A Complete Solution to The Problem of Differentiation and Integration of Real Orders for the Gaussian Hypergeometric Function

Size: px
Start display at page:

Download "A Complete Solution to The Problem of Differentiation and Integration of Real Orders for the Gaussian Hypergeometric Function"

Transcription

1 Jourl of Mtheti d Syte Siee 5 (5) doi:.765/59-59/5.. D DAVID PUBLISING A Colete Solutio to The Proble of Differetitio d Itegrtio of Rel Order for the Gui Mhei M. Beghorbl Motrel QC Cd. Reeived: Aril 5 / Aeted: My 8 5 / Publihed: Deeber 5 5. Abtrt: A olete olutio to the roble of fidig the th derivtive d the th ti-derivtive of eleetry d eil futio h bee give. It del with the roble of fidig forul for the th derivtive d the th ti-derivtive of eleetry d eil futio. We do ot liit to be iteger it be rel uber. I geerl the olutio i give through uified forul i ter of the Fo -futio d the Mieer G-futio whih i y e be ilified to le geerl futio. Thi i tur e the firt rel ue of thee two eil futio i the literture d how the eed of uh futio. I thi tl we would lie to reet the ide o the Gu hyergeoetri futio whih i well ow eil futio. Oe of the ey oit i thi wor i tht the roh doe ot deed o itegrtio tehiue. We dot the lil defiitio for geerlitio of differetitio d itegrtio.nely the th order of differetitio i foud ordig to the Rie-Liouville defiitio d f = ( t) f () t dt Γ( ) d where ( < < ) d =. The geerlied Cuhy -fold itegrl i doted for the th order of itegrtio f = ( t) f () t dt >. Γ. Itrodutio The otivtio of thi wor oe fro the re of yboli outtio well the re of lil d frtiol lulu. The ide i tht: Give futio f i vrible we or outer lgebr yte (CAS) fid forul for the th derivtive the th ti-derivtive or both? Thi ehe the ower of itegrtio d differetitio of CAS. I Mle the forul orreod to ivoig the od diff ( f $ ) for the th derivtive d it( f $ ) for the th ti-derivtive. The outtio of frtiol derivtive d frtiol itegrl ivolve evlutig oe tye of o eleetry itegrl. I ft itegrtio tehiue Correodig uthor: Mhei M. Beghorbl Motrel QC Cd. E-il: beghorbl@gil.o. do ot wor uully. Thi h led of thiig bout differet rohe to evlute the. A erie of er h bee etblihed [] [] [4] d reetly boo [] by the uthor of thi er to itrodue differet rohe to evlutig thi tye of itegrl. Thi wor i otiutio of thi erie.. Rie-Liouville Frtiol Derivtive Defiitio The ot widely ow defiitio of the frtiol derivtive i The Rie-Liouville defiitio (R-L FD) [8] [] []. It er reult of uifitio of the otio of iteger-order itegrtio d differetitio. The defiitio i give by d f = ( t) f () t dt Γ( ) d (

2 5 A Colete Solutio to The Proble of Differetitio d Itegrtio of Rel Order for the Gui where < < = d f( ) i futio with we igulrity over the itervl of itegrtio. If f( ) i otiuou over the itervl ( [ ] the by lettig oe get f ) ( ).. The th Derivtive of ( ) of Rel Order We re itereted i the frtiol derivtive (the th derivtive of rel order) of the futio f = ( ) () beue of it ltter ue. Subtitutig () i ( yield d y y dy Γ( α) d Γ ( + = ( ) Γ( + α ( ) = The bove forul give the th derivtive of rel order of the futio ( ).. The Geerlied Cuhy -fold Itegrl Defiitio The geerlied Cuhy -fold itegrl i geerlitio of the Cuhy -fold itegrl of iteger order f = ( t) f () t dt. Γ Relig the oditio o i the bove defiitio fro iteger to rel > doe ot ffet the overgee of the itegrl. f( ) i futio with we igulrity over the itervl of itegrtio.. The th Ati-Derivtive of ( ) of Rel Order Agi for our eed of the th ti-derivtive of the futio ( ) we give it i thi etio. It i the evlutio of the itegrl ( t) ( t ) dt Γ Clultig the itegrl reult i the deired forul Γ ( + ( ) Γ ( The Melli Trfor + () A tter of ft we eed the elli trfor of the Gu hyergeoetri futio it will be elied lter to fid the deired uified forul. So we itrodue the Melli trfor d it ivere through the followig two defiitio. For ore diuio of the Melli trfor; ee [9]. Defiitio. The Melli trfor [9] of lolly itegrble futio f( ) o ( ) i defied by [ ; ] = () = () M f F f d ( α < R () < where α d β re rel ott. The tri α < R () < β i ow the tri of lytiity. Defiitio. The ivere Melli trfor [9] i give by f ( + i ) [ ] M f = i d α β π ; < < i where α d β re the e oe i the lt defiitio. Uig the Melli trfor defiitio d evlutig the orreodig itegrl eliit ereio for the Melli trfor of the Gu hyergeoetri futio be foud F( b ; ; ) (4) ( ) ( ) ( b ) ( )( Γ Γ( b) Γ( ) Γ Γ Γ Γ G () = where Γ () i the g futio d i defied () t t e dt Re() (5) Γ = > (6) 5. The Gui The Gu hyergeoetri futio i eil futio d i olutio of the lier eod order

3 A Colete Solutio to The Proble of Differetitio d Itegrtio of Rel Order for the Gui differetil eutio d by b y d d + ( ) y = d + (( + + ) ) (7) Oe of the olutio of the bove differetil eutio the Gui hyergeoetri futio d i give i ter of ower erie ( b) F( b ; ; ) = (8) ()! 6. The -futio = The -futio i very geerl futio tht eoe the ot of eil futio iludig the Meier G-futio d the geerlied hyergeoetri futio; ee [5] [6]. Nottio ( A ( ( b B ( b B) ( ( ) ( ). ( b B) Defiitio. The -futio i defied by the Melli-Bre itegrl [9]. () = h() d πi C where h () i give by h () = for Γ( b ) ( ) B Γ + A = = Γ = + + Γ = + ( b B) ( A) (9) For the bove we reuire tht (i) A d B re oitive uber. (ii) d b re ole uber uh tht A ( b + ν) B ( λ νλ = ; = ; =. 5 Tht e the ole of Γ( b B ) for = d Γ( + A ) for = do ot oiide. (iii) The otour C erte the ole reultig fro Γ( b B ) ( ) fro thoe of Γ( + A ) ( ). 6. Eitee Coditio for The -futio For eitee oditio of the -futio we refer the reder to [6]. 6. Proertie of The -futio The followig re oe roertie of the -futio tht re ueful for our uroe (ee [6]). Proerty ( ( + α A α = ( b B) ( b + α B B) Proerty A A α α = α > B ( b ) B α ( b α ) Proerty ( ( b B) = ( b B) ( 7. Meier G-futio The G-futio i eil e of the -futio. A lrge uber of eil futio re eil e of thi futio. I thi etio we give oe defiitio of the futio without y roof. For detiled diuio of the G-futio we refer the reder to [7]. Nottio G G b b b G ( ) G Thee re the tdrd ottio ued i the literture. I the followig defiitio ety

4 5 A Colete Solutio to The Proble of Differetitio d Itegrtio of Rel Order for the Gui rodut i iterreted uity d. The Meier G-futio with the reter d b b i defied Melli-Bre tye itegrl follow [7]. Defiitio 4. G = g() d b b L πi g () = Γ( b ) Γ( + ) = = Γ( b + ) Γ( ) = + = + It i ler tht the Meier G-futio i eil e of the -futio d it i derived fro the ltter by lettig A d B eul oe. 7. The rth Derivtive d The rth Ati-Derivtive of The -futio The loure roerty of the -futio uder rel order of differetitio d itegrtio e it very owerful tool for fidig uified forul for the th derivtive d the th ti-derivtive of eleetry d eil futio. I other word oe ere rel order derivtive d itegrl of -futio i ter of ew -futio. Thi i very ie roerty of the -futio whih i ot oeed by other eil futio. The followig le illutrte the ide. Le. The forul ( ) = ( ) r ( ra ( r ( b rb B) ( () give (i) derivtive of rbitrry order if r > (ii) itegrl of rbitrry order if r < of the -futio ( ( b B) Proof: We give roof for rt (i). The roof for rt (ii) i iilr to rt(i) d oly oe eed to ue forul () for frtiol order itegrtio. Rellig the defiitio of the -futio (9) () = h() d πi C where h () i give by (9). Oe differetite both ide of the bove eutio rovided the bove itegrl overge uiforly for oe uig the forul give where r d Γ ( + = r d Γ ( r + ( r) r ( ( )) π i h = C ( h() = Γ + h () Γ ( r + r h () i give by eutio (9). Uig the ottio of the -futio the bove be writte ( A )( ( ) r r + = + + ( b B) ( r Proerty ( of the -futio ilifie the lt eutio to ore ot for ( ( )) ( r ) b rb B d ( ra A ) ( r = ( )( If C i te th ( the eitee oditio for the bove -futio i π = = = + = + rg( ) < A + B A B For Prt(ii) oe eed forul () Γ ( + + r Γ ( + r+ whih i derived fro the geerlied Cuhy forul for the -fold itegrl. The ret of the roof i etly iilr to rt (i). Forul () i very iortt for fidig iteger

5 A Colete Solutio to The Proble of Differetitio d Itegrtio of Rel Order for the Gui 5 d rbitrry order yboli derivtive d itegrl of both eleetry d eil futio log they re rereetble i ter of the -futio. 8. A Uified Forul for the th Derivtive d the th Ati-Derivtive of Gui of Rel Order Now we re i oitio to give olete olutio of the roble of yboli differetitio d itegrtio of the Gui hyergeoetri futio of rel order. Thi will be hieved by itroduig uified forul for the th derivtive d the th ti-derivtive where be y rel uber. The forul eoe the two geerlied defiitio of differetitio d itegrtio. Nely the Rie-Liouville defiitio for frtiol differetitio d the geerlied Cuhy -fold itegrl. Theore: Give the Gui hyergeoetri futio the the forul α e (l( α) + iπ) ( ) ( b ) ( ( )( )( iπ e ( α+ = d ( t) F ( b ;( αt+ ) dt if > Γ ( ) d ( t) F ( b ;( αt+ ) dt if < Γ ( where < α + β < α d b give () The origil futio if = (b) Derivtive of y order if > () Ati-Derivtive of y order if <. Proof: Rereetig the hyergeoetri futio i ter of Melli-Bre itegrl give Γ() F( b ; ;( α + ) = Γ Γ( b) ( Γ( ) Γ( b) Γ( ) ( α d π i + C Γ where C i uitble otour. Relig by i the lt eutio yield Γ() F( b ; ;( α + ) = Γ Γ ( b)πi C Γ ( + ) Γ ( b+ ) Γ( ) iπ e ( α + d Γ + with tig i oidertio the hge i the otour C. Uig the -futio ottio we get the -futio rereettio of our hyergeoetri futio Γ() F( b ; ;( α + ) = Γ Γ( b) ( ( b ( α + ( ( By eloitig roerty () of the -futio we ilify the bove -futio to Γ() F( b ; ;( α + ) = Γ Γ( b) b ( ) ( ) iπ e ( α+ β ) ( ) ( ) Alyig le ( for rel order derivtive d ti-derivtive to the bove futio give uified forul for the th derivtive d the th ti-derivtive of the Beel futio ( ) ( ) F( b ; ; α + β ) α ( α + = ( ) ( b ) ( iπ e ( α+ β ) ( )( )( ()

6 54 A Colete Solutio to The Proble of Differetitio d Itegrtio of Rel Order for the Gui A further ilifitio be de to our uified forul by elig to roerty ( ( F( ) ) b ; ; + α β = ( ) ( b ) iπ e α Γ() ( iπ e ( α+. Γ Γ( b) ( ) ( ) ( () By oiderig the rorite otour eitig oditio be obtied uh < ( α + <. Ele: A uified forul for the gui hyergeoetri futio b( α give by G F( ; ; + ) i + Γ() ( α Γ Γ( b) 4 44 b α β (4) Subtitutig = i the bove forul give the oe third ti derivtive of the hyergeoetri futio give i the bove ele ( t) F( b ; ;( α + ) dt Γ() Γ() = ( α Γ Γ( b) (5) G b + + α β A further ilifitio be de to the ltter Meier G futio i ter of the geerlied hyergeoetri futio ( t) F( b ; ;( α + ) dt Γ() 6 5 ( i) ( + Γ b = 48 α ( α+ 5 4 F + b+; +; 6 ( α + 4 (6) 9. Coluio The i hieveet i thi wor be uried i the followig tteet. A olete olutio to the roble of fidig the th derivtive d the th ti-derivtive of the Gui hyergeoetri futio of rel order i obtied. Thi be oidered big brethrough i the re of lil d frtiol lulu well the re of yboli outtio. The diffiulty h bee i the evlutio of o eleetry itegrl. The gol h bee rehed without elig to itegrtio tehiue. The Fo -futio h bee itrodued i tool to give olete olutio to the roble i oidertio. Aother iortt ft i thee uified forul give uifitio for the two lil defiitio of geerlied differetitio d itegrtio. I the re of yboli outtio thee forul ehe the ower of outer lgebr yte ie they re lug i forul. CAS uh Mle d Mtheti hve lredy the Meier G -futio ileeted. O theother hd the Fo -futio h ot bee ileeted yet. Referee [] Mhei Beghorbl Frtiol differetil eutio & yboli derivtive d itegrl Sholr Pre Gery 4. [] Mhei M. Beghorbl A uified forul for rbitrry order yboli derivtive d itegrl of the ower-eoetil l Itertiol Jourl of Pure d Alied Mtheti 7 (7) o [] Uified forul for iteger d frtiol order yboli derivtive d itegrl of the ower-ivere trigooetri l I Itertiol Jourl of Pure d Alied Mtheti 4 (7) o [4] A uified forul for the th derivtive d the th-ti derivtive of the ower-logrithi l Proeedig of the Itertiol Coferee of Coutig i Egieerig Siee d Ifortio Clifori Stte Uiverity Fullerto CliforiIEEE (9) -4. [5] Chrle Fo The G d -futio yetril fourier erel Tr. Aer. Mth. So. 98 ( [6] A. M. Mthi The -futio with litio i

7 A Colete Solutio to The Proble of Differetitio d Itegrtio of Rel Order for the Gui 55 ttiti d other diilie Joh Wiley d So 978. [7] A hdboo of geerlied eil futio for ttitil d hyil iee Oford Siee Publitio 99. [8] Keith B. Oldh d Jeroe Sier The frtiol lulu Adi Pre 974. [9] R. B. Pri d D.Kii Aytoti d Melli-Bre itegrl Cbridge. [] Igor Podluby Frtiol differetil eutio Adei Pre S Diego Clifori 999. [] S. E. So A. A. Kilb d O. I Mrihev Frtiol itegrl d derivtive theory d litio Gordo d Breh Siee Publiher 996.

AUTOMATIC CONTROL SYSTEMS

AUTOMATIC CONTROL SYSTEMS 9 HE UO ONROL SYSES OSVE SLE RELZONS OF ONNUOUS-E LNER SYSES deuz Kzore trt: he rolem for exitee d determitio of the et of oitive ymtotilly tle reliztio of roer trfer futio of lier otiuou-time ytem i formulted

More information

Intermediate Applications of Vectors and Matrices Ed Stanek

Intermediate Applications of Vectors and Matrices Ed Stanek Iteredite Applictio of Vector d Mtrice Ed Stek Itroductio We decribe iteredite opertio d pplictio of vector d trice for ue i ttitic The itroductio i iteded for thoe who re filir with bic trix lgebr Followig

More information

Modified Farey Trees and Pythagorean Triples

Modified Farey Trees and Pythagorean Triples Modified Frey Trees d Pythgore Triples By Shi-ihi Kty Deprtet of Mthetil Siees, Fulty of Itegrted Arts d Siees, The Uiversity of Tokushi, Tokushi 0-0, JAPAN e-il ddress : kty@istokushi-ujp Abstrt I 6,

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators.

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators. Topic i Qutu Optic d Qutu Ifortio TA: Yuli Mxieko Uiverity of Illioi t Urb-hpig lt updted Februry 6 Proble Set # Quetio With G x, x E x E x E x E x G pqr p q r where G pqr i oe trix eleet For geerl igle

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

A STUDY ON MULTIPLE IMPROPER INTEGRALS USING MAPLE

A STUDY ON MULTIPLE IMPROPER INTEGRALS USING MAPLE Itertiol Jourl of Physics d Mtheticl Scieces ISSN: 2277-2 (Olie) A Olie Itertiol Jourl Avilble t http://www.cibtech.org/ps.ht 203 Vol. 3 (3) July-Septeber, pp.55-0/yu A STUDY ON MULTIPLE IMPROPER INTEGRALS

More information

ELIMINATION OF FINITE EIGENVALUES OF STRONGLY SINGULAR SYSTEMS BY FEEDBACKS IN LINEAR SYSTEMS

ELIMINATION OF FINITE EIGENVALUES OF STRONGLY SINGULAR SYSTEMS BY FEEDBACKS IN LINEAR SYSTEMS 73 M>D Tadeuz azore Waraw Uiverity of Tehology, Faulty of Eletrial Egieerig Ititute of Cotrol ad Idutrial Eletroi EIMINATION OF FINITE EIENVAUES OF STONY SINUA SYSTEMS BY FEEDBACS IN INEA SYSTEMS Tadeuz

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

SOME UNIFIED INTEGRALS ASSOCIATED WITH GENERALIZED STRUVE FUNCTION., S.D. Purohit

SOME UNIFIED INTEGRALS ASSOCIATED WITH GENERALIZED STRUVE FUNCTION., S.D. Purohit SOME UNIFIED INTEGRALS ASSOCIATED WIT GENERALIZED STRUVE FUNCTION D.L. Suthr S.D. Purohit d K.S. Nisr This er is devoted for the stud of e geerliztio of Struve futio te. I this er We estlish four e itegrl

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator Itertiol Jourl of Moder Egieerig Reserch (IJMER) Vol., Issue.3, My-Jue 0-56-569 ISSN: 49-6645 N. D. Sgle Dertmet of Mthemtics, Asheb Dge College of Egieerig, Asht, Sgli, (M.S) Idi 4630. Y. P. Ydv Dertmet

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Introduction of Fourier Series to First Year Undergraduate Engineering Students

Introduction of Fourier Series to First Year Undergraduate Engineering Students Itertiol Jourl of Adved Reserh i Computer Egieerig & Tehology (IJARCET) Volume 3 Issue 4, April 4 Itrodutio of Fourier Series to First Yer Udergrdute Egieerig Studets Pwr Tejkumr Dtttry, Hiremth Suresh

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Analysis of Analytical and Numerical Methods of Epidemic Models

Analysis of Analytical and Numerical Methods of Epidemic Models Iteratioal Joural of Egieerig Reearc ad Geeral Sciece Volue, Iue, Noveber-Deceber, 05 ISSN 09-70 Aalyi of Aalytical ad Nuerical Metod of Epideic Model Pooa Kuari Aitat Profeor, Departet of Mateatic Magad

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

1999 by CRC Press LLC

1999 by CRC Press LLC Poulri A. D. The Melli Trform The Hdboo of Formul d Tble for Sigl Proceig. Ed. Alexder D. Poulri Boc Rto: CRC Pre LLC,999 999 by CRC Pre LLC 8 The Melli Trform 8. The Melli Trform 8. Propertie of Melli

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Some Properties of Analytic Functions Defined. by a Linear Operator

Some Properties of Analytic Functions Defined. by a Linear Operator It Jourl o Mth Alsis Vol 6 o 545-55 Some Proerties o Alti Futios Deied b ier Oertor S R Swm Dertmet o omuter Siee d ieeri R V ollee o ieeri Msore Rod Blore -56 59 Idi miltoswm@redimilom ABSTRAT The im

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Uncertainty Principle of Mathematics

Uncertainty Principle of Mathematics Septeber 27 Ucertaity Priciple of Matheatics Shachter Mourici Israel, Holo ourici@walla.co.il Preface This short paper prove that atheatically, Reality is ot real. This short paper is ot about Heiseberg's

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

Introduction to Modern Control Theory

Introduction to Modern Control Theory Itroductio to Moder Cotrol Theory MM : Itroductio to Stte-Spce Method MM : Cotrol Deig for Full Stte Feedck MM 3: Etitor Deig MM 4: Itroductio of the Referece Iput MM 5: Itegrl Cotrol d Rout Trckig //4

More information

An Investigation of Continued Fractions

An Investigation of Continued Fractions Ivetigtio o Cotiued rtio Kriti Ptto Ohio Norther Uiverity d Ohio 8 Emil: k-ptto@ou.edu dvior: Dr. dr hroeder -hroeder@ou.edu d Dr. Rihrd Dquil rdquil@mukigum.edu btrt: The tudy o otiued rtio h produed

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

, we would have a series, designated as + j 1

, we would have a series, designated as + j 1 Clculus sectio 9. Ifiite Series otes by Ti Pilchowski A sequece { } cosists of ordered set of ubers. If we were to begi ddig the ubers of sequece together s we would hve series desigted s. Ech iteredite

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

2 SKEE/SKEU v R(t) - Figure Q.1(a) Evaluate the transfer function of the network as

2 SKEE/SKEU v R(t) - Figure Q.1(a) Evaluate the transfer function of the network as SKEE/SKEU 073 PART A Q. ) A trfer futio i ued to deribe the reltiohi betwee the iut d outut igl of ytem. Figure Q.) how RC etwork ued to form filter futio. V it) R + v Rt) - C + v t) - Figure Q.) i) ii)

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

5.1 - Areas and Distances

5.1 - Areas and Distances Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 63u Office Hours: R 9:5 - :5m The midterm will cover the sectios for which you hve received homework d feedbck Sectios.9-6.5 i your book.

More information

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Bllei UASVM, Horilre 65(/008 pissn 1843-554; eissn 1843-5394 DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Crii C. MERCE Uiveriy of Agrilrl iee d Veeriry Mediie Clj-Npo,

More information

Section 3.6: Rational Exponents

Section 3.6: Rational Exponents CHAPTER Sectio.6: Rtiol Epoets Sectio.6: Rtiol Epoets Objectives: Covert betwee rdicl ottio d epoetil ottio. Siplif epressios with rtiol epoets usig the properties of epoets. Multipl d divide rdicl epressios

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

ON n-fold FILTERS IN BL-ALGEBRAS

ON n-fold FILTERS IN BL-ALGEBRAS Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges 27-42 ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

STRUNET CONCRETE DESIGN AIDS

STRUNET CONCRETE DESIGN AIDS Itrodutio to Corete Colum Deig Flow Chrt he Colum Deig Setio i Struet oti two mi prt: Chrt to develop tregth itertio digrm for give etio, d red -mde Colum Itertio Digrm, for quik deig of give olum. Corete

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

Math 153: Lecture Notes For Chapter 1

Math 153: Lecture Notes For Chapter 1 Mth : Lecture Notes For Chpter Sectio.: Rel Nubers Additio d subtrctios : Se Sigs: Add Eples: = - - = - Diff. Sigs: Subtrct d put the sig of the uber with lrger bsolute vlue Eples: - = - = - Multiplictio

More information

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator Glol Jourl o Pure d Alied Mthetics. ISSN 973-768 Volue 4 Nuer 5 28. 733-74 Reserch Idi Pulictios htt://www.riulictio.co O New Suclss o Multivlt Fuctios eied y Al-Ooudi ieretil Oertor r.m.thirucher 2 T.Stli

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Suzuki Type Common Coupled Fixed Point for a Pair of w-compatible Maps in Partial G- Metric Spaces

Suzuki Type Common Coupled Fixed Point for a Pair of w-compatible Maps in Partial G- Metric Spaces Suuki Te Coo Couled ied oit for ir of w-cotible Ms i rtil G- Metric Sces KRRo KVSiv rvthi KRKRo rofessor Dertet of Mthetics Achr Ngrju Uiversit Ngrju Ngr Gutur Adhr rdesh Idi Reserch Scholr Dertet of Alied

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems Avilble t http://pvmuedu/m Appl Appl Mth ISSN: 192-9466 Vol 8, Iue 2 (December 21), pp 585 595 Applictio d Applied Mthemtic: A Itertiol Jourl (AAM) Aymptotic Propertie of Solutio of Two Dimeiol Neutrl

More information

On Fourth and Fifth Order Explicit Almost Runge Kutta Methods

On Fourth and Fifth Order Explicit Almost Runge Kutta Methods Itertiol Jourl of Sietifi d Iovtive Mthemtil Reerh (IJSIMR) Volume, Iue, Jur 6, PP 88-96 ISSN 7-7X (Prit) & ISSN 7- (Olie) www.rjourl.org O Fourth d Fifth Order Expliit Almot Ruge Kutt Method Adulrhm Ndu

More information

3.7 The Lebesgue integral

3.7 The Lebesgue integral 3 Mesure d Itegrtio The f is simple fuctio d positive wheever f is positive (the ltter follows from the fct tht i this cse f 1 [B,k ] = for ll k, ). Moreover, f (x) f (x). Ideed, if x, the there exists

More information

Summer Math Requirement Algebra II Review For students entering Pre- Calculus Theory or Pre- Calculus Honors

Summer Math Requirement Algebra II Review For students entering Pre- Calculus Theory or Pre- Calculus Honors Suer Mth Requireet Algebr II Review For studets eterig Pre- Clculus Theory or Pre- Clculus Hoors The purpose of this pcket is to esure tht studets re prepred for the quick pce of Pre- Clculus. The Topics

More information

On Almost Increasing Sequences For Generalized Absolute Summability

On Almost Increasing Sequences For Generalized Absolute Summability Joul of Applied Mthetic & Bioifotic, ol., o., 0, 43-50 ISSN: 79-660 (pit), 79-6939 (olie) Itetiol Scietific Pe, 0 O Alot Iceig Sequece Fo Geelized Abolute Subility W.. Suli Abtct A geel eult coceig bolute

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * * Dmis o Mrie Biologil Resores A FUNCTION * * * REVIEW OF SOME MATHEMATICS * * * z () z g(,) A tio is rle or orml whih estlishes reltioshi etwee deedet vrile (z) d oe or more ideedet vriles (,) sh tht there

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD IJRRAS August THE SOLUTIO OF THE FRACTIOAL DIFFERETIAL EQUATIO WITH THE GEERALIZED TAYLOR COLLOCATI METHOD Slih Ylçıbş Ali Kourlp D. Dömez Demir 3* H. Hilmi Soru 4 34 Cell Byr Uiversity Fculty of Art &

More information

THE THEORY OF DISTRIBUTIONS APPLIED TO DIVERGENT INTEGRALS OF THE FORM

THE THEORY OF DISTRIBUTIONS APPLIED TO DIVERGENT INTEGRALS OF THE FORM THE THEOY OF DISTIBUTIONS APPLIED TO DIVEGENT INTEGALS OF THE FOM ( ) u ( b) Jose Jvier Gri Moret Grdute studet of Physis t the UPV/EHU (Uiversity of Bsque outry) I Solid Stte Physis Address: Address:

More information

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE Prt 1. Let be odd rime d let Z such tht gcd(, 1. Show tht if is qudrtic residue mod, the is qudrtic residue mod for y ositive iteger.

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

On Some Double Integrals Involving H -Function of Two Variables and Spheroidal Functions

On Some Double Integrals Involving H -Function of Two Variables and Spheroidal Functions IOSR Joural of Mathematis (IOSR-JM) e-iss: 78-578, -ISS: 9-765X. Volume 0, Issue Ver. IV (Jul-Aug. 0), PP 55-6 www.iosrourals.org O Some Double Itegrals Ivolvig H -Futio of Two Variables ad Sheroidal Futios

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

DETAIL MEASURE EVALUATE

DETAIL MEASURE EVALUATE MEASURE EVALUATE B I M E q u i t y BIM Workflow Guide MEASURE EVALUATE Introduction We o e to ook 2 i t e BIM Workflow Guide i uide wi tr i you i re ti ore det i ed ode d do u e t tio u i r i d riou dd

More information

Some Fixed Point Theorems of Integral Type Contraction in Cone b-metric Spaces

Some Fixed Point Theorems of Integral Type Contraction in Cone b-metric Spaces Trkih Jorl of Alyi Nber Theory, 5, Vol, No 6, 65-69 Avilble olie t htt://bciebco/tjt//6/5 Sciece Ectio Pblihig DOI:69/tjt--6-5 Soe Fixe Poit Theore of Itegrl Tye Cotrctio i Coe b-etric Sce Rhi Shh, Akbr

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

International Journal of Mathematical Archive-5(1), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(1), 2014, Available online through   ISSN Itertiol Jourl of Mthemticl Archive-5( 4 93-99 Avilble olie through www.ijm.ifo ISSN 9 546 GENERALIZED FOURIER TRANSFORM FOR THE GENERATION OF COMPLE FRACTIONAL MOMENTS M. Gji F. Ghrri* Deprtmet of Sttistics

More information

Observations on the Non-homogeneous Quintic Equation with Four Unknowns

Observations on the Non-homogeneous Quintic Equation with Four Unknowns Itertiol Jourl of Mthemtic Reerch. ISSN 976-84 Volume, Number 1 (13), pp. 17-133 Itertiol Reerch Publictio Houe http://www.irphoue.com Obervtio o the No-homogeeou Quitic Equtio with Four Ukow S. Vidhylkhmi

More information