GENERALIZATION OF CAMPBELL S THEOREM TO NONSTATIONARY NOISE. Leon Cohen

Size: px
Start display at page:

Download "GENERALIZATION OF CAMPBELL S THEOREM TO NONSTATIONARY NOISE. Leon Cohen"

Transcription

1 GENERALIZATION OF CAMPBELL S THEOREM TO NONSTATIONARY NOISE Leon Cohen City University of New York, Hunter College, 695 Park Ave, New York NY 10056, USA ABSTRACT Campbell s theorem is a fundamental result in noise theory is applied in many fields of science engineering. It gives a simple but very powerful expression for the mean stard deviation of a stationary rom pulse train. We generalize Campbell s theorem to the non-stationary case where the rom process is space time dependent. We also generalize it to a pulse train of waves, acoustic electromagnetic, where the intensity is defined as the absolute square of the pulse train. Index Terms nonstationary noise, Campbell s theorem, rom pulse train, reverberation, time-frequency 1. INTRODUCTION One of the most fundamental results in noise theory is Campbell s theorem, a result that was given by Campbell [1, ] in 1909 soon after the basic concepts of noise were developed [3]. Campbell s theorem applies to a rom process that is a pulse train of the following form He showed that covariance between two pulse trains is given by (s s (q q = N f(tg(tdt (5 We point out that a fruitful view point is to think of a pulse train as consisting of delta functions, N δ(t t n, letting the sum go through a linear filter whose impulse response function is f(t. In deriving the above results a number of assumptions are made, the most important is that the series are stationary. In this paper we consider a non-stationary model where we have spatial time dependence. We explicitly derive the mean stard deviations analogous to Campbell s theorem show that in the limit of infinite time we recover Campbell s theorem.. NON-STATIONARY PULSE TRAIN Consider the following model of a non-stationary pulse train as illustrated in the figure. At t = 0, N particles with width, s = f(t t n (1 where f(t is a deterministic function of time, t n are rom arrival times, N is the number of constituents. Campbell s result is that the mean stard deviation of the process are given by s = N σ = s s = N f(tdt ( f (tdt (3 This is a simple but very powerful result that is easy to apply, is used in almost all fields has found many applications. Furthermore, sometime later, Rowl [4] considered two series where in addition to Eq. (1 we have the series q = g(t t n (4 Work supported by the Office of Naval Research. as represented by the f(t, are generated at rom positions x n chosen from a uniform distribution ranging from a to 0. The particles move to the right with a constant velocity, c. At position x time t we observe the rom process given by V (x, t = f(x ct x n (6 We define the ensemble average as the average over the initial positions x n, V (x, t = N P (x n f(x ct x n dx n (7

2 where P (x n is the probability distribution of x n. For the case of a uniform distribution { 1/a a < xn < 0 P (x n = (8 0 otherwise therefore 0 V (x, t = N n dx n = a af( x N a (9 where we have made the substitution z = x ct x n changed the limits accordingly. Now, suppose we take N a large in such a manner that N ρ for N a (10 a where ρ is the constant density. Hence, we have that (11 This is the average at position x time t for N a. If we further take t which can be thought of as the steady state limit then we have (1 which is the first part of Campbell s theorem Eq. (. In Eq. (9 (11 the result is position dependent but as time goes to infinity we obtain a stationary process the resulting average, Eq. (1, is independent of position. To calculate the stard deviation we first consider V (x, t = k=1 f(x ct x n f(x ct x k (13 following the same procedure as above we obtain V (x, t = N a ( (14 Taking the limit as in Eq. (10 noting that N/ 0 we have V (x, t = ρ ρ ( (15 The stard deviation σ = V (x, t V (x, t is σ = N a ( N a ( (16 = N a N ( (17 If we take the limit as per Eq. (10 we obtain σ = ρ if we further take t then we have σ = ρ (18 (19 which is the second part of Campbell s theorem, Eq. (3. We consider Eq. (9 Eq. (11 as a nonstationary position time dependent Campbell s theorem for the mean; Eq. (17 (18 to be a generalization of the stard deviation. 3. NON-UNIFORM DENSITY In the above considerations we have taken the initial density to be uniform as given by Eq. (8. For a non uniform initial distribution given by a probability density P (x n, but still constant velocity motion, we have V (x, t = N f(x ct x n P (x n dx n (0 V (x, t = N f (x ct x n P (x n dx n ( f(x ct x n P (x n dx n (1 The stard deviation is given by σ = N f (x ct x n P (x n dx n ( N f(x ct x n P (x n dx n ( It is possible for the second term to be significant depending on P (x n f(x. 4. GENERAL MOTION In the above, we have taken motion to be constant velocity; however, there are situations where non-constant velocity is appropriate. Suppose the motion is governed by x = x n η(t (3 To take that into account, replace ct by a time function that describes the motion. We have

3 V (x, t = N f(x η(t x n P (x n dx n (4 further V (x, t = N f (x η(t x n P (x n dx n ( f(x η(t x n P (x n dx n (5 The stard deviation is then σ = N f (x η(t x n P (x n dx n ( N f(x η(t x n P (x n dx n (6 For the case of uniform density, as per Eq. (8 taking the same limits as in Section we have for the mean stard deviation that x η(t (7 σ = ρ (8 x η(t 5. TWO-TIME AUTOCORRELATION FUNCTION We now calculate the two-time correlation function at position x, R(t 1, t ; x = V (x, t 1 V (x, t (9 For the constant velocity case we have V (x, t V (x, t 1 = f(x ct x n f(x ct 1 x k (30 k=1 following the same procedure as in the previous sections one obtains V (x, t V (x, t 1 = N a ( a a f(zf(z c(t t 1 dz ( 1a 1 Taking the constant density limit one obtains (31 V (x, t V (x, t 1 = ρ f(zf(z c(t t 1 dz ( ( ρ (3 1 Letting we have t t 1 = τ (33 V (x, t V (x, t 1 = ρ f(zf(z cτdz ( ( ρ 1 (34 As expected, this is not a function τ, hence the process is not stationary. However, if we take the limit of large times but keeping (t t 1 a constant, then V (x, t V (x, t 1 = ρ t, t 1 (35 f(zf(z cτdz ( ρ t, t 1 ; t t 1 = τ we now see that the process becomes stationary. 6. TIME-VARYING SPECTRUM (36 Another fruitful approach is to calculate the time varying spectrum. Here we use the Wigner spectrum relate it to the autocorrelation function. The time-frequency Wigner distribution at position x, is defined by W (t, ω, x= 1 V (x, t 1 π τ V (x, t 1 τe iτω dτ (37 To deal with a nonstationary process [6 10] one takes the ensemble average of Eq. (37 W (t, ω; x= 1 V (x, t 1 π τ V (x, t 1 τ e iτω dτ (38 where W (t, ω; xis called the Wigner spectrum which can be thought of as the instantaneous spectrum at position x time t. The Wigner spectrum can be written as W (t, ω, x = 1 π inversely we have, R(t τ/, t τ/; x = R(t 1, t = R(tτ/, t τ/; xe iτω dτ (39 W (t, ω, xe iτω dω (40 ( t1 t W, ω; x e i(t t 1 ω dω (41

4 Consider now the Wigner distribution for the pulse train given by Eq. (1. Substituting Eq. (1 into Eq. (9 we have where W (t, ω; x= W nn = 1 π m=1 W nm (t, ω; x (4 = NW nn (t, ω; x W nm (43 f (x ct 1 τ x n f(x ct 1 τ x np (x n e iτω dτdx n (44 W nm = 1 f (x ct 1 π τ x n f(x ct 1 τ x mp (x n P (x m e iτω dτdx n dx m (45 Consider W nn where we consider the uniform distribution, Eq. (8. We obtain W nn = 1 π f (z 1 τ (46 f(z 1 τ e iτω dτdz (47 The inner integral is simply the Wigner spectrum of the function f(z. Therefore we have Now consider W nn = 1 a W nm = 1 1 π W (z, ωdz (48 f (z 1 τf(z 1 τe iτω dτdzdz (49 = 1 ( z z W, ω e i(z zω dzdz (50 If we substitute these results into Eq. (43 apply the limit as in the previous sections we obtain W (t, ω; x= ρ W (z, ωdz ρ W ( z z, ω e i(z zω dzdz (51 7. WAVE TRAINS In the above considerations we have taken the intensity to be given by Eq. (1 but if f(t are waves then the intensity the intensity squared are given, respectively, by I(x, t = f(x ct x n (5 I (x, t = f(x ct x n 4 (53 Furthermore, f(t can be complex. In this paper we consider the real case. One can show that [14] [ f I = N (N 1 f ] (54 I = (N (N 3 f 4 6(N f f 4 f f 3 3 f N f 4 ] (55 Consider first I. We can use the results obtained above to immediately write, as per Eq. (17, that I = N a ( (56 If we take the limit as given by Eq. (10 we have ( I = ρ ρ (57 further, the long time limit is I = ρ ( ρ (58 The calculation for I is more involved we just give the final answer, I ( 4 = ρ 4 ( ( 6ρ 3 ( ( 4 ρ ( 3 ( ρ f 4 (zdz f 3 (zdz (59

5 giving ( σ = ρ f 4 (zdz ( ρ ( 4ρ 3 ( ( ( 8. CONCLUSION f 3 (zdz (60 We derived an extension of Campbell s theorem to nonstationay situations. As with Campbell s theorem, there are a number of sensitive mathematical issues regarding convergence that will be addressed in a future paper. One of the applications of the model we have given is to the problem of reverberation which is often inherently nonstationary [11 14]. This is the case if the scatterers, which are spatially distributed, are excited by a pulse therefore the returns at a particular spatial point is a rom process where the function f(t is proportional to the return from each of the scatterers if indeed all the scatterers are the same. If the scatterers are different then the stochastic process has to be replaced by [11 14] V (x, t = f n (x ct x n (61 where f n reflects the scattering of each scatterer. This presents additional very interesting issues which are currently being investigated. REFERENCES [1] N. R. Campbell, The study of discontinuous phenomena, Proc. Cambr. Phil. Soc., 15, , [] N. R. Campbell, Discontinuities in light emission, Proc. Cambr. Phil. Soc., 15, , [3] L. Cohen, The History of Noise, IEEE Signal Processing Magazine,, 0-45, 005. [4] E. N. Rowl, The theory of the mean square variation of a function formed by adding known functions with rom phases, applications to the theories of the shot effect of light, Math. Proc. Cambridge Phil. Soc., 3, ,1936. [5] E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Physical Review, vol. 40, pp , 193. [6] W. D. Mark, Spectral Analysis of the Convolution Filtering of Non-Stationary Stochastic Processes, Jour. Sound Vibration, 11, pp , [7] W. Martin, Time-Frequency Analysis of Rom Signals, Proc. ICASSP 8, pp , [8] W. Martin P. Flrin, Wigner Ville spectral analysis of nonstationary processes, IEEE Trans. Acoust. Speech, Signal Process., 33, (1985. [9] L. Galleani L. Cohen, The phase space of nonstationary noise, Journal of Modern Optics, vol. 51, pp , 004. [10] L. Cohen, Time-Frequency Analysis, Prentice-Hall, [11] P. Faure, Theoretical Model of Reverberation Noise, J. Acoust. Soc. Am., Vol. 36, 59-66, [1] V. V. Ol shveskii, Characteristics of Sea Reverberation, Consultants Bureau, [13] D. Middleton, A statistical theory of reverberation similar first-order scattered fields, Parts I II, IEEE Transactions on Information Theory, vol. IT-13, , 1967; A statistical theory of reverberation similar first-order scattered fields, Parts III IV, IEEE Transactions on Information Theory, vol. IT-18, , 197. [14] L. Cohen A. Ahmad, The scintillation index for reverberation noise, Proc. SPIE 8391, 83910F, 01.

OPTIMUM ARRAY PROCESSING AND REPRESENTATION OF NONSTATIONARY RANDOM SCATTERING (Invited Paper)

OPTIMUM ARRAY PROCESSING AND REPRESENTATION OF NONSTATIONARY RANDOM SCATTERING (Invited Paper) OPTIMUM ARRAY PROCESSING AND REPRESENTATION OF NONSTATIONARY RANDOM SCATTERING (Invited Paper) LEON H. SIBUL, MAEX L, FOWLER, AND GAVIN J. HARBISON Applied Research Laboratory The Pennsylvania State University

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Stochastic Processes. A stochastic process is a function of two variables:

Stochastic Processes. A stochastic process is a function of two variables: Stochastic Processes Stochastic: from Greek stochastikos, proceeding by guesswork, literally, skillful in aiming. A stochastic process is simply a collection of random variables labelled by some parameter:

More information

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona Lecture 15 Theory of random processes Part III: Poisson random processes Harrison H. Barrett University of Arizona 1 OUTLINE Poisson and independence Poisson and rarity; binomial selection Poisson point

More information

A.1 THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM. 0 δ(t)dt = 1, (A.1) δ(t)dt =

A.1 THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM. 0 δ(t)dt = 1, (A.1) δ(t)dt = APPENDIX A THE Z TRANSFORM One of the most useful techniques in engineering or scientific analysis is transforming a problem from the time domain to the frequency domain ( 3). Using a Fourier or Laplace

More information

BLIND DEREVERBERATION USING SHORT TIME CEPSTRUM FRAME SUBTRACTION. J.S. van Eeghem (l), T. Koike (2) and M.Tohyama (1)

BLIND DEREVERBERATION USING SHORT TIME CEPSTRUM FRAME SUBTRACTION. J.S. van Eeghem (l), T. Koike (2) and M.Tohyama (1) FIFTH INTERNATIONAL CONGRESS ON SOUND DECEMBER 15-18, 1997 ADELAIDE, SOUTH AUSTRALIA AND VIBRATION BLIND DEREVERBERATION USING SHORT TIME CEPSTRUM FRAME SUBTRACTION J.S. van Eeghem (l), T. Koike (2) and

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION M. Schwab, P. Noll, and T. Sikora Technical University Berlin, Germany Communication System Group Einsteinufer 17, 1557 Berlin (Germany) {schwab noll

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

A Proposed Warped Choi Williams Time Frequency Distribution Applied to Doppler Blood Flow Measurement

A Proposed Warped Choi Williams Time Frequency Distribution Applied to Doppler Blood Flow Measurement 9 Int'l Conf. Bioinformatics and Computational Biology BIOCOMP'6 A Proposed Warped Choi Williams Time Frequency Distribution Applied to Doppler Blood Flow Measurement F. García-Nocetti, J. Solano, F. and

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

Keywords: MLS, Maximum Length Sequence, Wigner Distribution, Time-frequency Analysis, Impulse esponse, Vibration Exciters

Keywords: MLS, Maximum Length Sequence, Wigner Distribution, Time-frequency Analysis, Impulse esponse, Vibration Exciters FREQUENCY RESPONSE MEASUREMENT OF VIBRATION ELECTROMAGNETIC MICRO EXCITERS BY MEANS OF MLS AND THE WIGNER DISTRIBUTION FUNCTION José Flávio Silveira Feiteira José Bismark de Medeiros Prof. Moysés Zindeluk

More information

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi Chapter 8 Correlator I. Basics D. Anish Roshi 8.1 Introduction A radio interferometer measures the mutual coherence function of the electric field due to a given source brightness distribution in the sky.

More information

Signal representations: Cepstrum

Signal representations: Cepstrum Signal representations: Cepstrum Source-filter separation for sound production For speech, source corresponds to excitation by a pulse train for voiced phonemes and to turbulence (noise) for unvoiced phonemes,

More information

16.584: Random (Stochastic) Processes

16.584: Random (Stochastic) Processes 1 16.584: Random (Stochastic) Processes X(t): X : RV : Continuous function of the independent variable t (time, space etc.) Random process : Collection of X(t, ζ) : Indexed on another independent variable

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

Sensors. Chapter Signal Conditioning

Sensors. Chapter Signal Conditioning Chapter 2 Sensors his chapter, yet to be written, gives an overview of sensor technology with emphasis on how to model sensors. 2. Signal Conditioning Sensors convert physical measurements into data. Invariably,

More information

New Recursive-Least-Squares Algorithms for Nonlinear Active Control of Sound and Vibration Using Neural Networks

New Recursive-Least-Squares Algorithms for Nonlinear Active Control of Sound and Vibration Using Neural Networks IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 1, JANUARY 2001 135 New Recursive-Least-Squares Algorithms for Nonlinear Active Control of Sound and Vibration Using Neural Networks Martin Bouchard,

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

Kernel-Based Formulations of Spatio-Spectral Transform and Three Related Transforms on the Sphere

Kernel-Based Formulations of Spatio-Spectral Transform and Three Related Transforms on the Sphere Kernel-Based Formulations of Spatio-Spectral Transform and Three Related Transforms on the Sphere Rod Kennedy 1 rodney.kennedy@anu.edu.au 1 Australian National University Azores Antipode Tuesday 15 July

More information

Random Process. Random Process. Random Process. Introduction to Random Processes

Random Process. Random Process. Random Process. Introduction to Random Processes Random Process A random variable is a function X(e) that maps the set of experiment outcomes to the set of numbers. A random process is a rule that maps every outcome e of an experiment to a function X(t,

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Quantization and Compensation in Sampled Interleaved Multi-Channel Systems

Quantization and Compensation in Sampled Interleaved Multi-Channel Systems Quantization and Compensation in Sampled Interleaved Multi-Channel Systems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Analysis and synthesis of room reverberation based on a statistical time-frequency model

Analysis and synthesis of room reverberation based on a statistical time-frequency model Analysis and synthesis of room reverberation based on a statistical time-frequency model Jean-Marc Jot, Laurent Cerveau, Olivier Warusfel IRCAM. 1 place Igor-Stravinsky. F-75004 Paris, France. Tel: (+33)

More information

Estimation of the Optimum Rotational Parameter for the Fractional Fourier Transform Using Domain Decomposition

Estimation of the Optimum Rotational Parameter for the Fractional Fourier Transform Using Domain Decomposition Estimation of the Optimum Rotational Parameter for the Fractional Fourier Transform Using Domain Decomposition Seema Sud 1 1 The Aerospace Corporation, 4851 Stonecroft Blvd. Chantilly, VA 20151 Abstract

More information

Cramer-Rao Lower Bound Computation Via the Characteristic Function

Cramer-Rao Lower Bound Computation Via the Characteristic Function Cramer-Rao ower Bound Computation Via the Characteristic Function Steven Kay, Fellow, IEEE, and Cuichun Xu Abstract The Cramer-Rao ower Bound is widely used in statistical signal processing as a benchmark

More information

Stochastic vibration of laminated composite coated beam traversed by a random moving load

Stochastic vibration of laminated composite coated beam traversed by a random moving load Engineering Structures 25 (2003) 397 404 www.elsevier.com/locate/engstruct Stochastic vibration of laminated composite coated beam traversed by a random moving load H.S. Zibdeh a,, M. Abu-Hilal b a Jordan

More information

04. Random Variables: Concepts

04. Random Variables: Concepts University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 215 4. Random Variables: Concepts Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Photomultiplier (PMT) basic elements

Photomultiplier (PMT) basic elements Photomultiplier (PMT) basic elements MULTIPLIER CHAIN 4 6 8 10 1 OUTPUT 1 3 5 7 9 11 PHOTOCATHODE ELECTRON OPTICS 1st DYNODE ANODE from: Photodetectors, by S.Donati, Prentice Hall 000 1 PMT formats PMT

More information

HARMONIC WAVELET TRANSFORM SIGNAL DECOMPOSITION AND MODIFIED GROUP DELAY FOR IMPROVED WIGNER- VILLE DISTRIBUTION

HARMONIC WAVELET TRANSFORM SIGNAL DECOMPOSITION AND MODIFIED GROUP DELAY FOR IMPROVED WIGNER- VILLE DISTRIBUTION HARMONIC WAVELET TRANSFORM SIGNAL DECOMPOSITION AND MODIFIED GROUP DELAY FOR IMPROVED WIGNER- VILLE DISTRIBUTION IEEE 004. All rights reserved. This paper was published in Proceedings of International

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

4 Classical Coherence Theory

4 Classical Coherence Theory This chapter is based largely on Wolf, Introduction to the theory of coherence and polarization of light [? ]. Until now, we have not been concerned with the nature of the light field itself. Instead,

More information

Cepstral Deconvolution Method for Measurement of Absorption and Scattering Coefficients of Materials

Cepstral Deconvolution Method for Measurement of Absorption and Scattering Coefficients of Materials Cepstral Deconvolution Method for Measurement of Absorption and Scattering Coefficients of Materials Mehmet ÇALIŞKAN a) Middle East Technical University, Department of Mechanical Engineering, Ankara, 06800,

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

Ultrasound experiment by M. Fink

Ultrasound experiment by M. Fink Ultrasound experiment by M. Fink cf. A. Tourin, M. Fink, and A. Derode, Multiple scattering of sound, Waves Random Media (), R3-R6. Experimental set-up for a time-reversal experiment through a multiple-scattering

More information

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver Stochastic Signals Overview Definitions Second order statistics Stationarity and ergodicity Random signal variability Power spectral density Linear systems with stationary inputs Random signal memory Correlation

More information

Comparative study of different techniques for Time-Frequency Analysis

Comparative study of different techniques for Time-Frequency Analysis Comparative study of different techniques for Time-Frequency Analysis A.Vishwadhar M.Tech Student Malla Reddy Institute Of Technology And Science,Maisammaguda, Dulapally, Secunderabad. Abstract-The paper

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

Stochastic Process II Dr.-Ing. Sudchai Boonto

Stochastic Process II Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Random process Consider a random experiment specified by the

More information

A New Approach for Computation of Timing Jitter in Phase Locked Loops

A New Approach for Computation of Timing Jitter in Phase Locked Loops A New Approach for Computation of Timing Jitter in Phase ocked oops M M. Gourary (1), S. G. Rusakov (1), S.. Ulyanov (1), M.M. Zharov (1),.. Gullapalli (2), and B. J. Mulvaney (2) (1) IPPM, Russian Academy

More information

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Lecture No. # 33 Probabilistic methods in earthquake engineering-2 So, we have

More information

TIME-FREQUENCY ANALYSIS EE3528 REPORT. N.Krishnamurthy. Department of ECE University of Pittsburgh Pittsburgh, PA 15261

TIME-FREQUENCY ANALYSIS EE3528 REPORT. N.Krishnamurthy. Department of ECE University of Pittsburgh Pittsburgh, PA 15261 TIME-FREQUENCY ANALYSIS EE358 REPORT N.Krishnamurthy Department of ECE University of Pittsburgh Pittsburgh, PA 56 ABSTRACT - analysis, is an important ingredient in signal analysis. It has a plethora of

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 5c Lecture Fourier Analysis (H&L Sections 3. 4) (Georgi Chapter ) What We Did Last ime Studied reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Evolutionary Power Spectrum Estimation Using Harmonic Wavelets

Evolutionary Power Spectrum Estimation Using Harmonic Wavelets 6 Evolutionary Power Spectrum Estimation Using Harmonic Wavelets Jale Tezcan Graduate Student, Civil and Environmental Engineering Department, Rice University Research Supervisor: Pol. D. Spanos, L.B.

More information

Research Article Wigner-Ville Distribution Associated with the Linear Canonical Transform

Research Article Wigner-Ville Distribution Associated with the Linear Canonical Transform Applied Mathematics Volume 2, Article ID 746, 4 pages doi:.55/2/746 Research Article Wigner-Ville Distribution Associated with the Linear Canonical Transform Rui-Feng Bai, Bing-Zhao Li, and Qi-Yuan Cheng

More information

IV. Covariance Analysis

IV. Covariance Analysis IV. Covariance Analysis Autocovariance Remember that when a stochastic process has time values that are interdependent, then we can characterize that interdependency by computing the autocovariance function.

More information

LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES

LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES Abstract March, 3 Mads Græsbøll Christensen Audio Analysis Lab, AD:MT Aalborg University This document contains a brief introduction to pitch

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

OPTIMAL SCALING VALUES FOR TIME-FREQUENCY DISTRIBUTIONS IN DOPPLER ULTRASOUND BLOOD FLOW MEASUREMENT

OPTIMAL SCALING VALUES FOR TIME-FREQUENCY DISTRIBUTIONS IN DOPPLER ULTRASOUND BLOOD FLOW MEASUREMENT OPTIMAL SCALING VALUES FOR TIME-FREQUENCY DISTRIBUTIONS IN DOPPLER ULTRASOUND BLOOD FLOW MEASUREMENT F. García Nocetti, J. Solano González, E. Rubio Acosta Departamento de Ingeniería de Sistemas Computacionales

More information

Matched Filtering for Generalized Stationary Processes

Matched Filtering for Generalized Stationary Processes Matched Filtering for Generalized Stationary Processes to be submitted to IEEE Transactions on Information Theory Vadim Olshevsky and Lev Sakhnovich Department of Mathematics University of Connecticut

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline ECE592-064 Digital mage Processing and ntroduction to Computer Vision Depart. of ECE, NC State University nstructor: Tianfu (Matt) Wu Spring 2017 1. Recap Outline 2. Thinking in the frequency domain Convolution

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2,

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2, Filters Filters So far: Sound signals, connection to Fourier Series, Introduction to Fourier Series and Transforms, Introduction to the FFT Today Filters Filters: Keep part of the signal we are interested

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

3F1 Random Processes Examples Paper (for all 6 lectures)

3F1 Random Processes Examples Paper (for all 6 lectures) 3F Random Processes Examples Paper (for all 6 lectures). Three factories make the same electrical component. Factory A supplies half of the total number of components to the central depot, while factories

More information

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007 Stochastic processes review 3. Data Analysis Techniques in Oceanography OCP668 April, 27 Stochastic processes review Denition Fixed ζ = ζ : Function X (t) = X (t, ζ). Fixed t = t: Random Variable X (ζ)

More information

Lesson 1. Optimal signalbehandling LTH. September Statistical Digital Signal Processing and Modeling, Hayes, M:

Lesson 1. Optimal signalbehandling LTH. September Statistical Digital Signal Processing and Modeling, Hayes, M: Lesson 1 Optimal Signal Processing Optimal signalbehandling LTH September 2013 Statistical Digital Signal Processing and Modeling, Hayes, M: John Wiley & Sons, 1996. ISBN 0471594318 Nedelko Grbic Mtrl

More information

Fourier Analysis Overview (0B)

Fourier Analysis Overview (0B) CTFS: Continuous Time Fourier Series CTFT: Continuous Time Fourier Transform DTFS: Fourier Series DTFT: Fourier Transform DFT: Discrete Fourier Transform Copyright (c) 2009-2016 Young W. Lim. Permission

More information

Mechanical Vibrations Chapter 13

Mechanical Vibrations Chapter 13 Mechanical Vibrations Chapter 3 Peter Avitabile Mechanical Engineering Department University of Massachusetts Lowell Dr. Peter Avitabile Random Vibrations Up until now, everything analyzed was deterministic.

More information

Timbral, Scale, Pitch modifications

Timbral, Scale, Pitch modifications Introduction Timbral, Scale, Pitch modifications M2 Mathématiques / Vision / Apprentissage Audio signal analysis, indexing and transformation Page 1 / 40 Page 2 / 40 Modification of playback speed Modifications

More information

Stochastic Processes. Monday, November 14, 11

Stochastic Processes. Monday, November 14, 11 Stochastic Processes 1 Definition and Classification X(, t): stochastic process: X : T! R (, t) X(, t) where is a sample space and T is time. {X(, t) is a family of r.v. defined on {, A, P and indexed

More information

Signals and Spectra (1A) Young Won Lim 11/26/12

Signals and Spectra (1A) Young Won Lim 11/26/12 Signals and Spectra (A) Copyright (c) 202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

More information

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island,

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island, University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 1-19-215 8. Brownian Motion Gerhard Müller University of Rhode Island, gmuller@uri.edu Follow this

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

Lecture 10 Planck Distribution

Lecture 10 Planck Distribution Lecture 0 Planck Distribution We will now consider some nice applications using our canonical picture. Specifically, we will derive the so-called Planck Distribution and demonstrate that it describes two

More information

A NOTE ON DIMENSION REDUCTION AND FINITE ENERGY LOCALIZED WAVE SOLUTIONS TO THE 3-D KLEIN-GORDON AND SCALAR WAVE EQUATIONS. PART II.

A NOTE ON DIMENSION REDUCTION AND FINITE ENERGY LOCALIZED WAVE SOLUTIONS TO THE 3-D KLEIN-GORDON AND SCALAR WAVE EQUATIONS. PART II. Progress In Electromagnetics Research, PIER 27, 357 365, 2 A NOTE ON DIMENSION REDUCTION AND FINITE ENERGY LOCALIZED WAVE SOLUTIONS TO THE 3-D KLEIN-GORDON AND SCALAR WAVE EQUATIONS. PART II. XWAVE-TYPE

More information

Attenuation of Multiples in Marine Seismic Data. Geology /23/06

Attenuation of Multiples in Marine Seismic Data. Geology /23/06 Attenuation of Multiples in Marine Seismic Data Geology 377 10/23/06 Marine Seismic Surveying Marine seismic surveying is performed to support marine environmental and civil engineering projects in the

More information

Linear Electrical and Acoustic Systems Some Basic Concepts

Linear Electrical and Acoustic Systems Some Basic Concepts Linear Electrical and Acoustic Systems Some Basic Concepts Learning Objectives Two port systems transfer matrices impedance matrices reciprocity 1-D compressional waves in a solid equation of motion/constitutive

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2. 3. Fourier ransorm From Fourier Series to Fourier ransorm [, 2] In communication systems, we oten deal with non-periodic signals. An extension o the time-requency relationship to a non-periodic signal

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

PREDICTION OF PROBABILITY DISTRIBUTION OF ELECTROMAGNETIC WAVE IN VDT ENVIRONMENT BASED ON FUZZY MEASUREMENT DATA UNDER EXISTENCE OF BACKGROUND NOISE

PREDICTION OF PROBABILITY DISTRIBUTION OF ELECTROMAGNETIC WAVE IN VDT ENVIRONMENT BASED ON FUZZY MEASUREMENT DATA UNDER EXISTENCE OF BACKGROUND NOISE Progress In Electromagnetics Research B, Vol. 18, 365 380, 2009 PREDICTION OF PROBABILITY DISTRIBUTION OF ELECTROMAGNETIC WAVE IN VDT ENVIRONMENT BASED ON FUZZY MEASUREMENT DATA UNDER EXISTENCE OF BACKGROUND

More information

Acomplex-valued harmonic with a time-varying phase is a

Acomplex-valued harmonic with a time-varying phase is a IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998 2315 Instantaneous Frequency Estimation Using the Wigner Distribution with Varying and Data-Driven Window Length Vladimir Katkovnik,

More information

Chapter 2 Random Processes

Chapter 2 Random Processes Chapter 2 Random Processes 21 Introduction We saw in Section 111 on page 10 that many systems are best studied using the concept of random variables where the outcome of a random experiment was associated

More information

Capacity and Capacity-Achieving Input Distribution of the Energy Detector

Capacity and Capacity-Achieving Input Distribution of the Energy Detector Capacity and Capacity-Achieving Input Distribution of the Energy Detector Erik Leitinger, Bernhard C. Geiger, and Klaus Witrisal Signal Processing and Speech Communication Laboratory, Graz University of

More information

Ghost Imaging. Josselin Garnier (Université Paris Diderot)

Ghost Imaging. Josselin Garnier (Université Paris Diderot) Grenoble December, 014 Ghost Imaging Josselin Garnier Université Paris Diderot http:/www.josselin-garnier.org General topic: correlation-based imaging with noise sources. Particular application: Ghost

More information

CONVOLUTION & PRODUCT THEOREMS FOR FRFT CHAPTER INTRODUCTION [45]

CONVOLUTION & PRODUCT THEOREMS FOR FRFT CHAPTER INTRODUCTION [45] CHAPTER 3 CONVOLUTION & PRODUCT THEOREMS FOR FRFT M ANY properties of FRFT were derived, developed or established earlier as described in previous chapter. This includes multiplication property, differentiation

More information

Outline. Introduction Definition of fractional fourier transform Linear canonical transform Implementation of FRFT/LCT

Outline. Introduction Definition of fractional fourier transform Linear canonical transform Implementation of FRFT/LCT 04//5 Outline Introduction Definition of fractional fourier transform Linear canonical transform Implementation of FRFT/LCT The Direct Computation DFT-like Method Chirp Convolution Method Discrete fractional

More information

27. The Fourier Transform in optics, II

27. The Fourier Transform in optics, II 27. The Fourier Transform in optics, II Parseval s Theorem The Shift theorem Convolutions and the Convolution Theorem Autocorrelations and the Autocorrelation Theorem The Shah Function in optics The Fourier

More information

A Fast Algorithm for. Nonstationary Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong

A Fast Algorithm for. Nonstationary Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong A Fast Algorithm for Nonstationary Delay Estimation H. C. So Department of Electronic Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong Email : hcso@ee.cityu.edu.hk June 19,

More information

Lagrangian data assimilation for point vortex systems

Lagrangian data assimilation for point vortex systems JOT J OURNAL OF TURBULENCE http://jot.iop.org/ Lagrangian data assimilation for point vortex systems Kayo Ide 1, Leonid Kuznetsov 2 and Christopher KRTJones 2 1 Department of Atmospheric Sciences and Institute

More information

The Linear Sampling Method and the MUSIC Algorithm

The Linear Sampling Method and the MUSIC Algorithm CODEN:LUTEDX/(TEAT-7089)/1-6/(2000) The Linear Sampling Method and the MUSIC Algorithm Margaret Cheney Department of Electroscience Electromagnetic Theory Lund Institute of Technology Sweden Margaret Cheney

More information

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for DHANALAKSHMI COLLEGE OF ENEINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MA645 PROBABILITY AND RANDOM PROCESS UNIT I : RANDOM VARIABLES PART B (6 MARKS). A random variable X

More information

OPTIMUM ANALOG RECEIVE FILTERS FOR DETECTION AND INFERENCE UNDER A SAMPLING RATE CONSTRAINT

OPTIMUM ANALOG RECEIVE FILTERS FOR DETECTION AND INFERENCE UNDER A SAMPLING RATE CONSTRAINT 04 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) OPTIMUM AALOG RECEIVE FILTERS FOR DETECTIO AD IFERECE UDER A SAMPLIG RATE COSTRAIT Manuel Stein, Andreas Lenz, Amine

More information

A UNIFIED PRESENTATION OF BLIND SEPARATION METHODS FOR CONVOLUTIVE MIXTURES USING BLOCK-DIAGONALIZATION

A UNIFIED PRESENTATION OF BLIND SEPARATION METHODS FOR CONVOLUTIVE MIXTURES USING BLOCK-DIAGONALIZATION A UNIFIED PRESENTATION OF BLIND SEPARATION METHODS FOR CONVOLUTIVE MIXTURES USING BLOCK-DIAGONALIZATION Cédric Févotte and Christian Doncarli Institut de Recherche en Communications et Cybernétique de

More information

Chapter 6: The Laplace Transform 6.3 Step Functions and

Chapter 6: The Laplace Transform 6.3 Step Functions and Chapter 6: The Laplace Transform 6.3 Step Functions and Dirac δ 2 April 2018 Step Function Definition: Suppose c is a fixed real number. The unit step function u c is defined as follows: u c (t) = { 0

More information

Lecture 1 January 5, 2016

Lecture 1 January 5, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture January 5, 26 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long; Edited by E. Candes & E. Bates Outline

More information

On Time-Frequency Sparsity and Uncertainty

On Time-Frequency Sparsity and Uncertainty CNRS & E cole Normale Supe rieure de Lyon, France * partially based on joint works with Franc ois Auger, Pierre Borgnat and E ric Chassande-Mottin Heisenberg (classical) from or to and Heisenberg refined

More information

Voiced Speech. Unvoiced Speech

Voiced Speech. Unvoiced Speech Digital Speech Processing Lecture 2 Homomorphic Speech Processing General Discrete-Time Model of Speech Production p [ n] = p[ n] h [ n] Voiced Speech L h [ n] = A g[ n] v[ n] r[ n] V V V p [ n ] = u [

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Non-parametric identification

Non-parametric identification Non-parametric Non-parametric Transient Step-response using Spectral Transient Correlation Frequency function estimate Spectral System Identification, SSY230 Non-parametric 1 Non-parametric Transient Step-response

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information