Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6 m h 0 apple m Z cos

7 M S = 10 TeV, M = 3 TeV, M 3 /M = 9 M S = 1 TeV, M = 0.3 TeV, M 3 /M = Ratio 0.01 Ratio Mass (GeV) 5+5 p! e + 0 p! K +

8

9 D C, L F, U C, Q, E C Y V(4) = G X X W 1 p 15 3 B HC H(5) = HC H d, H(5) = H u

10 H(5) = HC H d, H(5) = HC H u

11 W = H( + µ)h h i = v C A µ =3v (p! K + ) ' years (p! K + ) & years

12

13 50 =(1, 1) (3, 1) 1 3 (3, ) 7 6 (6, 1) 4 3 (6, 3) 1 3 (8, ) =

14

15 p e + π0 n e + π- Soudan Frejus Kamiokande IMB Super-K t(p! p 0 e + ) t(p! K + n) [years] [years] p μ + π0 n μ + π- p ν π+ n ν π0 p e + η p μ + η n ν η p e + ρ0 n e + ρ- t(p! p 0 e + ) ' [years] t(p! K + n) ' [years] p μ + ρ0 n μ + ρ- p ν ρ n ν ρ0 p e + ω p μ + ω n ν ω p e + K 0 n e + K - n e - K + p μ + K 0 n μ + K - p ν K + n ν K 0 p e + K*(89) 0 p ν K*(89) + n ν K*(89) τ/b (years) Lifetime limit 90CL (years) Super-Kamiokande Hyper-Kamiokande Year

16 V(4) = G X X W 1 p B 15 3

17 C( GeV) C(m Z ) = 1.5 a S (m Z )= C 1 (m Z ) C 1 (m SUSY ) = 1.1, C (m Z ) C (m SUSY ) = 1.13 Z L dim.6 = Z d 4 q  C (0) I O (0) I I=1, O (0) 1 = e abg Ze rs U C a Dg C b Q r g L s O (0) O = e abg e rs E C U C a Q br Q sg X + h.c. C 1 (m SUSY ) C 1 (m GUT ) = 1.97, C (m SUSY ) C (m GUT ) =.07 C (0) 1 = C (0) = g 5 M X O 0 C

18 -<π 0 (ud) R u L p> <π 0 (ud) L u L p> p! e + p 0 <K 0 (us) R u L p> <K 0 (us) L u L p> -<K + (us) R d L p> <K + (us) L d L p> -<K + (ud) R s L p> <K + (ud) L s L p> -<K + (ds) R u L p> -<K + (ds) L u L p> N f =+1, "direct" Quench, "direct" N f =+1 "direct" N f =+1 "indirect" <η (ud) R u L p> <η (ud) L u L p> W 0 (µ=gev) [GeV ] W 0 (µ=gev) [GeV ]

19 Z Z O (0) L dim.6 = Z O O 0 C (0) 1 = C (0) C C = g r s 5 M X O 0 Z X d 4 q  1 = e abg e rs U C a D C b Q r g L s C (0) I O (0) I I=1, O O (0) g + h.c. = e abg e rs E C U C a Q br Q sg

20 l i (µ)c (0) i (µ)

21 Z O L dim.6 = Z d 4 q  (1 l (I) )C (0) I O (0) I I=1, C (0) 1 = C (0) = g 5 M X O (0) 1 = e abg e rs U C a D C b Q r g L s O (0) = e abg e rs E C U C a Q br Q sg + h.c. l (1) = l () = S(0) M X + S(0) + g p 5 S(0) M X + S(0) + g p 5 1 ln M X µ 1 ln M X µ!!,.

22 a 1 (µ) =a 1 i 5 (µ)+l i(µ) 3 1 g (µ) g3 (µ) g1 (µ) = 1 1 8p 5 ln M H C µ, 5 3 g1 (µ) g (µ) g3 (µ) = 1 8p 1 ln M X M S 4 µ g (µ) g3 (µ) g1 (µ) = 1 1 8p 5 ln M H C M HC M H 0 µ f! ln 5 5,! 5 3 g1 (µ) g (µ) g3 (µ) = 1 8p 1 ln M X M S 75 µ ln 5 4.

23 l (1) = a 1 1 (µ) =a 1 5 (µ)+l 1(µ) l () = S(0) M X + S(0) + g p 5 S(0) M X + S(0) + g p 5 1 ln M X µ 1 ln M X µ!,!. l (1) vert. = , l () vert. l (1) vert. =.9 10, l () vert. = =

24 (Ratio) G(p! p0 + e + ) w G(p! p 0 + e + ) w/o A (I) S =(1 l I ) C(I) (M SUSY ) C (I) (M GUT ) Minimal SU(5) Missing-Partner M X GeV GeV GeV GeV A (1) S A () S R g τ(p e + π 0 ) [years] (I = 1, )

25 10 37 Lifetime [years] G(p! p 0 + e + ) µ g4 5 M 4 X Mass [GeV]

26 Lifetime [years] Mass [GeV]

27

Tsuyoshi Nakaya (Kyoto Univ.)

Tsuyoshi Nakaya (Kyoto Univ.) TAUP 2003 @ Seattle September 8, 2003 Tsuyoshi Nakaya (Kyoto Univ.) Thanks to the Super-K, K2K, JHFν, UNO, LANNDD members. Special thanks to M. Shiozawa (ICRR, U. of Tokyo) and K. Kobayashi (SUNY at Stony

More information

Grand Unified Theories & Proton Decay. Ed Kearns Boston University NEPPSR 2009

Grand Unified Theories & Proton Decay. Ed Kearns Boston University NEPPSR 2009 Grand Unified Theories & Proton Decay Ed Kearns Boston University NEPPSR 2009 Planetary Mo

More information

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa Proton Decays -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa Look for Baryon number violation B number conservation is experimental subject B number conservation

More information

Minimal SUSY SU(5) GUT in High- scale SUSY

Minimal SUSY SU(5) GUT in High- scale SUSY Minimal SUSY SU(5) GUT in High- scale SUSY Natsumi Nagata Nagoya University 22 May, 2013 Planck 2013 Based on J. Hisano, T. Kuwahara, N. Nagata, 1302.2194 (accepted for publication in PLB). J. Hisano,

More information

< 10 5,... m νe /m e. y ν. m ν y ν φ. φφ M. m ν y 2 ν. m ν y ν φ ν. φ ν 0.1 ev

< 10 5,... m νe /m e. y ν. m ν y ν φ. φφ M. m ν y 2 ν. m ν y ν φ ν. φ ν 0.1 ev m νe /m e < 10 5,... m ν y ν φ y ν m ν y 2 ν φφ M M m ν y ν φ ν φ ν 0.1 ev φ ν V =!m 2 " " 2 2 +m "# " # 2 +m 3 2 (" " # + " # ") + $ 1 2 " 4 + $ 2 2 " # 4 +$ 3 " 2 " # 2 +$ 4 (" " # )(" # ") + $ 5 2 [("

More information

(Supersymmetric) Grand Unification

(Supersymmetric) Grand Unification (Supersymmetric) Grand Unification Jürgen Reuter Albert-Ludwigs-Universität Freiburg Uppsala, 15. May 2008 Literature General SUSY: M. Drees, R. Godbole, P. Roy, Sparticles, World Scientific, 2004 S. Martin,

More information

Review of Nucleon Decay Searches at Super-Kamiokande

Review of Nucleon Decay Searches at Super-Kamiokande Review of Nucleon Decay Searches at Super-Kamiokande Volodymyr Takhistov (for the Super-Kamiokande Collaboration) Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA Baryon

More information

A Domino Theory of Flavor

A Domino Theory of Flavor A Domino Theory of Flavor Peter Graham Stanford with Surjeet Rajendran arxiv:0906.4657 Outline 1. General Domino Framework 2. Yukawa Predictions 3. Experimental Signatures General Domino Framework Inspiration

More information

Proton Decay and GUTs. Hitoshi Murayama (Berkeley) Durham July 20, 2005

Proton Decay and GUTs. Hitoshi Murayama (Berkeley) Durham July 20, 2005 Proton Decay and GUTs Hitoshi Murayama (Berkeley) SUSY05 @ Durham July 20, 2005 Why do we pursue proton decay? Minimal SU(5) GUT excluded by IMB Minimal SUSY SU(5) GUT excluded by SuperKamiokande Why do

More information

A realistic model for DM interactions in the neutrino portal paradigm

A realistic model for DM interactions in the neutrino portal paradigm A realistic model for DM interactions in the neutrino portal paradigm José I Illana + Vannia González Macías, José Wudka (UC Riverside) 1 Model 2 Constraints 3 Conclusions JHEP 05 (2016) 171 [160105051]

More information

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph].

More information

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration. EXOTICA AT LHC Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration pmine@poly.in2p3.fr Chia, Sardinia, Italy October 24-27 2001 1 EXOTICA AT LHC Beyond the Standard Model, Supersymmetry

More information

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

FLAVOR PHYSICS BEYOND THE STANDARD MODEL SFB Colloquium DESY Hamburg, July 3rd, 2008 FLAVOR PHYSICS BEYOND THE STANDARD MODEL Gudrun Hiller, Dortmund University of Technology Standard Model of Particle Physics renormalizable quantum field theory

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

CP Violation Beyond the Standard Model

CP Violation Beyond the Standard Model CP Violation Beyond the Standard Model 5th Recontres du Vietnam Hanoi August 7, 2004 Yossi Nir (Weizmann Institute of Science) Thanks to: Sandrine Laplace, Zoltan Ligeti CPV BSM 1/21 Motivation Why do

More information

Review of Nucleon Decay Searches at Super-Kamiokande

Review of Nucleon Decay Searches at Super-Kamiokande Review of Nucleon Decay Searches at Super-Kamiokande Volodymyr Takhistov (for the Super-Kamiokande Collaboration) Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA Baryon

More information

Dark Matter in Particle Physics

Dark Matter in Particle Physics High Energy Theory Group, Northwestern University July, 2006 Outline Framework - General Relativity and Particle Physics Observed Universe and Inference Dark Energy, (DM) DM DM Direct Detection DM at Colliders

More information

Theory of the ElectroWeak Interactions

Theory of the ElectroWeak Interactions Theory of the ElectroWeak Interactions Riccardo Barbieri 1st Summer School of ITN Corfu, September 4-15, 2011 1. The Standard Model: the indirect informations 2. Higgsless Grojean 3. The Higgs boson as

More information

Potential of the large liquid-scintillator detector LENA in particle and astrophysics

Potential of the large liquid-scintillator detector LENA in particle and astrophysics Potential of the large liquid-scintillator detector LENA in particle and astrophysics Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technical University of Munich DPG Teilchenphysik

More information

Gauge-Higgs Unification and the LHC

Gauge-Higgs Unification and the LHC Gauge-Higgs Unification and the LHC If the Higgs boson is 124 or 126 or? GeV with SM couplings, Explain SM Higgs. with non-sm couplings, is not seen at LHC, Higgs is stable. Higgs does not exist. 2 If

More information

Recent Nucleon Decay Results from Super-Kamiokande

Recent Nucleon Decay Results from Super-Kamiokande Recent Nucleon Decay Results from Super-Kamiokande Jennifer L. Raaf Boston University April 14, 28 Motivation Super-Kamiokande n ν π decay search Results Motivation Interesting candidate for grand unification:

More information

Proton Decay in SUSY GUTs revisited

Proton Decay in SUSY GUTs revisited Proton Decay in SUSY GUTs revisited J. Hisano (Nagoya Univ.) 2013 Interna,onal Workshop on Baryon and Lepton Number Viola,on (BLV2013): From the Cosmos to the LHC April 8-11, 2013, MPIK Heidelberg, Germany

More information

XI. Beyond the Standard Model

XI. Beyond the Standard Model XI. Beyond the Standard Model While the Standard Model appears to be confirmed in all ways, there are some unclear points and possible extensions: Why do the observed quarks and leptons have the masses

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

Baryon and Lepton Number Violation at the TeV Scale

Baryon and Lepton Number Violation at the TeV Scale Baryon and Lepton Number Violation at the TeV Scale S. Nandi Oklahoma State University and Oklahoma Center for High Energy Physics : S. Chakdar, T. Li, S. Nandi and S. K. Rai, arxiv:1206.0409[hep-ph] (Phys.

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University Supersymmetry, Baryon Number Violation and a Hidden Higgs David E Kaplan Johns Hopkins University Summary LEP looked for a SM Higgs and didn t find it. Both electroweak precision measurements and supersymmetric

More information

Proton decay and neutrino astrophysics with the future LENA detector

Proton decay and neutrino astrophysics with the future LENA detector Proton decay and neutrino astrophysics with the future LENA detector Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technische Universität München Paris, 11.09.08 Outline

More information

Ricerca di nuova fisica a HERA

Ricerca di nuova fisica a HERA Ricerca di nuova fisica a HERA Incontro sulla Fisica delle Alte Energie, Lecce 23-26 aprile 2003 S.Dusini, INFN Padova 1 Overview Introduction to Hera Results from HERA I Contact Interaction: Compositness,

More information

DPF2015. Search for Chargino and Neutralino using Two Jets in Vector-Boson-Fusion Topology at CMS

DPF2015. Search for Chargino and Neutralino using Two Jets in Vector-Boson-Fusion Topology at CMS DPF5 Search for Chargino and Neutralino using Two Jets in Vector-Boson-Fusion Topology at CMS Andrés Flórez - Uniandes (COL) On behalf of the CMS Collaboration August 4, 5 Andrés Flórez (Uniandes - Colombia)

More information

Inflaton decay in supergravity and the new gravitino problem

Inflaton decay in supergravity and the new gravitino problem Inflaton decay in supergravity and the new gravitino problem 10. December 2007 @ICRR, University of Tokyo Fuminobu Takahashi (Institute for the Physics and Mathematics of the Universe) Collaborators: Endo,

More information

Large Extra Dimensions and the Hierarchy Problem

Large Extra Dimensions and the Hierarchy Problem Large Extra Dimensions and the Hierarchy Problem The Hierarchy Problem - At Planck energies (M P L 10 19 GeV ) all four forces have the same strength. -At the Electroweak scale (M EW 1T ev ) the four forces

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Revisiting gravitino dark matter in thermal leptogenesis

Revisiting gravitino dark matter in thermal leptogenesis Revisiting gravitino dark matter in thermal leptogenesis Motoo Suzuki Institute for Cosmic Ray Research (ICRR) The University of Tokyo arxiv:1609.06834 JHEP1702(2017)063 In collaboration with Masahiro

More information

Realization of thermal inflation in SUSY discrete flavour symmetry model

Realization of thermal inflation in SUSY discrete flavour symmetry model Realization of thermal inflation in SUSY discrete flavour symmetry model Hiroaki Nagao (Niigata univ.) 01/03/9 The 5 th Workshop Cosmic Neutrino (To be appeared arxiv:hep- ph/104.xxxx) in collaboration

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Search for Proton Decay in Super-Kamiokande

Search for Proton Decay in Super-Kamiokande Search for Proton Decay in Super-Kamiokande Yusuke Suda Mini-Workshop for High Energy Gamma Ray Astrophysics Max-Planck-Institute for Physics, Nov. 24, 2017 Who am I I am Yusuke Suda from Univ. of Tokyo,

More information

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross THE DREAM OF GRAND UNIFIED THEORIES AND THE HC atsis symposium, Zurich, 2013 Graham Ross The Standard Model after HC 8 u Symmetries è Dynamics Gauge bosons Chiral Matter Higgs u i d i SU(3) SU(2) U(1)

More information

Investigating Beyond Standard Model

Investigating Beyond Standard Model Investigating Beyond Standard Model Joydeep Chakrabortty Physical Research Laboratory TPSC Seminar, IOP 5th February, 2013 1/35 Standard Model A Brief Tour Why BSM? BSM Classification How do we look into

More information

Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa Proton Decay searches -- sensitivity, BG and photo-coverage -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa April-25 @ NNN5 Water as a proton decay detector Source H 2 O 2/1 free proton no nuclear

More information

Inflationary particle production and non-gaussianity

Inflationary particle production and non-gaussianity December 30th (2018) Inflationary particle production and non-gaussianity Yi-Peng Wu RESearch Center for the Early Universe (RESCEU) The University of Tokyo based on: arxiv[the last day of 2018?] see also

More information

Yuri A. Kamyshkov. Department of Physics University of Tennessee, Knoxville, TN.

Yuri A. Kamyshkov. Department of Physics University of Tennessee, Knoxville, TN. NRC Committee on the Physics of the Universe Snowmass, July 13, 2001 aaaaaaaaaa `````````` Neutron Antineutron Search aaaaaaaaaa `````````` Yuri A. Kamyshkov Department of Physics University of Tennessee,

More information

Proton Decay: A Giant Orphan in Particle Physics

Proton Decay: A Giant Orphan in Particle Physics http://nngroup.physics.sunysb.edu/nngroup/pub/whitepaper.ps Proton Decay: A Giant Orphan in Particle Physics Stony Brook University and Universitat Autonoma de Barcelona SLAC Summer Institute August 1,

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Lepton Flavour Violation

Lepton Flavour Violation Michael Roney University of Victoria (Babar Collaboration) Electroweak Session, La Thuile, March 10-17, 2007 A bit of history the importance of earnestly seeing nothing μ γ μ γ μ γ μ μ μ History of e-muon

More information

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Jiajun Wu R. Molina E. Oset B. S. Zou Outline Introduction Theory for the new bound states Width and Coupling constant

More information

Proton Lifetime Upper Bound in Non-SUSY SU(5) GUT arxiv: v1 [hep-ph] 20 Dec 2018

Proton Lifetime Upper Bound in Non-SUSY SU(5) GUT arxiv: v1 [hep-ph] 20 Dec 2018 Proton Lifetime Upper Bound in Non-SUSY SU5) GUT arxiv:1812.08521v1 [hep-ph] 20 Dec 2018 Naoyuki Haba, Yukihiro Mimura and Toshifumi Yamada Institute of Science and Engineering, Shimane University, Matsue

More information

Conference Summary. K.K. Gan The Ohio State University. K.K. Gan Tau2000 1

Conference Summary. K.K. Gan The Ohio State University. K.K. Gan Tau2000 1 Conference Summary K.K. Gan The Ohio State University K.K. Gan Tau2000 1 many interesting results can only summarize some highlights include a few interesting results not presented here apologize to those

More information

Luis & SUSY. G. Ross, Madrid, March 2013

Luis & SUSY. G. Ross, Madrid, March 2013 Luis & SUSY G. Ross, Madrid, March 2013 Luis @ 60! Luis @ 60! Still a kid! Luis @ 27 - Oxford Golden era Luis, Paco del Aguila, Tony Mendez, Tony Grifols, Alberto Casas, Carlos Munoz, Jose Valle, Dominic

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

mh = 125 GeV and SUSY naturalness

mh = 125 GeV and SUSY naturalness mh = 125 GeV and SUSY naturalness Josh Ruderman (UC Berkeley) March 13, 212 Lawrence Hall, David Pinner, JTR 1112.273 h! ATLAS CMS p Observed p 1-2 1 2 SM H expected p Data 211, s = 7 TeV Ldt = 4.9 fb

More information

Theoretical Review on Lepton Universality and LFV

Theoretical Review on Lepton Universality and LFV General Considerations NP search strategies K πν ν and NP µ e universality in M lν Conclusion Theoretical Review on Lepton Universality and LFV P. Paradisi Università di Valencia and IFIC KAON 007 Frascati,

More information

Sterile Neutrinos in July 2010

Sterile Neutrinos in July 2010 Sterile Neutrinos in July 0 Carlo Giunti INFN, Sezione di Torino Presidenza INFN, Roma, 19 July 0 Collaboration with Marco Laveder (Padova University) C. Giunti Sterile Neutrinos in July 0 Presidenza INFN,

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

Physics Highlights from 12 Years at LEP

Physics Highlights from 12 Years at LEP Physics Highlights from 12 Years at LEP Colloquium Frascati,, 8.2.2001 Dieter Schlatter CERN / Geneva 1 Standard Model In 1989 ingredients of Standard Model were known: Matter particles: u,d,s,c,b,t quarks

More information

Flavor physics. Yuval Grossman. Cornell. Y. Grossman Flavor physics APS2009, Denver, 5/2/2009 p. 1

Flavor physics. Yuval Grossman. Cornell. Y. Grossman Flavor physics APS2009, Denver, 5/2/2009 p. 1 Flavor physics Yuval Grossman Cornell Y. Grossman Flavor physics APS2009, Denver, 5/2/2009 p. 1 Flavor at a junction Every end is a new beginning End: The Nobel to KM is a formal declaration that the CKM

More information

Prospects of experimentally reachable beyond Standard Model physics in inverse seesaw motivated non-susy SO(10) GUT

Prospects of experimentally reachable beyond Standard Model physics in inverse seesaw motivated non-susy SO(10) GUT Prospects of experimentally reachable beyond Standard odel physics in inverse seesaw motivated non-susy SO(0) GUT am Lal Awasthi, Hairsh-Chandra esearch Institute, Allahabad-209 June 27, 20 The quest of

More information

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter, March 8, 2017. arxiv:1612.02793, with Anirban Biswas. Aritra Gupta Why Non-Thermal? 1 / 31 The most widely studied

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Neutrino Signals from Dark Matter Decay

Neutrino Signals from Dark Matter Decay Neutrino Signals from Dark Matter Decay Michael Grefe Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany COSMO/CosPA 2010 The University of Tokyo 27 September 2010 Based on work in collaboration with

More information

Chapter 46 Solutions

Chapter 46 Solutions Chapter 46 Solutions 46.1 Assuming that the proton and antiproton are left nearly at rest after they are produced, the energy of the photon E, must be E = E 0 = (938.3 MeV) = 1876.6 MeV = 3.00 10 10 J

More information

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron Measurements of the Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron John Ellison University of California, Riverside, USA Selection of and Z events Measurement of the mass Tests of the gauge

More information

GUTs, Inflation, and Phenomenology

GUTs, Inflation, and Phenomenology GUTs, Inflation, and Phenomenology Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

symmetries and unification

symmetries and unification Right unitarity triangles and tribimaximal mixing from discrete symmetries and unification Martin Spinrath FLASY 2011-12th July Based on collaborations with S. Antusch, S.F. King, C. Luhn and M. Malinsky:

More information

Yukawa and Gauge-Yukawa Unification

Yukawa and Gauge-Yukawa Unification Miami 2010, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Adeel Ajaib, Tong Li and Kai

More information

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 OUTLINE How can Extra Dimensions explain the electroweak

More information

LHC Phenomenology of SUSY multi-step GUTs

LHC Phenomenology of SUSY multi-step GUTs 0/14 J. Reuter LHC Phenomenology of SUSY multi-step GUTs PHENO 09, Madison, 1.5.009 LHC Phenomenology of SUSY multi-step GUTs Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PL B64 (006),

More information

Neutrino Oscillation Tomography

Neutrino Oscillation Tomography 1 Neutrino Oscillation Tomography (and Neutrino Absorption Tomography) (and Neutrino Parametric-Refraction Tomography) Sanshiro Enomoto University of Washington CIDER Geoneutrino Working Group Meeting,

More information

Beyond the SM, Supersymmetry

Beyond the SM, Supersymmetry Beyond the SM, 1/ 44 Beyond the SM, A. B. Lahanas University of Athens Nuclear and Particle Physics Section Athens - Greece Beyond the SM, 2/ 44 Outline 1 Introduction 2 Beyond the SM Grand Unified Theories

More information

Supersymmetric dark matter with low reheating temperature of the Universe

Supersymmetric dark matter with low reheating temperature of the Universe Supersymmetric dark matter with low reheating temperature of the Universe Sebastian Trojanowski National Center for Nuclear Research, Warsaw COSMO 204 Chicago, August 29, 204 L. Roszkowski, ST, K. Turzyński

More information

Belle results on Lepton Flavor Violation in tau decays. K. Inami (Nagoya Univ.) for Belle collaboration

Belle results on Lepton Flavor Violation in tau decays. K. Inami (Nagoya Univ.) for Belle collaboration Belle results on Lepton Flavor Violation in tau decays K. Inami (Nagoya Univ.) for Belle collaboration 2 Belle B factory at KEK KEKB: e + (3.5 GeV) e (8GeV) σ(ττ)~0.9nb, σ(bb)~1.1nb A B factory is also

More information

Relativistic hydrodynamics for heavy-ion physics

Relativistic hydrodynamics for heavy-ion physics heavy-ion physics Universität Heidelberg June 27, 2014 1 / 26 Collision time line 2 / 26 3 / 26 4 / 26 Space-time diagram proper time: τ = t 2 z 2 space-time rapidity η s : t = τ cosh(η s ) z = τ sinh(η

More information

Astroparticle physics

Astroparticle physics Timo Enqvist University of Oulu Oulu Southern institute lecture cource on Astroparticle physics 15.09.2009 15.12.2009 1 High-energy cosmic rays 1.43 1.5 Cosmic-ray sources Sources, acceleration mechanisms,

More information

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09 The first year of the LHC and Theory G.G.Ross, Krakow, December 09 The LHC a discovery machine The gauge sector : new gauge bosons? The maber sector : new quarks and leptons? The scalar sector : the hierarchy

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment

A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment By Rishiraj Pravahan University of Texas at Arlington Outline Why do we need Supersymmetry?

More information

Introduction to the Beyond the Standard Model session

Introduction to the Beyond the Standard Model session Introduction to the Beyond the Standard Model session JJC 2014 Dec. 11th 2014 Samuel Calvet Outline Why do we need Beyond the Standard Model (BSM) theories? BSM theories on the market : their predictions/particles

More information

Prospects of experimentally reachable beyond Standard Model physics in inverse see-saw motivated SO(10) GUT

Prospects of experimentally reachable beyond Standard Model physics in inverse see-saw motivated SO(10) GUT PRAMANA c Indian Academy of Sciences Vol. 86, No. 2 journal of February 2016 physics pp. 223 229 Prospects of experimentally reachable beyond Standard Model physics in inverse see-saw motivated SO(10)

More information

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla JIGSAW 07 Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases Sanjib Kumar Agarwalla Harish-Chandra Research Institute, Allahabad, India work done in collaboration with M. K.

More information

Family Replicated Gauge Group Models

Family Replicated Gauge Group Models Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 77 74 Family Replicated Gauge Group Models C.D. FROGGATT, L.V. LAPERASHVILI, H.B. NIELSEN and Y. TAKANISHI Department of

More information

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION Atsuko K. Ichikawa, Kyoto University Got PhD by detecting doubly-strange nuclei using emulsion After that, working on accelerator-based

More information

Search for long-lived particles at CMS

Search for long-lived particles at CMS Search for long-lived particles at CMS Jie Chen Florida State University for the CMS Collaboration 03/19/12 Jie Chen @ SEARCH12 1 Outline Brief introduction to long-lived particle Neutral long-lived particles

More information

Nonthermal Dark Matter & Top polarization at Collider

Nonthermal Dark Matter & Top polarization at Collider Nonthermal Dark Matter & Top polarization at Collider Yu Gao Texas A&M University R.Allahverdi, M. Dalchenko, B.Dutta, YG, T. Kamon, in progress B. Dutta, YG, T. Kamon, arxiv: PRD 89 (2014) 9, 096009 R.

More information

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS MSSM4G: MOTIVATIONS AND ALLOWED REGIONS ATLAS SUSY WG Meeting CERN Jonathan Feng, University of California, Irvine 31 January 2018 Based on 1510.06089, 1608.00283 with Mohammad Abdullah (Texas A&M), Sho

More information

Right-handed SneutrinoCosmology and Hadron Collider Signature

Right-handed SneutrinoCosmology and Hadron Collider Signature Right-handed Sneutrino and Hadron Northwestern University with Andre de Gouvea ( Northwestern) & Werner Porod ( Valencia)... June 15, 2006 Susy 06, UC Irvine Right-handed Sneutrino and Hadron Collider

More information

Top quark effects in composite vector pair production at the LHC

Top quark effects in composite vector pair production at the LHC Top quark effects in composite vector pair production at the LHC Antonio Enrique Cárcamo Hernández. Universidad Tecnica Federico Santa Maria. SILAFAE 01, 10th-14th of December of 01. Based on: A. E. Cárcamo

More information

Alternatives to the GUT Seesaw

Alternatives to the GUT Seesaw Alternatives to the GUT Seesaw Motivations Higher-dimensional operators String instantons Other (higher dimensions, Higgs triplets) Motivations Many mechanisms for small neutrino mass, both Majorana and

More information

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Probing Light Nonthermal Dark Matter @ LHC Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Outline Minimal extension to SM for baryogenesis & dark matter Current constraints

More information

Baryon Number Violation

Baryon Number Violation 13 Baryon Number Violation Conveners: K.S. Babu, E. Kearns U. Al-Binni, S. Banerjee, D. V. Baxter, Z. Berezhiani, M. Bergevin, S. Bhattacharya, S. Brice, R. Brock, T. W. Burgess, L. Castellanos, S. Chattopadhyay,

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo International Workshop On Discoveries In Flavour Physics At E+ E- Colliders

More information

Rare Hadronic B Decays

Rare Hadronic B Decays XLI st Rencontres de Moriond QCD and High-Energy Hadronic Interactions La Thuile, Italy, March 18-5, 6 Rare Hadronic B Decays Jürgen Kroseberg Santa Cruz Institute for Particle Physics University of California,

More information

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses January 3, 08 PHY357 Lecture 8 Quark composition of hadrons Hadron magnetic moments Hadron masses January 3, 08 Quark rules for building Hadrons! Three types of stable quark configurations established!

More information

Introduction: Cosmic Neutrinos Dark Radiation and the QGP Era Darkness Production: Universe Laboratory

Introduction: Cosmic Neutrinos Dark Radiation and the QGP Era Darkness Production: Universe Laboratory Outline of the talk 1. Introduction: CMB fluctuation analysis observes N ν, number of invisible Cosmic Neutrinos pushing the Universe apart Anything else out there adding to the pressure? 2. Impact of

More information

Taller de Altas Energías Michael Holzbock September 7, LMU Munich

Taller de Altas Energías Michael Holzbock September 7, LMU Munich Search for top squark pair production in final states with two τ leptons, jets, and missing transverse momentum in s = TeV pp-collisions with the ATLAS detector Taller de Altas Energías 6 Michael Holzbock

More information

Proton decay theory review

Proton decay theory review Proton decay theory review Borut Bajc J. Stefan Institute, Ljubljana, Slovenia Lyon, 12 1 Introduction STANDARD MODEL: renormalizable level: accidental B and L conservation (no invariants that violate

More information

Oblique corrections from Light Composite Higgs

Oblique corrections from Light Composite Higgs Oblique corrections from Light Composite Higgs Slava Rychkov (ENS Paris & CERN) with Axel Orgogozo 1111.3534 & work in progress EWPT in Standard Model M H 0.0 M W -1.2 % W 0.2 M Z 0.2 % Z 0.1 0! had 0

More information

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY beyond standard model ZHONG-ZHI XIANYU Tsinghua University June 9, 015 Why Higgs? Why gravity? An argument from equivalence principle Higgs:

More information