Reference. R. K. Herz,

Size: px
Start display at page:

Download "Reference. R. K. Herz,"

Transcription

1 Identifiation of CVD kinetis by the ethod of Koiyaa, et al. Coparison to 1D odel (2012) filenae: CVD_Koiyaa_1D_odel Koiyaa, et al. (1999) disussed ethods to identify the iportant steps in a CVD reation syste. In one ethod, they onsidered CVD on the internal of a ylindrial tube. They proposed that the liiting proess in a CVD reation syste ould be deterined by the pattern of plots of the log of the experiental groth rate vs. tube length for tubes of different length. In their Equations 1 and 2, Koiyaa, et al. presented a 1D odel of the syste. The onvetion of the reatant is represented by the ean veloity. For the diffusion liited ase, the reation is fast relative to the other proesses. The rate of diffusion of reatant to the an be represented by a ass transfer oeffiient that is appropriate for lainar flo. elo e develop equations for the 1D approxiation of the diffusion liited ase. diensionless ass transfer oeffiient, the Sherood nuber, is defined. The plot belo as produed by this 1D approxiation. The equations and Matlab progras are listed at the of this douent. The pattern shon in this plot agrees ith the diffusion liited plot in Koiyaa et al. This plot is also siilar to the pattern produed by the 2D odel that e developed in separate set of notes. Referene H. Koiyaa, Y. Shiogaki, and Y. Egashira, Cheial reation engineering in the design of CVD reators, Cheial Engineering Siene, vol. 54, no , pp , Jul

2 Introdution of the Sherood nuber to lainar flo reator Rihard K. Herz, Start ith the 2D equations shon previously for speies and using diensionless variables ith the pries dropped. 2 2 g = Da u + + x 2 x 2 + r 2 r r ( ReS) for speies (diensionless) 2 2 g = Da u + + x 2 x 2 + r 2 r r ( ReS) for speies (diensionless) No, neglet axial diffusion for large ReS and speify that there is no reation of at the. The produt ReS an be expressed as the ratio of onvetive ass transport rate to diffusive ass transport rate, and as the harateristi tie for diffusion aross the tube diaeter divided by the ean residene tie of fluid in the tube. See y notes on flo patterns in heial reators. lso, instead of desribing radial diffusion and reation at the exatly, e ill approxiate these obined proesses using a ass transfer oeffiient. This ill onvert the equations into ordinary differential equations. Sine onvetion and reation at the are both linear in the onentration, e an use the ean veloity, u, and ean onentrations,, to develop balanes around a diskshaped ontrol volue instead of our original ring-shaped ontrol volue. Using the original diensioned variables: g 0 = k u dx g 2 0 = k u + k dx R These equations are approxiations for gas reation in lainar flo (they desribe plug flo) and over-predit onversions by about 10. See y ourse notes on heial reation engineering, flo patterns in heial reators, for ReS >> 1 in lainar flo. The last ter on the right in the loer equation is the net rate at hih diffuses into the disk-shaped ontrol volue fro the. This rate is approxiated as being proportional to the differene beteen the and bulk-ean onentrations of, here the proportionality oeffiient, k, is alled the ass transfer oeffiient. The ass transfer oeffiient k has units (/s). The ter (2/R) is the area per unit volue of reator, here R is the radius of the reator.

3 Sine is being onsued at the, and <, this ter is negative, so it is onventional to reverse the onentration ters: g 2 0 = k u k dx R No e onvert bak to diensionless variables to get: 0 = Da u Sh dx here ' g ' ' ' ' ' 2 g g Da k / D / R ; a ' u u ' = 1 ; x ( 2 x/ R) /( ReS) ; u ' i i ;,0 ',0 and here the Sherood nuber is: Sh 2Rk D No e have a syste of to ODEs. Dropping the pries: Da g dx = g Da Sh( ) dx = Our only proble no is that e don't kno. Sine both ass transfer and this reation are first-order proesses, e an do soething about this. The flux of fro the bulk gas to the equals the rate at hih reats at the : k = k little algebra gives us: kk k ( ) = = k k + k 2Rk Sh D

4 Mass-transfer liited ase: For the liiting ase here the rate of reation at the is fast, k >> k, k k and >>. Sh = Sh = 2 Rk / D. In Koiyaa et al. this ase 3 is loosely alled "diffusion liited." The fil groth rate equals k ( /s ) (ol/ ). Sine Sh and, therfore, Sh does not vary ith R, k is proportional to (1/R). Surfae-reation liited ase: For the liiting ase here the rate of reation at the is relatively slo, k << k, k k and. Sh = 2 Rk / D. Note that, hereas, > suh that k ( ) > 0. Note that Sh for this ase is proportional to R. lso note that the value of uh less than the value of 3 fil groth rate equals not vary ith R. No our diensionless equations are: dx = Da g g Da Sh dx = k is indepent of R suh that Sh for the ass-transfer liited ase, sine Sh for this ase is k k <<. The k /s (ol/ ). The surfae reation rate onstant k does The initial onditions are, at x = 0, diensionless = 1, diensionless = 0. The equations are in the for of those for a standard series reation syste. The equation for an be integrated easily by separating variables, and then the solution for as a funtion of x an be substituted in the equation for. This equation an be integrated using the integrating fator approah. Gas-phase reation liited ase: Sh for the ass-transfer liited ase: g Da << Sh. The values of the Sherood nuber an be deterined fro analytial solution of the equations for lainar flo and radial diffusion, or solution of the equivalent heat transfer proble to obtain the Nusselt nuber for heat transfer (the Sherood nuber is soeties alled the Nusselt nuber for ass transfer). For fully developed lainar flo entering a tube in hih ass transfer to the ours ith onstant onentration at the, e.g., fast reation suh that the onentration is approxiately zero, the Sherood nuber varies ith diensionless axial position x' in the folloing ay, as obtained fro the solution of the governing partial differential equations:

5 diensionless x': 0, 0.002, 0.02, 0.2, 0.4, Sh:, 12.8, 6.0, 3.71, 3.66, 3.66 here diensionless x' = (2x/R)/(ReS), Sh 2Rk D Sine Sh does not vary ith tube radius R, k is proportional to (1/R). [e.g., Kays and Craford, "Convetive heat and ass transfer," 2nd ed., MGra-Hill (1980), p. 111, for analogous heat transfer ase]

6 1D SYSTEM - Matlab listing When you opy to Matlab do not inlude page footers & ay need to add return beteen odel CVD reations in tube (g)->(g) (g) -> fil at (s) this progra requires the folloing -files: vd_1d_derivs. vd_1d_sherood. THIS PROGRM CURRENTLY IS FOR MSS-TRNSFER LIMITED CSE sine funtion Sherood, hih is used by funtion vd_1d_derivs, supplies only Sh for ass-transfer liited ase arning('off') otherise get arnings fro taking log for plot share global variable values ith ain and funtions global Da Rratio GTL INPUT VLUE - GTL IS 1 for Gas Transport Liited Case other for Surfae Reation Liited Case GTL = 1; Rratio = ratio of tube radius R to a referene radius for Rratio = [ ] Dakoehler nuber for -> rxn in gas Da for gas rxn prop to R^2 Da = 200Rratio^2; initial onditions of depent integration variables of ODEs diensionless inlet onentrations 0 = 1; 0 = 0; 0 = [0 0]; speify span in indepent integration variable of ODEs diensioned tube length relative to a referene tube length xd0 = 0; xdl = 2; xdspan = [xd0 xdl]; for onstant-length tube, diensionless x prop. to 1/R^2 xspan = xdspan/rratio^2; span in diensionless tube length integrate using standard atlab funtion ode45 [x ] = ode45('vd_1d_derivs',xspan,0); = (:,1); = (:,2); [ro ol] = size(); f = (ro); X = (0 - f)/0; f = (ro); onvert fro diensionless x to diensioned xd relative to referene tube length xd = xrratio^2; if GTL == 1 alulate fil deposition rate (ol/2/s) = k(/s)(ol/3) k = ShD/(2R), so k and fil deposition rate prop to /R frate = /Rratio; else for surfae reation liited, rate = k(/s)(ol/3) k is indepent of R frate = ; probably a better ay in atlab than this to have different olor urves for eah ase on plot but this oes to ind if Rratio == 0.5 RateMin = frate; xdmin = xd;

7 Min = ; Min = ; elseif Rratio == 2.0 RateMax = frate; xdmax = xd; Max = ; Max = ; else RateMid = frate; xdmid = xd; Mid = ; Mid = ; plot rate and distane don tube as diensioned values relative to referene diensioned values of rate and tube length plot(xdmin,log10(ratemin),'g',xdmid,log10(ratemid),'r',xdmax,log10(ratemax),'b') title('green = 0.5 Rref, red = Rref, blue = 2 Rref, Rref = referene tube radius') ylabel('log10(fil deposition rate) (arbitrary diensional units)') xlabel('distane don tube (arbitrary diensional units)') axis([0 xdl ]) TKE LOOK T GS PHSE CONC figure(2), plot(xdmin,min,'g',xdmid,mid,'r',xdmax,max,'b') title(': green = Rref/2, red = Rref, blue = 2Rref, Rref = referene tube radius') ylabel('diensionless ') xlabel('distane don tube (arbitrary diensional units)') figure(3), plot(xdmin,min,'g',xdmid,mid,'r',xdmax,max,'b') title(': green = Rref/2, red = Rref, blue = 2Rref, Rref = referene tube radius') ylabel('diensionless ') xlabel('distane don tube (arbitrary diensional units)') LISTING OF FUNCTION FILE vd_1d_derivs. funtion dx = vd_1d_derivs(x,) funtion vd_1d_derivs uses funtion vd_1d_sherood share global variable values ith ain and funtions global Da Rratio GTL = (1); = (2); if GTL == 1 for gas-transport liited ase, k >> k so Sh = 2Rk/D and k is proportional to (1/R), so Sh indep of R here take into aount variation of Sherood nuber in entrane length - not uh hange fro using onstant 3.66 Sh = vd_1d_sherood(x); else for surfae-reation liited, k << k so Sh = 2Rk/D and Sh is proportional to R ShRef = 0.3; arbitrary value but ust be << 3.66 Sh = ShRefRratio; dx = -Da; dx = Da - Sh; dx = [dx; dx]; return as olun vetor

8 LISTING OF FUNCTION FILE vd_1d_sherood. funtion Sh = vd_1d_sherood(x) this funtion supplies the Sherood nuber for ass-transfer to ylindrial tube for fully developed lainar flo and onstant onentration, e.g., a onentration near zero for fast reation variation of Sh in entrane region has sall effet vs. using liiting value of 3.66 everyhere for the values of inputs in ain progra vd_1d aount for variation of Sh in entrane region here onentration profiles are developing fit urve to Sh vs. diensionless x in entrane region oeffiients of 3rd order polynoial fit of log(x) vs. log(sh) see belo oef = [ ]; if (x<0.001) Sh = infinity at x = 0 but don't bother Sh = 12.8; elseif x < 0.2 use fit in entrane region lnsh = polyval(oef,log(x)); Sh = exp(lnsh); else past entrane region, use liiting Sh Sh = 3.66; fit Sh in entrane region Sh = [ ]; x = [ ]; lnsh = log(sh); atlab log = ln lnx = log(x); oef = polyfit(lnx,lnsh,3); 3rd order polynoial hek urve at ore points than ere fit to see if have deviations beteen fit points lnxp = log(0.001):0.1:log(0.3); lnshp = polyval(oef,lnxp); plot(lnx,lnsh,'b',lnxp,lnshp,'k') title('blue = data, blk = fit') E CREFUL ith 2 fators If hange diensionless x' = (2x/R)/(ReS) to get rid of 2's in ODEs, then have to re-fit the funtion in Sherood.!!!! Sherood. diensionless x' = (x/r)/(res)

Systems of Linear First Order Ordinary Differential Equations Example Problems

Systems of Linear First Order Ordinary Differential Equations Example Problems Systes of Linear First Order Ordinary Differential Equations Eaple Probles David Keffer Departent of Cheial Engineering University of Tennessee Knoville, TN 79 Last Updated: Septeber 4, Eaple. Transient

More information

MAIN TOPICS iensional i l Analysis Bukingha Pi Theore eterination of Pi Ters Coents about iensional Analysis Coon iensionless Groups in Fluid Mehanis

MAIN TOPICS iensional i l Analysis Bukingha Pi Theore eterination of Pi Ters Coents about iensional Analysis Coon iensionless Groups in Fluid Mehanis FUNAMENTALS OF FLUI MECHANICS Chapter 7 iensional Analysis Modeling, and Siilitude MAIN TOPICS iensional i l Analysis Bukingha Pi Theore eterination of Pi Ters Coents about iensional Analysis Coon iensionless

More information

Lecture 24: Spinodal Decomposition: Part 3: kinetics of the

Lecture 24: Spinodal Decomposition: Part 3: kinetics of the Leture 4: Spinodal Deoposition: Part 3: kinetis of the oposition flutuation Today s topis Diffusion kinetis of spinodal deoposition in ters of the onentration (oposition) flutuation as a funtion of tie:

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

Lecture 23: Spinodal Decomposition: Part 2: regarding free energy. change and interdiffusion coefficient inside the spinodal

Lecture 23: Spinodal Decomposition: Part 2: regarding free energy. change and interdiffusion coefficient inside the spinodal Leture 3: Spinodal eoposition: Part : regarding free energy hange and interdiffusion oeffiient inside the spinodal Today s topis ontinue to understand the basi kinetis of spinodal deoposition. Within the

More information

A Differential Equation for Specific Catchment Area

A Differential Equation for Specific Catchment Area Proeedings of Geomorphometry 2009. Zurih, Sitzerland, 3 ugust - 2 September, 2009 Differential Equation for Speifi Cathment rea J. C. Gallant, M. F. Huthinson 2 CSIRO Land and Water, GPO Box 666, Canberra

More information

Numerical Studies of Counterflow Turbulence

Numerical Studies of Counterflow Turbulence Nonae anusript No. will be inserted by the editor Nuerial Studies of Counterflow Turbulene Veloity Distribution of Vorties Hiroyuki Adahi Makoto Tsubota Reeived: date Aepted: date Abstrat We perfored the

More information

Mass Transfer (Stoffaustausch) Fall 2012

Mass Transfer (Stoffaustausch) Fall 2012 Mass Transfer (Stoffaustaush) Fall Examination 9. Januar Name: Legi-Nr.: Edition Diffusion by E. L. Cussler: none nd rd Test Duration: minutes The following materials are not permitted at your table and

More information

The Seesaw Mechanism

The Seesaw Mechanism The Seesaw ehanis By obert. Klauber www.quantufieldtheory.info 1 Bakground It ay see unusual to have suh low values for asses of neutrinos, when all other partiles like eletrons, quarks, et are uh heavier,

More information

Kinematics of Elastic Neutron Scattering

Kinematics of Elastic Neutron Scattering .05 Reator Physis - Part Fourteen Kineatis of Elasti Neutron Sattering. Multi-Group Theory: The next ethod that we will study for reator analysis and design is ulti-group theory. This approah entails dividing

More information

Chapter 2 Lecture 5 Longitudinal stick fixed static stability and control 2 Topics

Chapter 2 Lecture 5 Longitudinal stick fixed static stability and control 2 Topics hapter 2 eture 5 ongitudinal stik fied stati stability and ontrol 2 Topis 2.2 mg and mα as sum of the ontributions of various omponent 2.3 ontributions of ing to mg and mα 2.3.1 orretion to mα for effets

More information

General Closed-form Analytical Expressions of Air-gap Inductances for Surfacemounted Permanent Magnet and Induction Machines

General Closed-form Analytical Expressions of Air-gap Inductances for Surfacemounted Permanent Magnet and Induction Machines General Closed-form Analytial Expressions of Air-gap Indutanes for Surfaemounted Permanent Magnet and Indution Mahines Ronghai Qu, Member, IEEE Eletroni & Photoni Systems Tehnologies General Eletri Company

More information

International Journal of Thermodynamics, Vol. 18, No. 1, P (2015). Sergey G.

International Journal of Thermodynamics, Vol. 18, No. 1, P (2015).   Sergey G. International Journal of Therodynais Vol. 8 No. P. 3-4 (5). http://dx.doi.org/.554/ijot.5343 Four-diensional equation of otion for visous opressible and harged fluid with regard to the aeleration field

More information

Final Exam: know your section, bring your ID!

Final Exam: know your section, bring your ID! Chapter 15: Equilibrium Part 1 Read: BLB 15.1 3 HW: BLB 15:13,14, 21 Supplemental 15:1 4 Know: Chemial Equilibrium Catalysts Equilibrium Constant Equilibrium onstant expression Homogeneous/Heterogeneous

More information

Green s Function for Potential Field Extrapolation

Green s Function for Potential Field Extrapolation Green s Funtion for Potential Field Extrapolation. Soe Preliinaries on the Potential Magneti Field By definition, a potential agneti field is one for whih the eletri urrent density vanishes. That is, J

More information

Electromagnetic Waves

Electromagnetic Waves Eletroagneti Waves Physis 6C Eletroagneti (EM) waves an be produed by atoi transitions (ore on this later), or by an alternating urrent in a wire. As the harges in the wire osillate bak and forth, the

More information

Signals & Systems - Chapter 6

Signals & Systems - Chapter 6 Signals & Systems - Chapter 6 S. A real-valued signal x( is knon to be uniquely determined by its samples hen the sampling frequeny is s = 0,000π. For hat values of is (j) guaranteed to be zero? From the

More information

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 2/3/2014

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 2/3/2014 Amount of reatant/produt //01 quilibrium in Chemial Reations Lets look bak at our hypothetial reation from the kinetis hapter. A + B C Chapter 15 quilibrium [A] Why doesn t the onentration of A ever go

More information

(Newton s 2 nd Law for linear motion)

(Newton s 2 nd Law for linear motion) PHYSICS 3 Final Exaination ( Deeber Tie liit 3 hours Answer all 6 questions You and an assistant are holding the (opposite ends of a long plank when oops! the butterfingered assistant drops his end If

More information

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 5/27/2014

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 5/27/2014 Amount of reatant/produt 5/7/01 quilibrium in Chemial Reations Lets look bak at our hypothetial reation from the kinetis hapter. A + B C Chapter 15 quilibrium [A] Why doesn t the onentration of A ever

More information

2. Mass transfer takes place in the two contacting phases as in extraction and absorption.

2. Mass transfer takes place in the two contacting phases as in extraction and absorption. PRT 11- CONVECTIVE MSS TRNSFER 2.1 Introdution 2.2 Convetive Mass Transfer oeffiient 2.3 Signifiant parameters in onvetive mass transfer 2.4 The appliation of dimensional analysis to Mass Transfer 2.4.1

More information

Part G-4: Sample Exams

Part G-4: Sample Exams Part G-4: Sample Exams 1 Cairo University M.S.: Eletronis Cooling Faulty of Engineering Final Exam (Sample 1) Mehanial Power Engineering Dept. Time allowed 2 Hours Solve as muh as you an. 1. A heat sink

More information

Congruences and Modular Arithmetic

Congruences and Modular Arithmetic Congruenes and Modular Aritheti 6-17-2016 a is ongruent to b od n eans that n a b. Notation: a = b (od n). Congruene od n is an equivalene relation. Hene, ongruenes have any of the sae properties as ordinary

More information

Scholarship Calculus (93202) 2013 page 1 of 8. ( 6) ± 20 = 3± 5, so x = ln( 3± 5) 2. 1(a) Expression for dy = 0 [1st mark], [2nd mark], width is

Scholarship Calculus (93202) 2013 page 1 of 8. ( 6) ± 20 = 3± 5, so x = ln( 3± 5) 2. 1(a) Expression for dy = 0 [1st mark], [2nd mark], width is Sholarship Calulus 93) 3 page of 8 Assessent Shedule 3 Sholarship Calulus 93) Evidene Stateent Question One a) e x e x Solving dy dx ln x x x ln ϕ e x e x e x e x ϕ, we find e x x e y The drop is widest

More information

x(t) y(t) c c F(t) F(t) EN40: Dynamics and Vibrations Homework 6: Forced Vibrations Due Friday April 5, 2018

x(t) y(t) c c F(t) F(t) EN40: Dynamics and Vibrations Homework 6: Forced Vibrations Due Friday April 5, 2018 EN40: Dynais and Vibrations Hoewor 6: Fored Vibrations Due Friday April 5, 2018 Shool of Engineering Brown University 1. The vibration isolation syste shown in the figure has =20g, = 19.8 N / = 1.259 Ns

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way.

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way. Chapter 14 The Conept of Equilibrium and the Equilibrium Constant In hapter 1 we dealt with Physial Equilibrium Physial Changes HO 2 (l) HO 2 (g) In hapter 14 we will learn about Chemial Equilibrium. We

More information

KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1

KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1 KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1 CIMM- Av.Velez Sarsfield 1561 C.P.5000 Córdoba, Argentina. aabril@intiemor.gov.ar Abstrat - A new interpretation to the kinetis of iron oxide

More information

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the . Whih two values of teperature are equivalent to the nearest degree when easured on the Kelvin and on the Celsius sales of teperature? Kelvin sale Celsius sale A. 40 33 B. 273 00 C. 33 40 D. 373 0 2.

More information

Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers

Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers A. E. Romanov et al.: Threading Disloation Density Redution in Layers (II) 33 phys. stat. sol. (b) 99, 33 (997) Subjet lassifiation: 6.72.C; 68.55.Ln; S5.; S5.2; S7.; S7.2 Modeling of Threading Disloation

More information

Chapter 13, Chemical Equilibrium

Chapter 13, Chemical Equilibrium Chapter 13, Chemial Equilibrium You may have gotten the impression that when 2 reatants mix, the ensuing rxn goes to ompletion. In other words, reatants are onverted ompletely to produts. We will now learn

More information

Homework Set 4. gas B open end

Homework Set 4. gas B open end Homework Set 4 (1). A steady-state Arnold ell is used to determine the diffusivity of toluene (speies A) in air (speies B) at 298 K and 1 atm. If the diffusivity is DAB = 0.0844 m 2 /s = 8.44 x 10-6 m

More information

Temperature Control of Batch Suspension Polyvinyl Chloride Reactors

Temperature Control of Batch Suspension Polyvinyl Chloride Reactors 1285 A publiation of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;

More information

Uniaxial Concrete Material Behavior

Uniaxial Concrete Material Behavior COMPUTERS AND STRUCTURES, INC., JULY 215 TECHNICAL NOTE MODIFIED DARWIN-PECKNOLD 2-D REINFORCED CONCRETE MATERIAL MODEL Overview This tehnial note desribes the Modified Darwin-Peknold reinfored onrete

More information

Modeling the modulated acoustic radiation force distribution in a viscoelastic medium driven by a spherically focused ultrasound transducer

Modeling the modulated acoustic radiation force distribution in a viscoelastic medium driven by a spherically focused ultrasound transducer Modeling the odulated aousti radiation fore distribution in a visoelasti ediu driven by a spherially foused ultrasound transduer F.C. Meral a, T. J Royston b and R. L Magin a a University of Illinois,

More information

Chapter 3. Problem Solutions

Chapter 3. Problem Solutions Capter. Proble Solutions. A poton and a partile ave te sae wavelengt. Can anyting be said about ow teir linear oenta opare? About ow te poton's energy opares wit te partile's total energy? About ow te

More information

Process engineers are often faced with the task of

Process engineers are often faced with the task of Fluids and Solids Handling Eliminate Iteration from Flow Problems John D. Barry Middough, In. This artile introdues a novel approah to solving flow and pipe-sizing problems based on two new dimensionless

More information

Effect of magnetization process on levitation force between a superconducting. disk and a permanent magnet

Effect of magnetization process on levitation force between a superconducting. disk and a permanent magnet Effet of magnetization proess on levitation fore between a superonduting disk and a permanent magnet L. Liu, Y. Hou, C.Y. He, Z.X. Gao Department of Physis, State Key Laboratory for Artifiial Mirostruture

More information

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change Problem #1 6 mol of SO and 4 mol of O are plaed into a 1 L flask at temperature, T. The equilibrium onentration of SO is found to be 4 mol/l. Determine K. SO (g) + O (g) SO (g) K = [SO ] / [SO ] [O ] Answer:

More information

Worked Solutions to Problems

Worked Solutions to Problems rd International Cheistry Olypiad Preparatory Probles Wored Solutions to Probles. Water A. Phase diagra a. he three phases of water oeist in equilibriu at a unique teperature and pressure (alled the triple

More information

The nuclear fusion reaction rate based on relativistic equilibrium velocity distribution

The nuclear fusion reaction rate based on relativistic equilibrium velocity distribution he nulear fusion reation rate based on relativisti equilibriu veloity distribution Jian-Miin Liu* Departent of Physis, Nanjing University Nanjing, he People's Republi of China *On leave. E-ail address:

More information

23.1 Tuning controllers, in the large view Quoting from Section 16.7:

23.1 Tuning controllers, in the large view Quoting from Section 16.7: Lesson 23. Tuning a real ontroller - modeling, proess identifiation, fine tuning 23.0 Context We have learned to view proesses as dynami systems, taking are to identify their input, intermediate, and output

More information

I. Aim of the experiment

I. Aim of the experiment Task VIII TRAUBE S RULE I. Aim of the eperiment The purpose of this task is to verify the Traube s rule for a homologous series of apillary ative substane solutions (i.e. alohols or arboyli aids) on the

More information

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene Exerpt from the Proeedings of the OMSOL onferene 010 Paris Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene M. Bekmann-Kluge 1 *,. errero 1, V. Shröder 1, A. Aikalin and J. Steinbah

More information

UTC. Engineering 329. Proportional Controller Design. Speed System. John Beverly. Green Team. John Beverly Keith Skiles John Barker.

UTC. Engineering 329. Proportional Controller Design. Speed System. John Beverly. Green Team. John Beverly Keith Skiles John Barker. UTC Engineering 329 Proportional Controller Design for Speed System By John Beverly Green Team John Beverly Keith Skiles John Barker 24 Mar 2006 Introdution This experiment is intended test the variable

More information

Review for Exam #2. Specific Heat, Thermal Conductivity, and Thermal Diffusivity. Conduction

Review for Exam #2. Specific Heat, Thermal Conductivity, and Thermal Diffusivity. Conduction Review for Exam # Speifi Heat, Thermal Condutivity, and Thermal Diffusivity Speifi heat ( p ) A measure of how muh energy is required to raise the temperature of an objet Thermal ondutivity (k) A measure

More information

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION Journal of Mathematial Sienes: Advanes and Appliations Volume 3, 05, Pages -3 EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION JIAN YANG, XIAOJUAN LU and SHENGQIANG TANG

More information

F = F x x + F y. y + F z

F = F x x + F y. y + F z ECTION 6: etor Calulus MATH20411 You met vetors in the first year. etor alulus is essentially alulus on vetors. We will need to differentiate vetors and perform integrals involving vetors. In partiular,

More information

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law Asian Journal of Applied Siene and Engineering, Volue, No 1/13 ISSN 35-915X(p); 37-9584(e) Derivation of Non-Einsteinian Relativisti Equations fro Moentu Conservation Law M.O.G. Talukder Varendra University,

More information

CONTROL OF THERMAL CRACKING USING HEAT OF CEMENT HYDRATION IN MASSIVE CONCRETE STRUCTURES

CONTROL OF THERMAL CRACKING USING HEAT OF CEMENT HYDRATION IN MASSIVE CONCRETE STRUCTURES CONROL OF HERMAL CRACKING USING HEA OF CEMEN HYDRAION IN MASSIVE CONCREE SRUCURES. Mizobuhi (1), G. Sakai (),. Ohno () and S. Matsumoto () (1) Department of Civil and Environmental Engineering, HOSEI University,

More information

Determining the optimum length of a bridge opening with a specified reliability level of water runoff

Determining the optimum length of a bridge opening with a specified reliability level of water runoff MATE Web o onerenes 7, 0004 (07) DOI: 0.05/ ateon/0770004 XXVI R-S-P Seinar 07, Theoretial Foundation o ivil Engineering Deterining the optiu length o a bridge opening with a speiied reliability level

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

Three-dimensional morphological modelling in Delft3D-FLOW

Three-dimensional morphological modelling in Delft3D-FLOW Three-dimensional morphologial modelling in Delft3D-FLOW G. R. Lesser, J. van Kester, D.J.R. Walstra and J.A. Roelvink WL delft hydraulis email: giles.lesser@ldelft.nl Abstrat Computer modelling of sediment

More information

The Gravitation As An Electric Effect

The Gravitation As An Electric Effect The Gravitation As An Eletri Effet Hans-Jörg Hoheker Donaustr 30519 Hannover e-ail: johoer@yahoode Web-Site: http://wwwhohekereu Abstrat: The eletri fores are iensely great in oparison with the gravitational

More information

THERMAL MODELING OF PACKAGES FOR NORMAL CONDITIONS OF TRANSPORT WITH INSOLATION t

THERMAL MODELING OF PACKAGES FOR NORMAL CONDITIONS OF TRANSPORT WITH INSOLATION t THERMAL MODELING OF PACKAGES FOR NORMAL CONDITIONS OF TRANSPORT WITH INSOLATION THERMAL MODELING OF PACKAGES FOR NORMAL CONDITIONS OF TRANSPORT WITH INSOLATION t Tehnial Programs and Servies/Engineering

More information

Fractal universe and the speed of light: Revision of the universal constants. Antonio Alfonso-Faus

Fractal universe and the speed of light: Revision of the universal constants. Antonio Alfonso-Faus Fratal universe and the speed of light: Revision of the universal onstants Antonio Alfonso-Faus E.U.I.T. AeronÄutia Plaza Cardenal Cisneros 40, 8040 Madrid, Spain E-ail: aalfonsofaus@yahoo.es Abstrat.

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

MODIFIED SERIES RESISTANCE MODEL - DETERMINATION OF MEAN CONCENTRATION BY INTEGRAL TRANSFORMATION

MODIFIED SERIES RESISTANCE MODEL - DETERMINATION OF MEAN CONCENTRATION BY INTEGRAL TRANSFORMATION MODIFIED SERIES RESISTANCE MODEL - DETERMINATION OF MEAN CONCENTRATION BY INTEGRAL TRANSFORMATION A. L. Venezuela a, R. F. Cantão a, R. S. Ongaratto b, and R. N. Haneda c a Universidade Federal de São

More information

Dynamics of Structures. Giacomo Boffi. Definitions. Dynamics of Structures. Giacomo Boffi. Introduction. Characteristics of a Dynamical Problem

Dynamics of Structures. Giacomo Boffi. Definitions. Dynamics of Structures. Giacomo Boffi. Introduction. Characteristics of a Dynamical Problem An to Dipartiento di Ingegneria Civile e Abientale, Politenio di Milano Part I Marh 1, 014 Definitions Definitions Let s start with soe definitions Dynais the branh of ehanis onerned with the effets of

More information

THE HEAT TRANSFER MODEL FOR DEVICE OF CARDIOPULMONARY BYPASS WITH THE IMPLEMENTATION OF THE MECHANISM OF FREE CONVECTION HEAT IN THE MYOCARDIUM

THE HEAT TRANSFER MODEL FOR DEVICE OF CARDIOPULMONARY BYPASS WITH THE IMPLEMENTATION OF THE MECHANISM OF FREE CONVECTION HEAT IN THE MYOCARDIUM DOI: 06084/9figshare56635 LCC - R856-857 HE HEA RANSFER MODEL FOR DEVICE OF CARDIOPULMONARY BYPASS WIH HE IMPLEMENAION OF HE MECHANISM OF FREE CONVECION HEA IN HE MYOCARDIUM Valentyna A Danilova Vladislav

More information

Shrinking core model for the reaction-diffusion problem in thermo-chemical heat storage Lan, S.; Zondag, H.A.; Rindt, C.C.M.

Shrinking core model for the reaction-diffusion problem in thermo-chemical heat storage Lan, S.; Zondag, H.A.; Rindt, C.C.M. Shrinking ore model for the reation-diffusion problem in thermo-hemial heat storage Lan, S.; Zondag, H.A.; Rindt, C.C.M. Published in: Proeedings of The 13th International Conferene on Energy Storage,

More information

Supplementary Information. Infrared Transparent Visible Opaque Fabrics (ITVOF) for Personal Cooling

Supplementary Information. Infrared Transparent Visible Opaque Fabrics (ITVOF) for Personal Cooling Supplementary Information Infrared Transparent Visible Opaque Fabris (ITVOF) for Personal Cooling Jonathan K. Tong 1,Ɨ, Xiaopeng Huang 1,Ɨ, Svetlana V. Boriskina 1, James Loomis 1, Yanfei Xu 1, and Gang

More information

Mass Transfer 2. Diffusion in Dilute Solutions

Mass Transfer 2. Diffusion in Dilute Solutions Mass Transfer. iffusion in ilute Solutions. iffusion aross thin films and membranes. iffusion into a semi-infinite slab (strength of weld, tooth deay).3 Eamples.4 ilute diffusion and onvetion Graham (85)

More information

Fiber Optic Cable Transmission Losses with Perturbation Effects

Fiber Optic Cable Transmission Losses with Perturbation Effects Fiber Opti Cable Transmission Losses with Perturbation Effets Kampanat Namngam 1*, Preeha Yupapin 2 and Pakkinee Chitsakul 1 1 Department of Mathematis and Computer Siene, Faulty of Siene, King Mongkut

More information

1 Riskaversion and intertemporal substitution under external habits.

1 Riskaversion and intertemporal substitution under external habits. Riskaversion and intertemporal substitution under external habits. Reall that e de ne the oe ient of relative riskaversion as R r u00 ( ) u 0 ( ) so for CRRA utility e have u () R r t ; hih determines

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM - Tehnial Paper - THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIE CAPACITY OF RC BEAM Patarapol TANTIPIDOK *, Koji MATSUMOTO *, Ken WATANABE *3 and Junihiro NIWA *4 ABSTRACT

More information

Cavity flow with surface tension past a flat plate

Cavity flow with surface tension past a flat plate Proeedings of the 7 th International Symposium on Cavitation CAV9 Paper No. ## August 7-, 9, Ann Arbor, Mihigan, USA Cavity flow with surfae tension past a flat plate Yuriy Savhenko Institute of Hydromehanis

More information

Electromagnetics I Exam No. 3 December 1, 2003 Solution

Electromagnetics I Exam No. 3 December 1, 2003 Solution Electroagnetics Ea No. 3 Deceber 1, 2003 Solution Please read the ea carefull. Solve the folloing 4 probles. Each proble is 1/4 of the grade. To receive full credit, ou ust sho all ork. f cannot understand

More information

and ζ in 1.1)? 1.2 What is the value of the magnification factor M for system A, (with force frequency ω = ωn

and ζ in 1.1)? 1.2 What is the value of the magnification factor M for system A, (with force frequency ω = ωn EN40: Dynais and Vibrations Hoework 6: Fored Vibrations, Rigid Body Kineatis Due Friday April 7, 017 Shool of Engineering Brown University 1. Syste A in the figure is ritially daped. The aplitude of the

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method)

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method) Projectile Motion with Air Resistance (Nuerical Modeling, Euler s Method) Theory Euler s ethod is a siple way to approxiate the solution of ordinary differential equations (ode s) nuerically. Specifically,

More information

The simulation analysis of the bridge rectifier continuous operation in AC circuit

The simulation analysis of the bridge rectifier continuous operation in AC circuit Computer Appliations in Eletrial Engineering Vol. 4 6 DOI 8/j.8-448.6. The simulation analysis of the bridge retifier ontinuous operation in AC iruit Mirosław Wiślik, Paweł Strząbała Kiele University of

More information

' ' , and z ' components ( u u u'

' ' , and z ' components ( u u u' Mesosale Meteorology: Gravity Waves 3 April 07 Introdution Here, we priarily onsider internal gravity waves, or waves that propagate in a density-stratified fluid (noinally, a stably-stratified fluid,

More information

Developing Excel Macros for Solving Heat Diffusion Problems

Developing Excel Macros for Solving Heat Diffusion Problems Session 50 Developing Exel Maros for Solving Heat Diffusion Problems N. N. Sarker and M. A. Ketkar Department of Engineering Tehnology Prairie View A&M University Prairie View, TX 77446 Abstrat This paper

More information

BINARY RANKINE CYCLE OPTIMIZATION Golub, M., Koscak-Kolin, S., Kurevija, T.

BINARY RANKINE CYCLE OPTIMIZATION Golub, M., Koscak-Kolin, S., Kurevija, T. BINARY RANKINE CYCLE OPTIMIZATION Golub, M., Kosak-Kolin, S., Kurevija, T. Faulty of Mining, Geology and Petroleum Engineering Department of Petroleum Engineering Pierottijeva 6, Zagreb 0 000, Croatia

More information

Analytical & Bioanalytical Electrochemistry

Analytical & Bioanalytical Electrochemistry Anal. Bioanal. Eletrohe., Vol. 3, No. 5, 011, 507-50 Analytial & Bioanalytial Eletroheistry 011 by CEE www.abehe.o Full Paper Analytial Expression of the Substrate Conentration in Different Part of Partiles

More information

Q c, Q f denote the outputs of good C and F, respectively. The resource constraints are: T since the technology implies: Tc = Qc

Q c, Q f denote the outputs of good C and F, respectively. The resource constraints are: T since the technology implies: Tc = Qc Fall 2008 Eon 455 Ansers - Problem Set 3 Harvey Lapan 1. Consider a simpliied version o the Heksher-Ohlin model ith the olloing tehnology: To produe loth: three units o labor and one unit o land are required

More information

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic equations.

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic equations. he Lecture Notes, Dept. of heical Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updated /) Eaple pplications of systes of linear equations Included in this hand-out are five eaples of probles

More information

Module 4 Lesson 2 Exercises Answer Key squared square root

Module 4 Lesson 2 Exercises Answer Key squared square root Module Lesson Eerises Answer Key 1. The volume is 1 L so onentrations an be done by inspetion. Just substitute values and solve for K [ CO][ HO] K CO H (0.8)(0.8) (0.55) (0.55) K 0.659. [CH ][HS] K [H

More information

POROUS CARBON PARTICLE COMBUSTION IN AIR

POROUS CARBON PARTICLE COMBUSTION IN AIR MCS 7 Chia Laguna, Cagliari, Sardinia, taly, 11-15, 11 POOUS CABON PATCLE COMBUSTON N A V. M. Gremyahkin grema@ipmnet.ru nstitute for Problems in Mehanis, AS, Mosow, ussia Abstrat Theoretial investigation

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

Control Theory association of mathematics and engineering

Control Theory association of mathematics and engineering Control Theory assoiation of mathematis and engineering Wojieh Mitkowski Krzysztof Oprzedkiewiz Department of Automatis AGH Univ. of Siene & Tehnology, Craow, Poland, Abstrat In this paper a methodology

More information

General Equilibrium. What happens to cause a reaction to come to equilibrium?

General Equilibrium. What happens to cause a reaction to come to equilibrium? General Equilibrium Chemial Equilibrium Most hemial reations that are enountered are reversible. In other words, they go fairly easily in either the forward or reverse diretions. The thing to remember

More information

EGN 3353C Fluid Mechanics

EGN 3353C Fluid Mechanics Lecture 4 When nondiensionalizing an equation, nondiensional araeters often aear. Exale Consider an object falling due to gravity in a vacuu d z ays: (1) the conventional diensional aroach, and () diensionless

More information

Chapter 3 Lecture 7. Drag polar 2. Topics. Chapter-3

Chapter 3 Lecture 7. Drag polar 2. Topics. Chapter-3 hapter 3 eture 7 Drag polar Topis 3..3 Summary of lift oeffiient, drag oeffiient, pithing moment oeffiient, entre of pressure and aerodynami entre of an airfoil 3..4 Examples of pressure oeffiient distributions

More information

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each.

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each. Physis (Theory) Tie allowed: 3 hours] [Maxiu arks:7 General Instrutions: (i) ll uestions are opulsory. (ii) (iii) (iii) (iv) (v) There are 3 uestions in total. Question Nos. to 8 are very short answer

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

Dimensions and Units

Dimensions and Units Civil Engineering Hydraulics Mechanics of Fluids and Modeling Diensions and Units You already know how iportant using the correct diensions can be in the analysis of a proble in fluid echanics If you don

More information

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip 27-750, A.D. Rollett Due: 20 th Ot., 2011. Homework 5, Volume Frations, Single and Multiple Slip Crystal Plastiity Note the 2 extra redit questions (at the end). Q1. [40 points] Single Slip: Calulating

More information

1- Thermal response of cutaneous thermoreceptors: A new criterion for the human body thermal sensation

1- Thermal response of cutaneous thermoreceptors: A new criterion for the human body thermal sensation University of Birjand From the SeletedWorks of Dr Alireza Zolfaghari November, - Thermal response of utaneous thermoreeptors: A ne riterion for the human body thermal sensation Alireza Zolfaghari Mehdi

More information

MODULE 3: MASS TRANSFER COEFFICIENTS

MODULE 3: MASS TRANSFER COEFFICIENTS MOULE 3: MASS TRASFER COEFFICIETS LECTURE O. 6 3.5. Penetration theory Most of the industrial proesses of mass transfer is unsteady state proess. In suh ases, the ontat time between phases is too short

More information

Replacement of gas phase with liquid, for hexamine production

Replacement of gas phase with liquid, for hexamine production Proeedings of the International Conferene on Ciruits, Systems, Signals Replaement of gas phase with liquid, for hexamine prodution Anita Kovač Kralj¹ Davorin Kralj² Faulty of Chemistry and Chemial Engineering,

More information

NATURAL CONVECTION OF NANOFLUIDS ABOUT A VERTICAL CONE EMBEDDED IN A POROUS MEDIUM: PRESCRIBED HEAT GENERATION/ABSORPTION SOURCE

NATURAL CONVECTION OF NANOFLUIDS ABOUT A VERTICAL CONE EMBEDDED IN A POROUS MEDIUM: PRESCRIBED HEAT GENERATION/ABSORPTION SOURCE 5 th International Conerene on Aliation o Porous Media Roania 3 NAURAL CONVECION OF NANOFLUIDS ABOU A VERICAL CONE EMBEDDED IN A POROUS MEDIUM: PRESCRIBED HEA GENERAION/ABSORPION SOURCE Ainreza Noghrehabadi

More information

IV Transport Phenomena. Lecture 21: Solids and Concentrated Solutions

IV Transport Phenomena. Lecture 21: Solids and Concentrated Solutions IV Transport Phenomena Leture 21: Solids and Conentrated Solutions MIT Student (and MZB) Marh 28, 2011 1 Transport in Solids 1.1 Diffusion The general model of hemial reations an also be used for thermally

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

Controller Design Based on Transient Response Criteria. Chapter 12 1

Controller Design Based on Transient Response Criteria. Chapter 12 1 Controller Design Based on Transient Response Criteria Chapter 12 1 Desirable Controller Features 0. Stable 1. Quik responding 2. Adequate disturbane rejetion 3. Insensitive to model, measurement errors

More information

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it?

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Part I: How Dense Is It? Fundaental Question: What is atter, and how do we identify it? 1. What is the definition of atter? 2. What do you think the ter ass per unit volue eans? 3. Do you think that a

More information

Design of Output Feedback Compensator

Design of Output Feedback Compensator Design of Output Feedbak Copensator Vanita Jain, B.K.Lande Professor, Bharati Vidyapeeth s College of Engineering, Pashi Vihar, New Delhi-0063 Prinipal, Shah and Anhor Kuthhi Engineering College, Chebur,

More information

Possibility of Refuse Derived Fuel Fire Inception by Spontaneous Ignition

Possibility of Refuse Derived Fuel Fire Inception by Spontaneous Ignition Possibility of Refuse Derived Fuel Fire Ineption by Spontaneous Ignition Lijing Gao 1, Takashi Tsuruda 1, Takeshi Suzuki 1, Yoshio Ogawa 1, Chihong Liao 1 and Yuko Saso 1 1 National Researh Institute of

More information