHOMOLOGY OF PRINCIPAL BUNDLES, HOMOGENEOUS SPACES, AND TWO-STAGE POSTNIKOV SYSTEMS BY J. P. MAY 1 Communicated by F. P. Peterson, November 13, 1967 In this note, we state some results on the cohomology

More information

Classification of (n 1)-connected 2n-dimensional manifolds and the discovery of exotic spheres

Classification of (n 1)-connected 2n-dimensional manifolds and the discovery of exotic spheres Classification of (n 1)-connected 2n-dimensional manifolds and the discovery of exotic spheres John Milnor At Princeton in the fifties I was very much interested in the fundamental problem of understanding

More information

Quantizations and classical non-commutative non-associative algebras

Quantizations and classical non-commutative non-associative algebras Journal of Generalized Lie Theory and Applications Vol. (008), No., 35 44 Quantizations and classical non-commutative non-associative algebras Hilja Lisa HURU and Valentin LYCHAGIN Department of Mathematics,

More information

arxiv: v1 [math.gt] 22 Oct 2017

arxiv: v1 [math.gt] 22 Oct 2017 THE BAR-NATAN HOMOLOGY AND UNKNOTTING NUMBER arxiv:1710.07874v1 [math.gt] 22 Oct 2017 AKRAM ALISHAHI Abstract. We show that the order of torsion homology classes in Bar- Natan deformation of Khovanov homology

More information

arxiv: v1 [math.kt] 31 Mar 2011

arxiv: v1 [math.kt] 31 Mar 2011 A NOTE ON KASPAROV PRODUCTS arxiv:1103.6244v1 [math.kt] 31 Mar 2011 MARTIN GRENSING November 14, 2018 Combining Kasparov s theorem of Voiculesu and Cuntz s description of KK-theory in terms of quasihomomorphisms,

More information

SERRE FINITENESS AND SERRE VANISHING FOR NON-COMMUTATIVE P 1 -BUNDLES ADAM NYMAN

SERRE FINITENESS AND SERRE VANISHING FOR NON-COMMUTATIVE P 1 -BUNDLES ADAM NYMAN SERRE FINITENESS AND SERRE VANISHING FOR NON-COMMUTATIVE P 1 -BUNDLES ADAM NYMAN Abstract. Suppose X is a smooth projective scheme of finite type over a field K, E is a locally free O X -bimodule of rank

More information

Products of Admissible Monomials in the Polynomial Algebra as a Module over the Steenrod Algebra

Products of Admissible Monomials in the Polynomial Algebra as a Module over the Steenrod Algebra Journal of Mathematics Research; Vol. 8, No. 3; June 2016 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education Products of Admissible Monomials in the Polynomial Algebra

More information

MANIFOLDS WITH FUNDAMENTAL GROUP A GENERALIZED FREE PRODUCT. I

MANIFOLDS WITH FUNDAMENTAL GROUP A GENERALIZED FREE PRODUCT. I BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 6, November 1974 MANIFOLDS WITH FUNDAMENTAL GROUP A GENERALIZED FREE PRODUCT. I BY SYLVAIN E. CAPPELL* Communicated by William Browder, February

More information

APPLICATIONS OF LOCAL COHOMOLOGY

APPLICATIONS OF LOCAL COHOMOLOGY APPLICATIONS OF LOCAL COHOMOLOGY TAKUMI MURAYAMA Abstract. Local cohomology was discovered in the 960s as a tool to study sheaves and their cohomology in algebraic geometry, but have since seen wide use

More information

Morava K-theory of BG: the good, the bad and the MacKey

Morava K-theory of BG: the good, the bad and the MacKey Morava K-theory of BG: the good, the bad and the MacKey Ruhr-Universität Bochum 15th May 2012 Recollections on Galois extensions of commutative rings Let R, S be commutative rings with a ring monomorphism

More information

A UNIVERSAL PROPERTY FOR Sp(2) AT THE PRIME 3

A UNIVERSAL PROPERTY FOR Sp(2) AT THE PRIME 3 Homology, Homotopy and Applications, vol. 11(1), 2009, pp.1 15 A UNIVERSAL PROPERTY FOR Sp(2) AT THE PRIME 3 JELENA GRBIĆ and STEPHEN THERIAULT (communicated by Donald M. Davis) Abstract We study a universal

More information

Periodic Localization, Tate Cohomology, and Infinite Loopspaces Talk 1

Periodic Localization, Tate Cohomology, and Infinite Loopspaces Talk 1 Periodic Localization, Tate Cohomology, and Infinite Loopspaces Talk 1 Nicholas J. Kuhn University of Virginia University of Georgia, May, 2010 University of Georgia, May, 2010 1 / Three talks Introduction

More information

STABLE MODULE THEORY WITH KERNELS

STABLE MODULE THEORY WITH KERNELS Math. J. Okayama Univ. 43(21), 31 41 STABLE MODULE THEORY WITH KERNELS Kiriko KATO 1. Introduction Auslander and Bridger introduced the notion of projective stabilization mod R of a category of finite

More information

EIGENVECTORS FOR A RANDOM WALK ON A LEFT-REGULAR BAND

EIGENVECTORS FOR A RANDOM WALK ON A LEFT-REGULAR BAND EIGENVECTORS FOR A RANDOM WALK ON A LEFT-REGULAR BAND FRANCO SALIOLA Abstract. We present a simple construction of the eigenvectors for the transition matrices of random walks on a class of semigroups

More information

Spectra and the Stable Homotopy Category

Spectra and the Stable Homotopy Category Peter Bonventre Graduate Seminar Talk - September 26, 2014 Abstract: An introduction to the history and application of (topological) spectra, the stable homotopy category, and their relation. 1 Introduction

More information

Quillen cohomology and Hochschild cohomology

Quillen cohomology and Hochschild cohomology Quillen cohomology and Hochschild cohomology Haynes Miller June, 2003 1 Introduction In their initial work ([?], [?], [?]), Michel André and Daniel Quillen described a cohomology theory applicable in very

More information

THE CELLULARIZATION PRINCIPLE FOR QUILLEN ADJUNCTIONS

THE CELLULARIZATION PRINCIPLE FOR QUILLEN ADJUNCTIONS THE CELLULARIZATION PRINCIPLE FOR QUILLEN ADJUNCTIONS J. P. C. GREENLEES AND B. SHIPLEY Abstract. The Cellularization Principle states that under rather weak conditions, a Quillen adjunction of stable

More information

TCC Homological Algebra: Assignment #3 (Solutions)

TCC Homological Algebra: Assignment #3 (Solutions) TCC Homological Algebra: Assignment #3 (Solutions) David Loeffler, d.a.loeffler@warwick.ac.uk 30th November 2016 This is the third of 4 problem sheets. Solutions should be submitted to me (via any appropriate

More information