Laplace s equation in polar coordinates. Boundary value problem for disk: u = u rr + u r r. r 2

Size: px
Start display at page:

Download "Laplace s equation in polar coordinates. Boundary value problem for disk: u = u rr + u r r. r 2"

Transcription

1 Laplace s equation in polar coordinates Boundary value problem for disk: u = u rr + u r r + u θθ = 0, u(a, θ) = h(θ). r 2

2 Laplace s equation in polar coordinates Boundary value problem for disk: u = u rr + u r r + u θθ = 0, u(a, θ) = h(θ). r 2 Separating variables u = R(r)Θ(θ) gives R Θ + r 1 R Θ + r 2 RΘ = 0 or Θ Θ = r 2 R rr R = λ.

3 Laplace s equation in polar coordinates Boundary value problem for disk: u = u rr + u r r + u θθ = 0, u(a, θ) = h(θ). r 2 Separating variables u = R(r)Θ(θ) gives R Θ + r 1 R Θ + r 2 RΘ = 0 or Θ Θ = r 2 R rr R = λ. Eigenvalue problem Θ + λθ = 0, Θ(0) = Θ(2π), Θ (0) = Θ (2π).

4 Laplace s equation in polar coordinates Boundary value problem for disk: u = u rr + u r r + u θθ = 0, u(a, θ) = h(θ). r 2 Separating variables u = R(r)Θ(θ) gives R Θ + r 1 R Θ + r 2 RΘ = 0 or Θ Θ = r 2 R rr R = λ. Eigenvalue problem Θ + λθ = 0, Θ(0) = Θ(2π), Θ (0) = Θ (2π). Periodic boundary conditions give rise to Fourier series with both sines and cosines as eigenfunctions.

5 Laplace s equation in polar coordinates, cont. Eigenfunctions ( circular harmonics ) 1 λ = 0 Θ = cos(nθ) λ = n 2 sin(nθ) λ = n 2, where n = 1, 2, 3,....

6 Laplace s equation in polar coordinates, cont. Eigenfunctions ( circular harmonics ) where n = 1, 2, 3, λ = 0 Θ = cos(nθ) λ = n 2 sin(nθ) λ = n 2, Equation for radial component is Euler equation r 2 R + rr λr = 0.

7 Laplace s equation in polar coordinates, cont. Eigenfunctions ( circular harmonics ) where n = 1, 2, 3, λ = 0 Θ = cos(nθ) λ = n 2 sin(nθ) λ = n 2, Equation for radial component is Euler equation r 2 R + rr λr = 0. Solutions are just powers R = r α ; plugging in, [α(α 1) + α λ]r α = 0 or α = ± λ.

8 Laplace s equation in polar coordinates, cont. Eigenfunctions ( circular harmonics ) where n = 1, 2, 3, λ = 0 Θ = cos(nθ) λ = n 2 sin(nθ) λ = n 2, Equation for radial component is Euler equation r 2 R + rr λr = 0. Solutions are just powers R = r α ; plugging in, [α(α 1) + α λ]r α = 0 or α = ± λ. If λ = 0, get linearly independent solutions 1 and ln r.

9 Laplace s equation in polar coordinates, cont. Eigenfunctions ( circular harmonics ) where n = 1, 2, 3, λ = 0 Θ = cos(nθ) λ = n 2 sin(nθ) λ = n 2, Equation for radial component is Euler equation r 2 R + rr λr = 0. Solutions are just powers R = r α ; plugging in, [α(α 1) + α λ]r α = 0 or α = ± λ. If λ = 0, get linearly independent solutions 1 and ln r. Reject (for now) solutions involving ln r and r α.

10 Laplace s equation in polar coordinates, cont. Superposition of separated solutions: u = A 0 /2 + r n [A n cos(nθ) + B n sin(nθ)].

11 Laplace s equation in polar coordinates, cont. Superposition of separated solutions: u = A 0 /2 + r n [A n cos(nθ) + B n sin(nθ)]. Satisfy boundary condition at r = a, h(θ) = A 0 /2 + a n [A n cos(nθ) + B n sin(nθ)].

12 Laplace s equation in polar coordinates, cont. Superposition of separated solutions: u = A 0 /2 + r n [A n cos(nθ) + B n sin(nθ)]. Satisfy boundary condition at r = a, h(θ) = A 0 /2 + a n [A n cos(nθ) + B n sin(nθ)]. This is a Fourier series with cosine coefficients a n A n and sine coefficients a n B n, so that (using the known formulas) A n = 1 2π πa n h(φ) cos(nφ)dφ, B n = 1 2π 0 πa n h(φ) sin(nφ)dφ. 0

13 Poisson formula Inserting the Fourier coefficient formulas into the general solution, u(r, θ) = 1 2π h(φ)dφ 2π 0 r n 2π + πa n h(φ)[cos(nφ) cos(nθ) + sin(nφ) sin(nθ)]dφ. 0

14 Poisson formula Inserting the Fourier coefficient formulas into the general solution, u(r, θ) = 1 2π h(φ)dφ 2π 0 r n 2π + πa n h(φ)[cos(nφ) cos(nθ) + sin(nφ) sin(nθ)]dφ. 0 Use the identity cos(nφ) cos(nθ) + sin(nφ) sin(nθ) = cos(n(θ φ)), and reverse the order of summation and integration u(r, θ) = 1 2π { h(φ) π 0 ( r a) n cos(n(θ φ)) } dφ.

15 Poisson formula, cont. Sum is geometric series in disguise: ( r n cos(n(θ φ)) = 1 + 2Re a) ( ) n re i(θ φ) = 1 + 2Re rei(θ φ) a re i(θ φ) a 2 r 2 = a 2 2ar cos(θ φ) + r 2. a

16 Poisson formula, cont. Sum is geometric series in disguise: ( r n cos(n(θ φ)) = 1 + 2Re a) ( This results in Poisson s formula: u(r, θ) = 2π 0 ) n re i(θ φ) = 1 + 2Re rei(θ φ) a re i(θ φ) a 2 r 2 = a 2 2ar cos(θ φ) + r 2. P(r, θ φ)h(φ)dφ, P(r, θ) = 1 a 2 r 2 2π a 2 2ar cos(θ) + r 2. a

17 Consequences of the Poisson formula At r = 0, notice the integral is easy to compute: u(r, θ) = 1 2π h(φ)dφ, = 1 2π u(a, φ)dφ. 2π 0 2π 0 Therefore if u = 0, the value of u at any point is just the average values of u on a circle centered on that point. ( Mean value theorem") The maximum and minimum values of u are therefore always on the domain boundary (this is true for any shape domain).

Separation of Variables

Separation of Variables Separation of Variables A typical starting point to study differential equations is to guess solutions of a certain form. Since we will deal with linear PDEs, the superposition principle will allow us

More information

LAPLACE EQUATION. = 2 is call the Laplacian or del-square operator. In two dimensions, the expression of in rectangular and polar coordinates are

LAPLACE EQUATION. = 2 is call the Laplacian or del-square operator. In two dimensions, the expression of in rectangular and polar coordinates are LAPLACE EQUATION If a diffusion or wave problem is stationary (time independent), the pde reduces to the Laplace equation u = u =, an archetype of second order elliptic pde. = 2 is call the Laplacian or

More information

MATH 124B: INTRODUCTION TO PDES AND FOURIER SERIES

MATH 124B: INTRODUCTION TO PDES AND FOURIER SERIES MATH 24B: INTROUCTION TO PES AN FOURIER SERIES SHO SETO Contents. Fourier Series.. Even, Odd, Period, and Complex functions 5.2. Orthogonality and General Fourier Series 6.3. Convergence and completeness

More information

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 214/215 Lecture 17 Saarland University 22. Januar 215 c Daria Apushkinskaya (UdS) PDE and BVP lecture 17 22. Januar 215 1 / 28 Purpose of Lesson To show how

More information

The Laplacian in Polar Coordinates

The Laplacian in Polar Coordinates The Laplacian in Polar Coordinates R. C. Trinity University Partial Differential Equations March 17, 15 To solve boundary value problems on circular regions, it is convenient to switch from rectangular

More information

Math 316/202: Solutions to Assignment 7

Math 316/202: Solutions to Assignment 7 Math 316/22: Solutions to Assignment 7 1.8.6(a) Using separation of variables, we write u(r, θ) = R(r)Θ(θ), where Θ() = Θ(π) =. The Laplace equation in polar coordinates (equation 19) becomes R Θ + 1 r

More information

4.10 Dirichlet problem in the circle and the Poisson kernel

4.10 Dirichlet problem in the circle and the Poisson kernel 220 CHAPTER 4. FOURIER SERIES AND PDES 4.10 Dirichlet problem in the circle and the Poisson kernel Note: 2 lectures,, 9.7 in [EP], 10.8 in [BD] 4.10.1 Laplace in polar coordinates Perhaps a more natural

More information

Suggested Solution to Assignment 6

Suggested Solution to Assignment 6 MATH 4 (6-7) partial diferential equations Suggested Solution to Assignment 6 Exercise 6.. Note that in the spherical coordinates (r, θ, φ), Thus, Let u = v/r, we get 3 = r + r r + r sin θ θ sin θ θ +

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

SAMPLE FINAL EXAM SOLUTIONS

SAMPLE FINAL EXAM SOLUTIONS LAST (family) NAME: FIRST (given) NAME: ID # : MATHEMATICS 3FF3 McMaster University Final Examination Day Class Duration of Examination: 3 hours Dr. J.-P. Gabardo THIS EXAMINATION PAPER INCLUDES 22 PAGES

More information

21 Laplace s Equation and Harmonic Functions

21 Laplace s Equation and Harmonic Functions 2 Laplace s Equation and Harmonic Functions 2. Introductory Remarks on the Laplacian operator Given a domain Ω R d, then 2 u = div(grad u) = in Ω () is Laplace s equation defined in Ω. If d = 2, in cartesian

More information

FINAL EXAM, MATH 353 SUMMER I 2015

FINAL EXAM, MATH 353 SUMMER I 2015 FINAL EXAM, MATH 353 SUMMER I 25 9:am-2:pm, Thursday, June 25 I have neither given nor received any unauthorized help on this exam and I have conducted myself within the guidelines of the Duke Community

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 20 Complex Analysis Module: 10:

More information

M412 Assignment 5 Solutions

M412 Assignment 5 Solutions M41 Assignment 5 Solutions 1. [1 pts] Haberman.5.1 (a). Solution. Setting u(x, y) =X(x)Y(y), we find that X and Y satisfy X + λx = Y λy =, X () = X () = Y() =. In this case, we find from the X equation

More information

Elliptic Equations. Laplace equation on bounded domains Circular Domains

Elliptic Equations. Laplace equation on bounded domains Circular Domains Elliptic Equtions Lplce eqution on bounded domins Sections 7.7.2, 7.7.3, An Introduction to Prtil Differentil Equtions, Pinchover nd Rubinstein 1.2 Circulr Domins We study the two-dimensionl Lplce eqution

More information

Math 337, Summer 2010 Assignment 5

Math 337, Summer 2010 Assignment 5 Math 337, Summer Assignment 5 Dr. T Hillen, University of Alberta Exercise.. Consider Laplace s equation r r r u + u r r θ = in a semi-circular disk of radius a centered at the origin with boundary conditions

More information

Partial Differential Equations and Random Walks

Partial Differential Equations and Random Walks Partial Differential Equations and Random Walks with Emphasis on the Heat Equation Kevin Hu January 7, 2014 Kevin Hu PDE and Random Walks January 7, 2014 1 / 28 Agenda 1 Introduction Overview 2 Random

More information

c2 2 x2. (1) t = c2 2 u, (2) 2 = 2 x x 2, (3)

c2 2 x2. (1) t = c2 2 u, (2) 2 = 2 x x 2, (3) ecture 13 The wave equation - final comments Sections 4.2-4.6 of text by Haberman u(x,t), In the previous lecture, we studied the so-called wave equation in one-dimension, i.e., for a function It was derived

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Department of Mathematics

Department of Mathematics INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY Department of Mathematics MA 04 - Complex Analysis & PDE s Solutions to Tutorial No.13 Q. 1 (T) Assuming that term-wise differentiation is permissible, show that

More information

Spotlight on Laplace s Equation

Spotlight on Laplace s Equation 16 Spotlight on Laplace s Equation Reference: Sections 1.1,1.2, and 1.5. Laplace s equation is the undriven, linear, second-order PDE 2 u = (1) We defined diffusivity on page 587. where 2 is the Laplacian

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

CONVERGENCE OF THE FOURIER SERIES

CONVERGENCE OF THE FOURIER SERIES CONVERGENCE OF THE FOURIER SERIES SHAW HAGIWARA Abstract. The Fourier series is a expression of a periodic, integrable function as a sum of a basis of trigonometric polynomials. In the following, we first

More information

THE METHOD OF SEPARATION OF VARIABLES

THE METHOD OF SEPARATION OF VARIABLES THE METHOD OF SEPARATION OF VARIABES To solve the BVPs that we have encountered so far, we will use separation of variables on the homogeneous part of the BVP. This separation of variables leads to problems

More information

24 Solving planar heat and wave equations in polar coordinates

24 Solving planar heat and wave equations in polar coordinates 24 Solving planar heat and wave equations in polar coordinates Now that all the preparations are done, I can return to solving the planar heat and wave equations in domains with rotational symmetry. 24.1

More information

BOUNDARY PROBLEMS IN HIGHER DIMENSIONS. kt = X X = λ, and the series solutions have the form (for λ n 0):

BOUNDARY PROBLEMS IN HIGHER DIMENSIONS. kt = X X = λ, and the series solutions have the form (for λ n 0): BOUNDARY PROBLEMS IN HIGHER DIMENSIONS Time-space separation To solve the wave and diffusion equations u tt = c u or u t = k u in a bounded domain D with one of the three classical BCs (Dirichlet, Neumann,

More information

Boundary Value Problems in Cylindrical Coordinates

Boundary Value Problems in Cylindrical Coordinates Boundary Value Problems in Cylindrical Coordinates 29 Outline Differential Operators in Various Coordinate Systems Laplace Equation in Cylindrical Coordinates Systems Bessel Functions Wave Equation the

More information

Spherical Coordinates and Legendre Functions

Spherical Coordinates and Legendre Functions Spherical Coordinates and Legendre Functions Spherical coordinates Let s adopt the notation for spherical coordinates that is standard in physics: φ = longitude or azimuth, θ = colatitude ( π 2 latitude)

More information

Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions. ρ + (1/ρ) 2 V

Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions. ρ + (1/ρ) 2 V Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions Lecture 8 1 Introduction Solutions to Laplace s equation can be obtained using separation of variables in Cartesian and

More information

General Michell Solution in Polar Coordinates

General Michell Solution in Polar Coordinates General Michell Solution in Polar Coorinates A. Narayana Rey [Reference: The solution is aopte from the book on Introuction to Continuum Mechanics by W. M. Lai, D. Rubin, an E. Krempl] Let the solution

More information

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm.

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm. Applied Mathematics Masters Examination Fall 16, August 18, 1 4 pm. Each of the fifteen numbered questions is worth points. All questions will be graded, but your score for the examination will be the

More information

Using Green s functions with inhomogeneous BCs

Using Green s functions with inhomogeneous BCs Using Green s functions with inhomogeneous BCs Using Green s functions with inhomogeneous BCs Surprise: Although Green s functions satisfy homogeneous boundary conditions, they can be used for problems

More information

Solutions to Problems in Jackson, Classical Electrodynamics, Third Edition. Chapter 2: Problems 11-20

Solutions to Problems in Jackson, Classical Electrodynamics, Third Edition. Chapter 2: Problems 11-20 Solutions to Problems in Jackson, Classical Electrodynamics, Third Edition Homer Reid December 8, 999 Chapter : Problems - Problem A line charge with linear charge density τ is placed parallel to, and

More information

Eigenfunctions on the surface of a sphere. In spherical coordinates, the Laplacian is. u = u rr + 2 r u r + 1 r 2. sin 2 (θ) + 1

Eigenfunctions on the surface of a sphere. In spherical coordinates, the Laplacian is. u = u rr + 2 r u r + 1 r 2. sin 2 (θ) + 1 Eigenfunctions on the surface of a sphere In spherical coordinates, the Laplacian is u = u rr + 2 r u r + 1 r 2 [ uφφ sin 2 (θ) + 1 sin θ (sin θ u θ) θ ]. Eigenfunctions on the surface of a sphere In spherical

More information

SC/MATH Partial Differential Equations Fall Assignment 3 Solutions

SC/MATH Partial Differential Equations Fall Assignment 3 Solutions November 16, 211 SC/MATH 3271 3. Partial Differential Equations Fall 211 Assignment 3 Solutions 1. 2.4.6 (a) on page 7 in the text To determine the equilibrium (also called steady-state) heat distribution

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

Bessel Functions and Their Application to the Eigenvalues of the Laplace Operator

Bessel Functions and Their Application to the Eigenvalues of the Laplace Operator Bessel Functions and Their Application to the Eigenvalues of the Laplace Operator Matthew Jin June 1, 2014 1 Introduction Bessel functions of the first kind, J n, are the solutions of Bessel s differential

More information

AMATH 353 Lecture 9. Weston Barger. How to classify PDEs as linear/nonlinear, order, homogeneous or non-homogeneous.

AMATH 353 Lecture 9. Weston Barger. How to classify PDEs as linear/nonlinear, order, homogeneous or non-homogeneous. AMATH 353 ecture 9 Weston Barger 1 Exam What you need to know: How to classify PDEs as linear/nonlinear, order, homogeneous or non-homogeneous. The definitions for traveling wave, standing wave, wave train

More information

Homework 7 Math 309 Spring 2016

Homework 7 Math 309 Spring 2016 Homework 7 Math 309 Spring 2016 Due May 27th Name: Solution: KEY: Do not distribute! Directions: No late homework will be accepted. The homework can be turned in during class or in the math lounge in Pedelford

More information

1 Boas, p. 643, problem (b)

1 Boas, p. 643, problem (b) Physics 6C Solutions to Homework Set #6 Fall Boas, p. 643, problem 3.5-3b Fin the steay-state temperature istribution in a soli cyliner of height H an raius a if the top an curve surfaces are hel at an

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

Fig.1: Non-stationary temperature distribution in a circular plate.

Fig.1: Non-stationary temperature distribution in a circular plate. LECTURE Problem 1 13. 5 : Fi.1: Non-stationary temperature distribution in a circular plate. The non-stationary, radial symmetric temperature distribution ur, t in a circular plate of radius c is determined

More information

Solutions to the Sample Problems for the Final Exam UCLA Math 135, Winter 2015, Professor David Levermore

Solutions to the Sample Problems for the Final Exam UCLA Math 135, Winter 2015, Professor David Levermore Solutions to the Sample Problems for the Final Exam UCLA Math 135, Winter 15, Professor David Levermore Every sample problem for the Midterm exam and every problem on the Midterm exam should be considered

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

# Points Score Total 100

# Points Score Total 100 Name: PennID: Math 241 Make-Up Final Exam January 19, 2016 Instructions: Turn off and put away your cell phone. Please write your Name and PennID on the top of this page. Please sign and date the pledge

More information

Partial Differential Equations (TATA27)

Partial Differential Equations (TATA27) Partial Differential Equations (TATA7) David Rule Spring 9 Contents Preliminaries. Notation.............................................. Differential equations...................................... 3

More information

Introduction to Sturm-Liouville Theory and the Theory of Generalized Fourier Series

Introduction to Sturm-Liouville Theory and the Theory of Generalized Fourier Series CHAPTER 5 Introduction to Sturm-Liouville Theory and the Theory of Generalized Fourier Series We start with some introductory examples. 5.. Cauchy s equation The homogeneous Euler-Cauchy equation (Leonhard

More information

arxiv:cond-mat/ v2 [cond-mat.other] 3 Jan 2006

arxiv:cond-mat/ v2 [cond-mat.other] 3 Jan 2006 Aug 3, 5, Rev Jan, 6 Some Square Lattice Green Function Formulas Stefan Hollos and Richard Hollos arxiv:cond-mat/58779v [cond-mat.other] 3 Jan 6 Exstrom Laboratories LLC, 66 Nelson Par Dr, Longmont, Colorado

More information

Math October 20, 2006 Exam 2: Solutions

Math October 20, 2006 Exam 2: Solutions Math 412-51 October 2, 26 Exam 2: Solutions Problem 1 (5 pts) Solve the heat equation in a rectangle < x < π, < y < π, subject to the initial condition and the boundary conditions u t = 2 u x + 2 u 2 y

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

3150 Review Problems for Final Exam. (1) Find the Fourier series of the 2π-periodic function whose values are given on [0, 2π) by cos(x) 0 x π f(x) =

3150 Review Problems for Final Exam. (1) Find the Fourier series of the 2π-periodic function whose values are given on [0, 2π) by cos(x) 0 x π f(x) = 350 Review Problems for Final Eam () Find the Fourier series of the 2π-periodic function whose values are given on [0, 2π) by cos() 0 π f() = 0 π < < 2π (2) Let F and G be arbitrary differentiable functions

More information

carries the circle w 1 onto the circle z R and sends w = 0 to z = a. The function u(s(w)) is harmonic in the unit circle w 1 and we obtain

carries the circle w 1 onto the circle z R and sends w = 0 to z = a. The function u(s(w)) is harmonic in the unit circle w 1 and we obtain 4. Poisson formula In fact we can write down a formula for the values of u in the interior using only the values on the boundary, in the case when E is a closed disk. First note that (3.5) determines the

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

Notes on Special Functions

Notes on Special Functions Spring 25 1 Notes on Special Functions Francis J. Narcowich Department of Mathematics Texas A&M University College Station, TX 77843-3368 Introduction These notes are for our classes on special functions.

More information

18 Green s function for the Poisson equation

18 Green s function for the Poisson equation 8 Green s function for the Poisson equation Now we have some experience working with Green s functions in dimension, therefore, we are ready to see how Green s functions can be obtained in dimensions 2

More information

HARMONIC FUNCTIONS. x 2 + 2

HARMONIC FUNCTIONS. x 2 + 2 HARMONIC FUNCTIONS DR. RITU AGARWAL MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR Contents 1. Harmonic functions 1 1.1. Use of Harmonic mappings 1 1.2. Harmonic functions and holomorphicity 2 1.3. Harmonic

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

ELEMENTARY APPLICATIONS OF FOURIER ANALYSIS

ELEMENTARY APPLICATIONS OF FOURIER ANALYSIS ELEMENTARY APPLICATIONS OF FOURIER ANALYSIS COURTOIS Abstract. This paper is intended as a brief introduction to one of the very first applications of Fourier analysis: the study of heat conduction. We

More information

Laplace equation. In this chapter we consider Laplace equation in d-dimensions given by. + u x2 x u xd x d. u x1 x 1

Laplace equation. In this chapter we consider Laplace equation in d-dimensions given by. + u x2 x u xd x d. u x1 x 1 Chapter 6 Laplace equation In this chapter we consider Laplace equation in d-dimensions given by u x1 x 1 + u x2 x 2 + + u xd x d =. (6.1) We study Laplace equation in d = 2 throughout this chapter (excepting

More information

APMTH 105 Final Project: Musical Sounds

APMTH 105 Final Project: Musical Sounds APMTH 105 Final Project: Musical Sounds Robert Lin, Katherine Playfair, Katherine Scott Instructor: Dr. Margo Levine Harvard University April 30, 2016 Abstract Strings, drums, and instruments alike are

More information

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin Tyn Myint-U Lokenath Debnath Linear Partial Differential Equations for Scientists and Engineers Fourth Edition Birkhauser Boston Basel Berlin Preface to the Fourth Edition Preface to the Third Edition

More information

Material for review. By Lei. May, 2011

Material for review. By Lei. May, 2011 Material for review. By Lei. May, 20 You shouldn t only use this to do the review. Read your book and do the example problems. Do the problems in Midterms and homework once again to have a review. Some

More information

A List of Definitions and Theorems

A List of Definitions and Theorems Metropolitan Community College Definition 1. Two angles are called complements if the sum of their measures is 90. Two angles are called supplements if the sum of their measures is 180. Definition 2. One

More information

QUASI-SEPARATION OF THE BIHARMONIC PARTIAL DIFFERENTIAL EQUATION

QUASI-SEPARATION OF THE BIHARMONIC PARTIAL DIFFERENTIAL EQUATION QUASI-SEPARATION OF THE BIHARMONIC PARTIAL DIFFERENTIAL EQUATION W.N. EVERITT, B.T. JOHANSSON, L.L. LITTLEJOHN, AND C. MARKETT This paper is dedicated to Lawrence Markus Emeritus Regents Professor of Mathematics

More information

PARTIAL DIFFERENTIAL EQUATIONS and BOUNDARY VALUE PROBLEMS

PARTIAL DIFFERENTIAL EQUATIONS and BOUNDARY VALUE PROBLEMS PARTIAL DIFFERENTIAL EQUATIONS and BOUNDARY VALUE PROBLEMS NAKHLE H. ASMAR University of Missouri PRENTICE HALL, Upper Saddle River, New Jersey 07458 Contents Preface vii A Preview of Applications and

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 67 Outline

More information

FOURIER SERIES PART III: APPLICATIONS

FOURIER SERIES PART III: APPLICATIONS FOURIER SERIES PART III: APPLICATIONS We extend the construction of Fourier series to functions with arbitrary eriods, then we associate to functions defined on an interval [, L] Fourier sine and Fourier

More information

Separation of Variables in Polar and Spherical Coordinates

Separation of Variables in Polar and Spherical Coordinates Separation of Variables in Polar and Spherical Coordinates Polar Coordinates Suppose we are given the potential on the inside surface of an infinitely long cylindrical cavity, and we want to find the potential

More information

DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs

DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs MATH 4354 Fall 2005 December 5, 2005 1 Duhamel s Principle

More information

d Wave Equation. Rectangular membrane.

d Wave Equation. Rectangular membrane. 1 ecture1 1.1 2-d Wave Equation. Rectangular membrane. The first problem is for the wave equation on a rectangular domain. You can interpret this as a problem for determining the displacement of a flexible

More information

Striking a Beat. Ashley Martin PHY 495. Spring Striking a Beat. Ashley Martin PHY 495. Introduction. Outline. Cartesian Coordinates

Striking a Beat. Ashley Martin PHY 495. Spring Striking a Beat. Ashley Martin PHY 495. Introduction. Outline. Cartesian Coordinates Spring 2012 Polar Where is it optimal to strike a circular drum? Polar Daniel Bernoulli (1700-1782) - introduced concept of Bessel functions Leonhard Euler (1707-1783) - used Bessel funtions of both zero

More information

Quantum Mechanics in 3-Dimensions

Quantum Mechanics in 3-Dimensions Quantum Mechanics in 3-Dimensions Pavithran S Iyer, 2nd yr BSc Physics, Chennai Mathematical Institute Email: pavithra@cmi.ac.in August 28 th, 2009 1 Schrodinger equation in Spherical Coordinates 1.1 Transforming

More information

We will begin by first solving this equation on a rectangle in 2 dimensions with prescribed boundary data at each edge.

We will begin by first solving this equation on a rectangle in 2 dimensions with prescribed boundary data at each edge. Page 1 Sunday, May 31, 2015 9:24 PM From our study of the 2-d and 3-d heat equation in thermal equlibrium another PDE which we will learn to solve. Namely Laplace's Equation we arrive at In 3-d In 2-d

More information

VIBRATIONS OF A CIRCULAR MEMBRANE

VIBRATIONS OF A CIRCULAR MEMBRANE VIBRATIONS OF A CIRCULAR MEMBRANE RAM EKSTROM. Solving the wave equation on the isk The ynamics of vibrations of a two-imensional isk D are given by the wave equation..) c 2 u = u tt, together with the

More information

Fall 2016 Math 2B Suggested Homework Problems Solutions

Fall 2016 Math 2B Suggested Homework Problems Solutions Fall 016 Math B Suggested Homework Problems Solutions Antiderivatives Exercise : For all x ], + [, the most general antiderivative of f is given by : ( x ( x F(x = + x + C = 1 x x + x + C. Exercise 4 :

More information

A Right Inverse Of The Askey-Wilson Operator arxiv:math/ v1 [math.ca] 5 Oct 1993 B. Malcolm Brown and Mourad E. H. Ismail

A Right Inverse Of The Askey-Wilson Operator arxiv:math/ v1 [math.ca] 5 Oct 1993 B. Malcolm Brown and Mourad E. H. Ismail A Right Inverse Of The Askey-Wilson Operator arxiv:math/9310219v1 [math.ca] 5 Oct 1993 B. Malcolm Brown and Mourad E. H. Ismail Abstract We establish an integral representation of a right inverse of the

More information

SOLUTIONS TO SELECTED PROBLEMS FROM ASSIGNMENTS 3, 4

SOLUTIONS TO SELECTED PROBLEMS FROM ASSIGNMENTS 3, 4 SOLUTIONS TO SELECTED POBLEMS FOM ASSIGNMENTS 3, 4 Problem 5 from Assignment 3 Statement. Let be an n-dimensional bounded domain with smooth boundary. Show that the eigenvalues of the Laplacian on with

More information

Vibrating-string problem

Vibrating-string problem EE-2020, Spring 2009 p. 1/30 Vibrating-string problem Newton s equation of motion, m u tt = applied forces to the segment (x, x, + x), Net force due to the tension of the string, T Sinθ 2 T Sinθ 1 T[u

More information

Autumn 2015 Practice Final. Time Limit: 1 hour, 50 minutes

Autumn 2015 Practice Final. Time Limit: 1 hour, 50 minutes Math 309 Autumn 2015 Practice Final December 2015 Time Limit: 1 hour, 50 minutes Name (Print): ID Number: This exam contains 9 pages (including this cover page) and 8 problems. Check to see if any pages

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

Boundary value problems for partial differential equations

Boundary value problems for partial differential equations Boundary value problems for partial differential equations Henrik Schlichtkrull March 11, 213 1 Boundary value problem 2 1 Introduction This note contains a brief introduction to linear partial differential

More information

General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436

General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436 General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436 1 Introduction You may have noticed that when we analyzed the heat equation on a bar of length 1 and I talked about the equation

More information

Lecture Notes for MAE 3100: Introduction to Applied Mathematics

Lecture Notes for MAE 3100: Introduction to Applied Mathematics ecture Notes for MAE 31: Introduction to Applied Mathematics Richard H. Rand Cornell University Ithaca NY 14853 rhr2@cornell.edu http://audiophile.tam.cornell.edu/randdocs/ version 17 Copyright 215 by

More information

The Wave Equation on a Disk

The Wave Equation on a Disk R. C. Trinity University Partial Differential Equations April 3, 214 The vibrating circular membrane Goal: Model the motion of an elastic membrane stretched over a circular frame of radius a. Set-up: Center

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation

Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation Lecture Notes for Math 21: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation Shawn D. Ryan Spring 2012 1 Complex Roots of the Characteristic Equation Last Time: We considered the

More information

3-D ADI Poisson Solver

3-D ADI Poisson Solver 3-D ADI Poisson Solver A Project Report Submitted in partial fulfilment of the requirements for the Degree of Master of Technology in Computational Science by V.Karthik Supercomputer Education and Research

More information

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY MATH 22: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY When discussing separation of variables, we noted that at the last step we need to express the inhomogeneous initial or boundary data as

More information

Mathematical Modeling using Partial Differential Equations (PDE s)

Mathematical Modeling using Partial Differential Equations (PDE s) Mathematical Modeling using Partial Differential Equations (PDE s) 145. Physical Models: heat conduction, vibration. 146. Mathematical Models: why build them. The solution to the mathematical model will

More information

MULTIPOLE EXPANSIONS IN THE PLANE

MULTIPOLE EXPANSIONS IN THE PLANE MULTIPOLE EXPANSIONS IN THE PLANE TSOGTGEREL GANTUMUR Contents 1. Electrostatics and gravitation 1 2. The Laplace equation 2 3. Multipole expansions 5 1. Electrostatics and gravitation Newton s law of

More information

Steady and unsteady diffusion

Steady and unsteady diffusion Chapter 5 Steady and unsteady diffusion In this chapter, we solve the diffusion and forced convection equations, in which it is necessary to evaluate the temperature or concentration fields when the velocity

More information

Differential Equations

Differential Equations Electricity and Magnetism I (P331) M. R. Shepherd October 14, 2008 Differential Equations The purpose of this note is to provide some supplementary background on differential equations. The problems discussed

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 10 1 Polar Multiplication of Complex Numbers [PMCN] 2 De Moivre s Theorem [DMT] 3 Complex Exponential Function 4 Complex nth Roots

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

An Introduction to Partial Differential Equations in the Undergraduate Curriculum

An Introduction to Partial Differential Equations in the Undergraduate Curriculum An Introduction to Partial Differential Equations in the Undergraduate Curriculum John C. Polking LECTURE 12 Heat Transfer in the Ball 12.1. Outline of Lecture The problem The problem for radial temperatures

More information

8.2 Graphs of Polar Equations

8.2 Graphs of Polar Equations 8. Graphs of Polar Equations Definition: A polar equation is an equation whose variables are polar coordinates. One method used to graph a polar equation is to convert the equation to rectangular form.

More information

MATH 311 Topics in Applied Mathematics Lecture 25: Bessel functions (continued).

MATH 311 Topics in Applied Mathematics Lecture 25: Bessel functions (continued). MATH 311 Topics in Applied Mathematics Lecture 25: Bessel functions (continued). Bessel s differential equation of order m 0: z 2 d2 f dz 2 + z df dz + (z2 m 2 )f = 0 The equation is considered on the

More information

Lone Star College-CyFair Formula Sheet

Lone Star College-CyFair Formula Sheet Lone Star College-CyFair Formula Sheet The following formulas are critical for success in the indicated course. Student CANNOT bring these formulas on a formula sheet or card to tests and instructors MUST

More information

Electrodynamics I Midterm - Part A - Closed Book KSU 2005/10/17 Electro Dynamic

Electrodynamics I Midterm - Part A - Closed Book KSU 2005/10/17 Electro Dynamic Electrodynamics I Midterm - Part A - Closed Book KSU 5//7 Name Electro Dynamic. () Write Gauss Law in differential form. E( r) =ρ( r)/ɛ, or D = ρ, E= electricfield,ρ=volume charge density, ɛ =permittivity

More information

From the Circle to the Square: Symmetry and Degeneracy in Quantum Mechanics. Dahyeon Lee Department of Physics and Astronomy, Oberlin College

From the Circle to the Square: Symmetry and Degeneracy in Quantum Mechanics. Dahyeon Lee Department of Physics and Astronomy, Oberlin College From the Circle to the Square: Symmetry and Degeneracy in Quantum Mechanics Dahyeon Lee Department of Physics and Astronomy, Oberlin College March 31, 2017 Executive Summary The relationship between degeneracy

More information