Symmetry Transforms 1

Size: px
Start display at page:

Download "Symmetry Transforms 1"

Transcription

1 Symmetry Transforms 1

2 Motivation Symmetry is everywhere 2

3 Motivation Symmetry is everywhere Perfect Symmetry [Blum 64, 67] [Wolter 85] [Minovic 97] [Martinet 05] 3

4 Motivation Symmetry is everywhere Local Symmetry [Blum 78] [Thrun 05] [Simari 06] 4

5 Motivation Symmetry is everywhere Partial Symmetry [Zabrodsky 95] [Kazhdan 03] 5

6 Goal A computational representation that describes all planar symmetries of a shape? 6

7 Symmetry Transform A computational representation that describes all planar symmetries of a shape? 7

8 Symmetry Transform A computational representation that describes all planar symmetries of a shape? Perfect Symmetry Symmetry = 1.0 8

9 Symmetry Transform A computational representation that describes all planar symmetries of a shape? Local Symmetry Symmetry = 0.3 9

10 Symmetry Transform A computational representation that describes all planar symmetries of a shape? Partial Symmetry Symmetry =

11 Symmetry Measure Symmetry of a shape is measured by correlation with its reflection 11

12 Symmetry Measure Symmetry of a shape is measured by correlation with its reflection D( f, γ ) = f γ ( f ) D( f, γ ) = f γ ( f ) Symmetry =

13 Symmetry Measure Symmetry of a shape is measured by correlation with its reflection D( f, γ ) = f γ ( f ) D( f, γ ) = f γ ( f ) Symmetry =

14 Symmetry Measure Symmetry of a shape is measured by correlation with its reflection D( f, γ ) = f γ ( f ) D( f, γ ) = f γ ( f ) 14

15 Symmetry Measure Symmetry of a shape is measured by correlation with its reflection D( f, γ ) = f γ ( f ) Symmetry =

16 Previous Work Zabrodsky 95 Kazhdan 03 Thrun 05 Martinet 05 16

17 Symmetry Distance Define the Symmetry Distance of a function f with respect to any transformation γ as the L 2 distance between f and the nearest function invariant to γ SD( f, γ ) = min f g g γ ( g ) = g Can show that Symmetry Measure D( f, γ ) = f γ ( f ) is related to symmetry distance by D ( f, γ ) = 2SD + f

18 Previous Work Zabrodsky 95 Kazhdan 03 Thrun 05 Martinet 05 18

19 Previous Work Zabrodsky 95 Kazhdan 03 Thrun 05 Martinet 05 19

20 Previous Work Zabrodsky 95 Kazhdan 03 Thrun 05 Martinet 05 20

21 Computing Discrete Transform Brute Force O(n 6 ) Convolution Monte-Carlo O(n 3 ) planes X O(n 3 ) dot product 21

22 Computing Discrete Transform Brute Force O(n 6 ) Convolution O(n 5 Log n) Monte-Carlo O(n 2 ) normal directions X O(n 3 log n) per direction 22

23 Computing Discrete Transform Brute Force O(n 6 ) Convolution O(n 5 Log n) Monte-Carlo O(n 4 ) For 3D meshes Most of the dot product contains zeros. Use Monte-Carlo Importance Sampling. 23

24 Monte Carlo Offset Angle 24

25 Monte Carlo Monte Carlo Sample for single plane Offset Angle 25

26 Monte Carlo Offset Angle 26

27 Monte Carlo Offset Angle 27

28 Monte Carlo Offset Angle 28

29 Monte Carlo Offset Angle 29

30 Monte Carlo Offset Angle 30

31 Weighting Samples Need to weight sample pairs by the inverse of the distance between them P 2 d P 1 31

32 Weighting Samples Need to weight sample pairs by the inverse of the distance between them Two planes of (equal) perfect symmetry 32

33 Weighting Samples Need to weight sample pairs by the inverse of the distance between them Vertical votes concentrated 33

34 Weighting Samples Need to weight sample pairs by the inverse of the distance between them Horizontal votes diffused 34

35 Application: Alignment Motivation: Composition of range scans Morphing PCA Alignment 35

36 Application: Alignment Approach: Perpendicular planes with the greatest symmetries create a symmetry-based coordinate system. 36

37 Application: Alignment Approach: Perpendicular planes with the greatest symmetries create a symmetry-based coordinate system. 37

38 Application: Alignment Approach: Perpendicular planes with the greatest symmetries create a symmetry-based coordinate system. 38

39 Application: Alignment Approach: Perpendicular planes with the greatest symmetries create a symmetry-based coordinate system. 39

40 Application: Alignment Results: PCA Alignment Symmetry Alignment 40

41 Application: Matching Motivation: Database searching = Query Database Result 41

42 Application: Matching Observation: All chairs display similar principal symmetries 42

43 Application: Matching Approach: Use Symmetry transform as shape descriptor = Query Transform Database Result 43

44 Application: Matching Results: Symmetry provides orthogonal information about models and can therefore be combined with other descriptors 44

45 Summary Planar-Reflective Symmetry Transform Captures degree of reflectional symmetry about all planes Monte Carlo computation Applications: alignment, search, completion, segmentation, canonical viewpoints, 45

Covariance to PCA. CS 510 Lecture #14 February 23, 2018

Covariance to PCA. CS 510 Lecture #14 February 23, 2018 Covariance to PCA CS 510 Lecture 14 February 23, 2018 Overview: Goal Assume you have a gallery (database) of images, and a probe (test) image. The goal is to find the database image that is most similar

More information

Covariance to PCA. CS 510 Lecture #8 February 17, 2014

Covariance to PCA. CS 510 Lecture #8 February 17, 2014 Covariance to PCA CS 510 Lecture 8 February 17, 2014 Status Update Programming Assignment 2 is due March 7 th Expect questions about your progress at the start of class I still owe you Assignment 1 back

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE

SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE Overview Motivation of Work Overview of Algorithm Scale Space and Difference of Gaussian Keypoint Localization Orientation Assignment Descriptor Building

More information

FFTs in Graphics and Vision. Fast Alignment of Spherical Functions

FFTs in Graphics and Vision. Fast Alignment of Spherical Functions FFTs in Graphics and Vision Fast Alignment of Spherical Functions Outline Math Review Fast Rotational Alignment Review Recall 1: We can represent any rotation R in terms of the triplet of Euler angles

More information

Symmetry in Shapes Theory and Practice. Niloy Mitra Maksim Ovsjanikov Mark Pauly Michael Wand Duygu Ceylan

Symmetry in Shapes Theory and Practice. Niloy Mitra Maksim Ovsjanikov Mark Pauly Michael Wand Duygu Ceylan Symmetry in Shapes Theory and Practice Niloy Mitra Maksim Ovsjanikov Mark Pauly Michael Wand Duygu Ceylan Symmetry in Shapes Theory and Practice Representations & Applications Michael Wand Saarland University

More information

Feature Extraction and Image Processing

Feature Extraction and Image Processing Feature Extraction and Image Processing Second edition Mark S. Nixon Alberto S. Aguado :*авш JBK IIP AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Covariance and Principal Components

Covariance and Principal Components COMP3204/COMP6223: Computer Vision Covariance and Principal Components Jonathon Hare jsh2@ecs.soton.ac.uk Variance and Covariance Random Variables and Expected Values Mathematicians talk variance (and

More information

1 Adsorption of NO 2 on Pd(100) Juan M. Lorenzi, Sebastian Matera, and Karsten Reuter,

1 Adsorption of NO 2 on Pd(100) Juan M. Lorenzi, Sebastian Matera, and Karsten Reuter, Supporting information: Synergistic inhibition of oxide formation in oxidation catalysis: A first-principles kinetic Monte Carlo study of NO+CO oxidation at Pd(100) Juan M. Lorenzi, Sebastian Matera, and

More information

Symmetry Factored Embedding And Distance

Symmetry Factored Embedding And Distance Symmetry Factored Embedding And Distance Yaron Lipman Xiaobai Chen Ingrid Daubechies Thomas Funkhouser Princeton University Abstract We introduce the Symmetry Factored Embedding (SFE) and the Symmetry

More information

20 Unsupervised Learning and Principal Components Analysis (PCA)

20 Unsupervised Learning and Principal Components Analysis (PCA) 116 Jonathan Richard Shewchuk 20 Unsupervised Learning and Principal Components Analysis (PCA) UNSUPERVISED LEARNING We have sample points, but no labels! No classes, no y-values, nothing to predict. Goal:

More information

Harris Corner Detector

Harris Corner Detector Multimedia Computing: Algorithms, Systems, and Applications: Feature Extraction By Dr. Yu Cao Department of Computer Science The University of Massachusetts Lowell Lowell, MA 01854, USA Part of the slides

More information

10.2,3,4. Vectors in 3D, Dot products and Cross Products

10.2,3,4. Vectors in 3D, Dot products and Cross Products Name: Section: 10.2,3,4. Vectors in 3D, Dot products and Cross Products 1. Sketch the plane parallel to the xy-plane through (2, 4, 2) 2. For the given vectors u and v, evaluate the following expressions.

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

from Object Image Based on

from Object Image Based on Inference of Grasping Pattern from Object Image Based on Interaction Descriptor Tadashi Matsuo, Takuya Kawakami, Yoko Ogawa, Nobutaka Shimada Ritsumeikan University Introduction An object as a tool has

More information

Spectral Algorithms II

Spectral Algorithms II Spectral Algorithms II Applications Slides based on Spectral Mesh Processing Siggraph 2010 course Applications Shape retrieval Parameterization i 1D 2D Quad meshing Shape Retrieval 3D Repository Query

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

INTEREST POINTS AT DIFFERENT SCALES

INTEREST POINTS AT DIFFERENT SCALES INTEREST POINTS AT DIFFERENT SCALES Thank you for the slides. They come mostly from the following sources. Dan Huttenlocher Cornell U David Lowe U. of British Columbia Martial Hebert CMU Intuitively, junctions

More information

We have seen that for a function the partial derivatives whenever they exist, play an important role. This motivates the following definition.

We have seen that for a function the partial derivatives whenever they exist, play an important role. This motivates the following definition. \ Module 12 : Total differential, Tangent planes and normals Lecture 34 : Gradient of a scaler field [Section 34.1] Objectives In this section you will learn the following : The notions gradient vector

More information

MATH 280 Multivariate Calculus Spring Derivatives of vector fields: divergence and curl

MATH 280 Multivariate Calculus Spring Derivatives of vector fields: divergence and curl MATH 280 Multivariate Calculus Spring 2011 Vector fields in the plane Derivatives of vector fields: divergence and curl Given a planar vector field F P x, y î + Qx, y ĵ, we can consider the partial derivatives.

More information

Announcements (repeat) Principal Components Analysis

Announcements (repeat) Principal Components Analysis 4/7/7 Announcements repeat Principal Components Analysis CS 5 Lecture #9 April 4 th, 7 PA4 is due Monday, April 7 th Test # will be Wednesday, April 9 th Test #3 is Monday, May 8 th at 8AM Just hour long

More information

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola.

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola. January 21, 2018 Math 9 Ellipse Geometry The method of coordinates (continued) Ellipse Hyperbola Parabola Definition An ellipse is a locus of points, such that the sum of the distances from point on the

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

Blob Detection CSC 767

Blob Detection CSC 767 Blob Detection CSC 767 Blob detection Slides: S. Lazebnik Feature detection with scale selection We want to extract features with characteristic scale that is covariant with the image transformation Blob

More information

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise Edges and Scale Image Features From Sandlot Science Slides revised from S. Seitz, R. Szeliski, S. Lazebnik, etc. Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

CHAPTER 4 PRINCIPAL COMPONENT ANALYSIS-BASED FUSION

CHAPTER 4 PRINCIPAL COMPONENT ANALYSIS-BASED FUSION 59 CHAPTER 4 PRINCIPAL COMPONENT ANALYSIS-BASED FUSION 4. INTRODUCTION Weighted average-based fusion algorithms are one of the widely used fusion methods for multi-sensor data integration. These methods

More information

Protein surface descriptors for binding sites comparison and ligand prediction

Protein surface descriptors for binding sites comparison and ligand prediction Protein surface descriptors for binding sites comparison and ligand prediction Rayan Chikhi Internship report, Kihara Bioinformatics Laboratory, Purdue University, 2007 Abstract. Proteins molecular recognition

More information

Fuel BurnupCalculations and Uncertainties

Fuel BurnupCalculations and Uncertainties Fuel BurnupCalculations and Uncertainties Outline Review lattice physics methods Different approaches to burnup predictions Linkage to fuel safety criteria Sources of uncertainty Survey of available codes

More information

6.869 Advances in Computer Vision. Prof. Bill Freeman March 1, 2005

6.869 Advances in Computer Vision. Prof. Bill Freeman March 1, 2005 6.869 Advances in Computer Vision Prof. Bill Freeman March 1 2005 1 2 Local Features Matching points across images important for: object identification instance recognition object class recognition pose

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

SIFT keypoint detection. D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 60 (2), pp , 2004.

SIFT keypoint detection. D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 60 (2), pp , 2004. SIFT keypoint detection D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 60 (), pp. 91-110, 004. Keypoint detection with scale selection We want to extract keypoints with characteristic

More information

SIFT: Scale Invariant Feature Transform

SIFT: Scale Invariant Feature Transform 1 SIFT: Scale Invariant Feature Transform With slides from Sebastian Thrun Stanford CS223B Computer Vision, Winter 2006 3 Pattern Recognition Want to find in here SIFT Invariances: Scaling Rotation Illumination

More information

RADICAL AND RATIONAL FUNCTIONS REVIEW

RADICAL AND RATIONAL FUNCTIONS REVIEW RADICAL AND RATIONAL FUNCTIONS REVIEW Name: Block: Date: Total = % 2 202 Page of 4 Unit 2 . Sketch the graph of the following functions. State the domain and range. y = 2 x + 3 Domain: Range: 2. Identify

More information

FFTs in Graphics and Vision. Rotational and Reflective Symmetry Detection

FFTs in Graphics and Vision. Rotational and Reflective Symmetry Detection FFTs in Graphics and Vision Rotational and Reflective Symmetry Detection Outline Representation Theory Symmetry Detection Rotational Symmetry Reflective Symmetry Representation Theory Recall: A group is

More information

Directional Field. Xiao-Ming Fu

Directional Field. Xiao-Ming Fu Directional Field Xiao-Ming Fu Outlines Introduction Discretization Representation Objectives and Constraints Outlines Introduction Discretization Representation Objectives and Constraints Definition Spatially-varying

More information

Protein Structure Prediction, Engineering & Design CHEM 430

Protein Structure Prediction, Engineering & Design CHEM 430 Protein Structure Prediction, Engineering & Design CHEM 430 Eero Saarinen The free energy surface of a protein Protein Structure Prediction & Design Full Protein Structure from Sequence - High Alignment

More information

Edge Detection. CS 650: Computer Vision

Edge Detection. CS 650: Computer Vision CS 650: Computer Vision Edges and Gradients Edge: local indication of an object transition Edge detection: local operators that find edges (usually involves convolution) Local intensity transitions are

More information

The Cross Product of Two Vectors

The Cross Product of Two Vectors The Cross roduct of Two Vectors In proving some statements involving surface integrals, there will be a need to approximate areas of segments of the surface by areas of parallelograms. Therefore it is

More information

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2 Name Gauss s Law I. The Law:, where ɛ 0 = 8.8510 12 C 2 (N?m 2 1. Consider a point charge q in three-dimensional space. Symmetry requires the electric field to point directly away from the charge in all

More information

Registration of Time Varying Scans

Registration of Time Varying Scans Simon Flöry FSP Meeting Graz, March 2007 joint work with N. Mitra H. Pottmann M. Ovsjanikov N. Gelfand Introduction Space-Time Registration Properties of Space-Time Registration Applications and Results

More information

Symmetry Restoration by Stretching

Symmetry Restoration by Stretching CCCG 2009, Vancouver, BC, August 17 19, 2009 Symmetry Restoration by Stretching Misha Kazhdan Nina Amenta Shengyin Gu David F. Wiley Bernd Hamann Abstract We consider restoring the bilateral symmetry of

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 370 Exam 3 Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

CSE 473/573 Computer Vision and Image Processing (CVIP)

CSE 473/573 Computer Vision and Image Processing (CVIP) CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu inwogu@buffalo.edu Lecture 11 Local Features 1 Schedule Last class We started local features Today More on local features Readings for

More information

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015 CS 3710: Visual Recognition Describing Images with Features Adriana Kovashka Department of Computer Science January 8, 2015 Plan for Today Presentation assignments + schedule changes Image filtering Feature

More information

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Perception Concepts Vision Chapter 4 (textbook) Sections 4.3 to 4.5 What is the course

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6.1 Inner Product, Length & Orthogonality Math 2331 Linear Algebra 6.1 Inner Product, Length & Orthogonality Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/

More information

There are two types of multiplication that can be done with vectors: = +.

There are two types of multiplication that can be done with vectors: = +. Section 7.5: The Dot Product Multiplying Two Vectors using the Dot Product There are two types of multiplication that can be done with vectors: Scalar Multiplication Dot Product The Dot Product of two

More information

Data Preprocessing Tasks

Data Preprocessing Tasks Data Tasks 1 2 3 Data Reduction 4 We re here. 1 Dimensionality Reduction Dimensionality reduction is a commonly used approach for generating fewer features. Typically used because too many features can

More information

Parallel Tempering Algorithm in Monte Carlo Simulation

Parallel Tempering Algorithm in Monte Carlo Simulation Parallel Tempering Algorithm in Monte Carlo Simulation Tony Cheung (CUHK) Kevin Zhao (CUHK) Mentors: Ying Wai Li (ORNL) Markus Eisenbach (ORNL) Kwai Wong (UTK/ORNL) Metropolis Algorithm on Ising Model

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Theoretical Advances on Generalized Fractals with Applications to Turbulence

Theoretical Advances on Generalized Fractals with Applications to Turbulence Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007 288 2007 IASME/WSEAS 5 th International Conference on Fluid Mechanics

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 70 Exam Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION

DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION ECCV 12 Bharath Hariharan, Jitandra Malik, and Deva Ramanan MOTIVATION State-of-the-art Object Detection HOG Linear SVM Dalal&Triggs Histograms

More information

Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Feature extraction: Corners and blobs Review: Linear filtering and edge detection Name two different kinds of image noise Name a non-linear smoothing filter What advantages does median filtering have over

More information

Representing regions in 2 ways:

Representing regions in 2 ways: Representing regions in 2 ways: Based on their external characteristics (its boundary): Shape characteristics Based on their internal characteristics (its region): Both Regional properties: color, texture,

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Face recognition Computer Vision Spring 2018, Lecture 21

Face recognition Computer Vision Spring 2018, Lecture 21 Face recognition http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 21 Course announcements Homework 6 has been posted and is due on April 27 th. - Any questions about the homework?

More information

1)Write the integer that represents the opposite of each real-world. situation. In words, write the meaning of the opposite.

1)Write the integer that represents the opposite of each real-world. situation. In words, write the meaning of the opposite. 1) Write the integer that represents the opposite of each real-world situation. In words, write the meaning of the opposite. a. Example: An atom s positive charge of 7 Opposite: An atom s negative charge

More information

Area Formulas. Linear

Area Formulas. Linear Math Vocabulary and Formulas Approximate Area Arithmetic Sequences Average Rate of Change Axis of Symmetry Base Behavior of the Graph Bell Curve Bi-annually(with Compound Interest) Binomials Boundary Lines

More information

Pre-Calc Chapter 1 Sample Test. D) slope: 3 4

Pre-Calc Chapter 1 Sample Test. D) slope: 3 4 Pre-Calc Chapter 1 Sample Test 1. Use the graphs of f and g to evaluate the function. f( x) gx ( ) (f o g)(-0.5) 1 1 0 4. Plot the points and find the slope of the line passing through the pair of points.

More information

Prospect. February 8, Geographically Weighted Analysis - Review and. Prospect. Chris Brunsdon. The Basics GWPCA. Conclusion

Prospect. February 8, Geographically Weighted Analysis - Review and. Prospect. Chris Brunsdon. The Basics GWPCA. Conclusion bruary 8, 0 Regression (GWR) In a nutshell: A local statistical technique to analyse spatial variations in relationships Global averages of spatial data are not always helpful: climate data health data

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Composite Quantization for Approximate Nearest Neighbor Search

Composite Quantization for Approximate Nearest Neighbor Search Composite Quantization for Approximate Nearest Neighbor Search Jingdong Wang Lead Researcher Microsoft Research http://research.microsoft.com/~jingdw ICML 104, joint work with my interns Ting Zhang from

More information

24 Gauss s Law. Gauss s Law 87:

24 Gauss s Law. Gauss s Law 87: Green Items that must be covered for the national test Blue Items from educator.com Red Items from the 8 th edition of Serway 24 Gauss s Law 24.1 Electric Flux 24.2 Gauss s Law 24.3 Application of Gauss

More information

Decidability of consistency of function and derivative information for a triangle and a convex quadrilateral

Decidability of consistency of function and derivative information for a triangle and a convex quadrilateral Decidability of consistency of function and derivative information for a triangle and a convex quadrilateral Abbas Edalat Department of Computing Imperial College London Abstract Given a triangle in the

More information

When using interval notation use instead of open circles, and use instead of solid dots.

When using interval notation use instead of open circles, and use instead of solid dots. P.1 Real Numbers PreCalculus P.1 REAL NUMBERS Learning Targets for P1 1. Describe an interval on the number line using inequalities. Describe an interval on the number line using interval notation (closed

More information

Application integration: Providing coherent drug discovery solutions

Application integration: Providing coherent drug discovery solutions Application integration: Providing coherent drug discovery solutions Mitch Miller, Manish Sud, LION bioscience, American Chemical Society 22 August 2002 Overview 2 Introduction: exploring application integration

More information

Collision Avoidance Lexicon

Collision Avoidance Lexicon Collision Avoidance Lexicon 2017 An understanding of collision avoidance terminology requires an understanding of position uncertainty terminology. This lexicon therefore includes the terminology of both

More information

The structure tensor in projective spaces

The structure tensor in projective spaces The structure tensor in projective spaces Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Sweden Abstract The structure tensor has been used mainly for

More information

Gauss s Law. Lecture 3. Chapter Course website:

Gauss s Law. Lecture 3. Chapter Course website: Lecture 3 Chapter 24 Gauss s Law 95.144 Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 24: Section 24.2 Idea of Flux Section 24.3 Electric

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

Christian Ratsch, UCLA

Christian Ratsch, UCLA Strain Dependence of Microscopic Parameters and its Effects on Ordering during Epitaxial Growth Christian Ratsch, UCLA Institute for Pure and Applied Mathematics, and Department of Mathematics Collaborators:

More information

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion Nonlinear Diffusion These notes summarize the way I present this material, for my benefit. But everything in here is said in more detail, and better, in Weickert s paper. 1 Introduction: Motivation for

More information

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Exam Answer Key

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Exam Answer Key G r a d e P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Eam Answer Key G r a d e P r e - C a l c u l u s M a t h e m a t i c s Final Practice Eam Answer Key Name: Student Number:

More information

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al.

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al. 6.869 Advances in Computer Vision Prof. Bill Freeman March 3, 2005 Image and shape descriptors Affine invariant features Comparison of feature descriptors Shape context Readings: Mikolajczyk and Schmid;

More information

National Radio Astronomy Observatory EDTN 211. Effects of Misalignment of Square Waveguide Joints. A. R. Kerr 12 March 2009

National Radio Astronomy Observatory EDTN 211. Effects of Misalignment of Square Waveguide Joints. A. R. Kerr 12 March 2009 National Radio Astronomy Observatory EDTN 211 Effects of Misalignment of Square Waveguide Joints A. R. Kerr 12 March 2009 Abstract: The effects of misalignment between two square waveguides are examined

More information

Introduction to the Renormalization Group

Introduction to the Renormalization Group Introduction to the Renormalization Group Gregory Petropoulos University of Colorado Boulder March 4, 2015 1 / 17 Summary Flavor of Statistical Physics Universality / Critical Exponents Ising Model Renormalization

More information

Instance-level recognition: Local invariant features. Cordelia Schmid INRIA, Grenoble

Instance-level recognition: Local invariant features. Cordelia Schmid INRIA, Grenoble nstance-level recognition: ocal invariant features Cordelia Schmid NRA Grenoble Overview ntroduction to local features Harris interest points + SSD ZNCC SFT Scale & affine invariant interest point detectors

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Let s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to the magnitude of the electric field. This means that

More information

Convergence of Eigenspaces in Kernel Principal Component Analysis

Convergence of Eigenspaces in Kernel Principal Component Analysis Convergence of Eigenspaces in Kernel Principal Component Analysis Shixin Wang Advanced machine learning April 19, 2016 Shixin Wang Convergence of Eigenspaces April 19, 2016 1 / 18 Outline 1 Motivation

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

Edge Image Description Using Angular Radial Partitioning

Edge Image Description Using Angular Radial Partitioning Edge Image Description Using Angular Radial Partitioning A.Chalechale, A. Mertins and G. Naghdy IEE Proc.-Vis. Image Signal Processing, 2004 Slides by David Anthony Torres Computer Science and Engineering

More information

Scale & Affine Invariant Interest Point Detectors

Scale & Affine Invariant Interest Point Detectors Scale & Affine Invariant Interest Point Detectors Krystian Mikolajczyk and Cordelia Schmid Presented by Hunter Brown & Gaurav Pandey, February 19, 2009 Roadmap: Motivation Scale Invariant Detector Affine

More information

The Square Root Velocity Framework for Curves in a Homogeneous Space

The Square Root Velocity Framework for Curves in a Homogeneous Space The Square Root Velocity Framework for Curves in a Homogeneous Space Zhe Su 1 Eric Klassen 1 Martin Bauer 1 1 Florida State University October 8, 2017 Zhe Su (FSU) SRVF for Curves in a Homogeneous Space

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana University of Groningen Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

Math 9 Practice Final Exam #1

Math 9 Practice Final Exam #1 Class: Date: Math Practice Final Exam #1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the value of 0.64. a. 0.8 b. 0.08 0.4 d. 0.1 2. Which

More information

Gauss s Law. Lecture 4. Chapter 27. Channel 61 (clicker) Physics II

Gauss s Law. Lecture 4. Chapter 27. Channel 61 (clicker) Physics II Lecture 4 Chapter 27 Physics II 01.30.2015 Gauss s Law 95.144 Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

EECS490: Digital Image Processing. Lecture #26

EECS490: Digital Image Processing. Lecture #26 Lecture #26 Moments; invariant moments Eigenvector, principal component analysis Boundary coding Image primitives Image representation: trees, graphs Object recognition and classes Minimum distance classifiers

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

Tensor Visualisation and Information Visualisation

Tensor Visualisation and Information Visualisation Tensor Visualisation and Information Visualisation Computer Animation and Visualisation Lecture 18 Taku Komura tkomura@ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics 1 Reminder

More information

Chapter 30 Sources of the magnetic field

Chapter 30 Sources of the magnetic field Chapter 30 Sources of the magnetic field Force Equation Point Object Force Point Object Field Differential Field Is db radial? Does db have 1/r2 dependence? Biot-Savart Law Set-Up The magnetic field is

More information

6/9/2010. Feature-based methods and shape retrieval problems. Structure. Combining local and global structures. Photometric stress

6/9/2010. Feature-based methods and shape retrieval problems. Structure. Combining local and global structures. Photometric stress 1 2 Structure Feature-based methods and shape retrieval problems Global Metric Local Feature descriptors Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 048921

More information

Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions

Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions B.G. Potter, Jr., B.A. Tuttle, and V. Tikare Sandia National Laboratories Albuquerque, NM

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information