Photons and Electrons, Part 2

Size: px
Start display at page:

Download "Photons and Electrons, Part 2"

Transcription

1 Photons and Electrons, Part 2 Erwin Schrödinger Albert Einstein

2 The Photoelectric Effect (1905) Wavelength dependence must be explained by the existence of quantized light. Albert Einstein Nobel Prize (his only one) awarded in 1921.

3 different metals have different thresholds because they possess different work functions, but the slope is the same...

4 Problem: The work function of sodium metal is ev, where 1 ev = x J. Find the wavelength of light capable of ejecting electrons from sodium metal with a speed of x 10 5 m s -1. Key equations: hν = hc/λ = Ekinetic + ϕmetal Step 1: Calculate Ekinetic in ev.

5 Problem: The work function of sodium metal is ev, where 1 ev = x J. Find the wavelength of light capable of ejecting electrons from sodium metal with a speed of x 10 5 m s -1. Key equations: hν = hc/λ = Ekinetic + ϕmetal Step 1: Calculate Ekinetic in ev. Ekinetic = ½mv 2 = (0.5)(9.109 x kg)(4.000 x 10 5 m s -1 ) 2 Ekinetic = x kg m 2 s -1 = x Joules Ekinetic = (7.288 x J)/(1.602 x J ev -1 ) Ekinetic = ev

6 Problem: The work function of sodium metal is ev, where 1 ev = x J. Find the wavelength of light capable of ejecting electrons from sodium metal with a speed of x 10 5 m s -1. Key equations: hν = hc/λ = Ekinetic + ϕmetal Step 2: Calculate hν in ev. hν = = ev note that we only keep 4 sig figs! We DO NOT report ev.

7 Problem: The work function of sodium metal is ev, where 1 ev = x J. Find the wavelength of light capable of ejecting electrons from sodium metal with a speed of x 10 5 m s -1. Key equations: hν = hc/λ = Ekinetic + ϕmetal Step 3: Calculate λ in nm. hν = ev = 1240./λ λ = 1240./2.735 = nm

8 Problem: The work function of sodium metal is ev, where 1 ev = x J. Find the wavelength of light capable of ejecting electrons from sodium metal with a speed of x 10 5 m s -1. Key equations: hν = hc/λ = Ekinetic + ϕmetal Step 3: Calculate λ in nm. hν = ev = 1240./λ λ = 1240./2.735 = nm A note on significant figures: 4 sig figs: v = x 10 5 m s -1 ; λ = nm 3 sig figs: v = 4.00 x 10 5 m s -1 ; λ = 453 nm 2 sig figs: v = 4.0 x 10 5 m s -1 ; λ = 450 nm

9 Quantum Mechanics: The Schrödinger Equation Erwin Schrödinger

10 An example: Particle in a Box (PIAB) H = p 2 /2m + V(x) Erwin Schrödinger V(x) for the PIAB.

11 Energy eigenstates: PIAB Energies and Wavefunctions Energy eigenstate wavefunctions:

12 classical mechanics says the following: 1. This particle can have any energy.

13 classical mechanics says the following: 1. This particle can have any energy. 2. It can be located anywhere, with equal probability.

14 classical mechanics says the following: 1. This particle can have any energy It can be located anywhere, with equal probability. 3. At any instant in time, this particle will have a particular position that can be specified with arbitrarily high precision.

15 quantum mechanics makes a completely different set of predictions: 1. This particle can only have certain allowed values of energy. For PIAB, E=0 is NOT allowed!

16 quantum mechanics makes a completely different set of predictions: 1. The particle can only have certain allowed values of energy. For PIAB, E=0 is NOT allowed! 2. We cannot know the exact trajectory and location of the particle in a given energy eigenstate. Only probabilities.

17 The wavefunctions for PIAB. Note that Ψ(0)=0 and Ψ(L)=0. This is a property of standing waves in general (e.g., guitar or violin strings,). Ψ(x)=0 for x <0 and x>l

18 What IS ψ(x)? The one dimensional eigenstate wavefunction has no direct physical significance itself. However, ψ 2 (x) is the probability of finding our particle in the interval from x to x + dx. "Born interpretation" (From Max Born, 1926). ψ 2 (x) is called the "probability density." example: the probability of finding the particle in the region, say, from 0 to L (inside the box) is: for all n = 1,2,3...

19 ψ 2 (x) is the probability density......here is what ψ 2 (x) looks like for n=2 (left) and n=1 (right)... e.g., for n=1, the particle prefers the center of the box!

20 classical mechanics says the following: 1. This particle can have any energy It can be located anywhere, with equal probability. 3. At any instant in time, this particle will have a particular position that can be specified with arbitrarily high precision.

21 quantum mechanics makes a completely different set of predictions: 1. The particle can only have certain allowed values of energy. 2. We cannot know the exact trajectory and location of the particle in a given energy eigenstate. Only probabilities. 3. There is an inherent uncertainty in the position and momentum of the particle: Heisenberg uncertainty principle

22 Heisenberg uncertainty principle There are many Heisenberg pairs of observables. The two most important are:

23 λ = h p p is exactly defined, but x is completely indeterminate. Δp=0; Δx?

24 λ = h p the summation of five sine waves, varying in momentum by 2% Δx Δp=2% wavepacket for a free particle.

25 Some easier nomenclature: States are sometimes just labelled with their quantum numbers

26 Absorption and Emission Spectroscopy Light will be absorbed or emitted only if E = hν The spectrum is QUANTIZED! E51=24G E41=15G E31=8G E21=3G G= h 2 /8mL 2

27 Atomic Emission Spectroscopy the atomic emission spectrum is the result of many atoms emitting light simultaneously. a spectrometer

28 Atomic Emission Spectroscopy The emission spectra of H, He and Hg are all quantized!

29 Atomic Emission Spectroscopy Therefore, AES tells us that the electron energy levels in atoms are quantized. Next up: the quantum mechanical calculation of the electron energy levels in a Hydrogen atom. Grotrian diagram for Hydrogen

30 The Photoelectric Effect (1905) Wavelength dependence must be explained by the existence of quantized light. Albert Einstein Nobel Prize (his only one) awarded in 1921.

31 The Photoelectric Effect and Photocurrents The photoelectric effect converts light into electrons. These electrons can be measured as a photocurrent. Using the power supply to stop the photocurrent is a way of measuring the maximum electron K.E.

32 The Photoelectric Effect and Photocurrents Photomultiplier tubes (PMTs) amplify the photocurrent from a alkali metal photocathode, creating pulses of a million electrons that can be detected.

33 The Photoelectric Effect and Photocurrents Photomultiplier tubes (PMTs) amplify the photocurrent from a alkali metal photocathode, creating pulses of a million electrons that can be detected.

34 The Photoelectric Effect and Photocurrents The photoelectron pulses from the PMT can be counted, yielding a measurement of photons per second. This detection method is called "photon counting".

35 The Photoelectric Effect and Photocurrents If the number of photoelectron pulses from the PMT becomes too large to detect individually, an average photocurrent can be measured. Photon flux can be calculated from the Radiant Sensitivity (A/W) of the PMT.

The Birth of Quantum Mechanics. New Wave Rock Stars

The Birth of Quantum Mechanics. New Wave Rock Stars The Birth of Quantum Mechanics Louis de Broglie 1892-1987 Erwin Schrödinger 1887-1961 Paul Dirac 1902-1984 Werner Heisenberg 1901-1976 New Wave Rock Stars Blackbody radiation: Light energy is quantized.

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Chapter 38. Photons Light Waves Behaving as Particles

Chapter 38. Photons Light Waves Behaving as Particles Chapter 38 Photons Light Waves Behaving as Particles 38.1 The Photoelectric Effect The photoelectric effect was first discovered by Hertz in 1887, and was explained by Einstein in 1905. The photoelectric

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM SPARKS CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 LM15, 16 & 17 due W 8:45AM QUIZ: CLICKER QUESTION Which of these types of light has the highest energy photons?

More information

The Nature of Energy

The Nature of Energy The Nature of Energy For atoms and molecules, one does not observe a continuous spectrum, as one gets from a white light source.? Only a line spectrum of discrete wavelengths is observed. 2012 Pearson

More information

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons.

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons. CHAPTER SEVEN: QUANTUM THEORY AND THE ATOM Part One: Light Waves, Photons, and Bohr Theory A. The Wave Nature of Light (Section 7.1) 1. Structure of atom had been established as cloud of electrons around

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6-5: QUANTUM THEORY AND THE UNCERTAINTY PRINCIPLE Introductory Video Quantum Mechanics IB Assessment Statements Topic 13.1, Quantum Physics:

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

Electron Arrangement - Part 1

Electron Arrangement - Part 1 Brad Collins Electron Arrangement - Part 1 Chapter 8 Some images Copyright The McGraw-Hill Companies, Inc. Properties of Waves Wavelength (λ) is the distance between identical points on successive waves.

More information

Chapters 28 and 29: Quantum Physics and Atoms Solutions

Chapters 28 and 29: Quantum Physics and Atoms Solutions Chapters 8 and 9: Quantum Physics and Atoms Solutions Chapter 8: Questions: 3, 8, 5 Exercises & Problems:, 6, 0, 9, 37, 40, 48, 6 Chapter 9: Questions, 6 Problems 3, 5, 8, 9 Q8.3: How does Einstein's explanation

More information

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta Chapter 7 Atomic Structure -1 Quantum Model of Atom Dr. Sapna Gupta The Electromagnetic Spectrum The electromagnetic spectrum includes many different types of radiation which travel in waves. Visible light

More information

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Constants & Atomic Data Look inside back cover of book! Speed of Light (vacuum): c = 3.00 x 10 8 m/s Elementary Charge: e - =

More information

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E. Constants & Atomic Data The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Look inside back cover of book! Speed of Light (): c = 3.00 x 10 8 m/s Elementary Charge: e - = p + =

More information

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5)

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5) ATOMIC STRUCTURE Kotz Ch 7 & Ch 22 (sect 4,5) properties of light spectroscopy quantum hypothesis hydrogen atom Heisenberg Uncertainty Principle orbitals ELECTROMAGNETIC RADIATION subatomic particles (electron,

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantization of Light Max Planck started the revolution of quantum theory by challenging the classical physics and the classical wave theory of light. He proposed the concept of quantization

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons Outline Chapter 9 The Atom 9-1. Photoelectric Effect 9-3. What Is Light? 9-4. X-rays 9-5. De Broglie Waves 9-6. Waves of What? 9-7. Uncertainty Principle 9-8. Atomic Spectra 9-9. The Bohr Model 9-10. Electron

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics Chemistry 4521 Time is flying by: only 15 lectures left!! Six quantum mechanics Four Spectroscopy Third Hour exam Three statistical mechanics Review Final Exam, Wednesday, May 4, 7:30 10 PM Quantum Mechanics

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 1-1B: THE INTERACTION OF MATTER WITH RADIATION Introductory Video Quantum Mechanics Essential Idea: The microscopic quantum world offers

More information

Quantum Theory of Light

Quantum Theory of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences Quantum Theory of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Definition

More information

Quantum Theory of the Atom

Quantum Theory of the Atom The Wave Nature of Light Quantum Theory of the Atom Electromagnetic radiation carries energy = radiant energy some forms are visible light, x rays, and radio waves Wavelength ( λ) is the distance between

More information

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms CHEMISTRY & YOU What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5. Electron Arrangement in Atoms 5.3 Atomic and the Quantum Mechanical Model An electric

More information

Chapter 7 Atomic Structure and Orbitals

Chapter 7 Atomic Structure and Orbitals Chapter 7 Atomic Structure and Orbitals Alpha Scattering Experiment: Rutherford s observations Light as Waves or Particles Wavelength (λ) is the distance between any two identical points in consecutive

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

10/17/11. Chapter 7. Quantum Theory and Atomic Structure. Amplitude (intensity) of a wave. Quantum Theory and Atomic Structure

10/17/11. Chapter 7. Quantum Theory and Atomic Structure. Amplitude (intensity) of a wave. Quantum Theory and Atomic Structure Quantum Theory and Atomic Structure Chapter 7 7. The Nature of Light Quantum Theory and Atomic Structure 7. Atomic Spectra 7. The Wave-Particle Duality of Matter and Energy 7.4 The Quantum-Mechanical Model

More information

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( )

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation Models of the

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom Quantum Mechanics The Behavior of the Very Small Electrons are incredibly small. Electron behavior determines much of the behavior of atoms. Directly

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin) Chapter 6 Electronic Structure of Atoms 許富銀 ( Hsu Fu-Yin) 1 The Wave Nature of Light The light we see with our eyes, visible light, is one type of electromagnetic radiation. electromagnetic radiation carries

More information

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

JURONG JUNIOR COLLEGE J2 H1 Physics (2011) 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum.

JURONG JUNIOR COLLEGE J2 H1 Physics (2011) 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum. JURONG JUNIOR COLLEGE J2 H1 Physics (2011) Tutorial: Quantum Physics 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum. Calculate the energy of a

More information

Quantum Theory and Atomic Structure. Quantum Mechanics. Quantum Theory and Atomic Structure. 7.3 The Wave-Particle Duality of Matter and Energy

Quantum Theory and Atomic Structure. Quantum Mechanics. Quantum Theory and Atomic Structure. 7.3 The Wave-Particle Duality of Matter and Energy Chapter 7 Quantum Theory and Atomic Structure Chap 7-1 Quantum Theory and Atomic Structure 7.1 The Nature of Light 7.2 Atomic Spectra 7.3 The Wave-Particle Duality of Matter and Energy 7.4 The Quantum-Mechanical

More information

Chapter 7. Quantum Theory and Atomic Structure. Quantum Mechanics. Chap 7-1

Chapter 7. Quantum Theory and Atomic Structure. Quantum Mechanics. Chap 7-1 Chapter 7 Quantum Theory and Atomic Structure Chap 7-1 Quantum Theory and Atomic Structure 7.1 The Nature of Light 7.2 Atomic Spectra 7.3 The Wave-Particle Duality of Matter and Energy 7.4 The Quantum-Mechanical

More information

IB Physics SL Y2 Option B (Quantum and Nuclear Physics) Exam Study Guide Practice Problem Solutions

IB Physics SL Y2 Option B (Quantum and Nuclear Physics) Exam Study Guide Practice Problem Solutions IB Physics SL Y2 Option B (Quantum and Nuclear Physics) Exam Study Guide Practice Problem Solutions Objectives: 1. Describe the photoelectric effect. (B.1.1) 2. Describe the concept of the photon and use

More information

Physics. Light Quanta

Physics. Light Quanta Physics Light Quanta Quantum Theory Is light a WAVE or a PARTICLE? Particle tiny object like a bullet, has mass and travels in straight lines unless a force acts upon it Waves phenomena that extend in

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

CHEM 200/202. Professor Jing Gu Office: GMCS-213F. All s are to be sent to:

CHEM 200/202. Professor Jing Gu Office: GMCS-213F. All  s are to be sent to: CHEM 200/202 Professor Jing Gu Office: GMCS-213F All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Wednesday from 3:00 pm to 5:00 pm or by appointment. LECTURE

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Structure of the atom

Structure of the atom Structure of the atom What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the energy of an electron?

More information

Lecture 21 Matter acts like waves!

Lecture 21 Matter acts like waves! Particles Act Like Waves! De Broglie s Matter Waves λ = h / p Schrodinger s Equation Announcements Schedule: Today: de Broglie and matter waves, Schrodinger s Equation March Ch. 16, Lightman Ch. 4 Net

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

November 06, Chapter 7 Atomic Struture. CHAPTER 7 Atomic Structure. Oct 27 9:34 AM ATOMIC STRUCTURE. Oct 27 9:34 AM

November 06, Chapter 7 Atomic Struture. CHAPTER 7 Atomic Structure. Oct 27 9:34 AM ATOMIC STRUCTURE. Oct 27 9:34 AM CHAPTER 7 Atomic Structure ATOMIC STRUCTURE 1 The Wave Nature of Light Most subatomic particles behave as PARTICLES and obey the physics of waves. Visible light Ultravioletlight Wavelength Frequency (Hertz

More information

Atomic Physics 1. Outline how the Bohr model of the hydrogen atom accounts for the spectrum of hydrogen (3)

Atomic Physics 1. Outline how the Bohr model of the hydrogen atom accounts for the spectrum of hydrogen (3) Name: Date: 1. This question is about models of the hydrogen atom. Atomic Physics 1 Outline how the Bohr model of the hydrogen atom accounts for the spectrum of hydrogen.......... (3) The diagram below

More information

Quiz 6: Modern Physics Solution

Quiz 6: Modern Physics Solution Quiz 6: Modern Physics Solution Name: Attempt all questions. Some universal constants: Roll no: h = Planck s constant = 6.63 10 34 Js = Reduced Planck s constant = 1.06 10 34 Js 1eV = 1.6 10 19 J d 2 TDSE

More information

Atomic Structure 11/21/2011

Atomic Structure 11/21/2011 Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Quantum Model Einstein s Hypothesis: Photoelectric Effect

Quantum Model Einstein s Hypothesis: Photoelectric Effect VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT Quantum Model Einstein s Hypothesis: Photoelectric Effect The photoelectric effect was discovered by Hertz in 1887 as he confirmed Maxwell s electromagnetic

More information

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Chapter 8: Electrons in Atoms Electromagnetic Radiation Chapter 8: Electrons in Atoms Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy transmission modeled as waves moving through space. (see below left) Electromagnetic Radiation

More information

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s.

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s. Chapter 6 Electronic Structure of Atoms Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation. The distance between corresponding points on

More information

Recall the Goal. What IS the structure of an atom? What are the properties of atoms?

Recall the Goal. What IS the structure of an atom? What are the properties of atoms? Recall the Goal What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the energy of an electron?

More information

Explain how line spectra are produced. In your answer you should describe:

Explain how line spectra are produced. In your answer you should describe: The diagram below shows the line spectrum of a gas. Explain how line spectra are produced. In your answer you should describe: how the collisions of charged particles with gas atoms can cause the atoms

More information

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30. Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.3 The Mass and Momentum of a Photon 30.4 Photon Scattering and

More information

Photoelectric Effect Worksheet

Photoelectric Effect Worksheet Photoelectric Effect Worksheet The photoelectric effect refers to the emission of electrons from metallic surfaces usually caused by incident light. The incident light is absorbed by electrons thus giving

More information

Dual Nature of Matter

Dual Nature of Matter Emission of electrons: Dual Nature of Matter We know that metals have free electrons (negatively charged particles) that are responsible for their conductivity. However, the free electrons cannot normally

More information

Photoelectron Spectroscopy Evidence for Electronic Structure Guided-Inquiry Learning Activity for AP* Chemistry

Photoelectron Spectroscopy Evidence for Electronic Structure Guided-Inquiry Learning Activity for AP* Chemistry Introduction Photoelectron Spectroscopy Evidence for Electronic Structure Guided-Inquiry Learning Activity for AP* Chemistry Catalog No. AP7710 Publication No. 7710AS The chemical properties of elements

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

CHEMISTRY. Chapter 6 Electronic Structure of Atoms

CHEMISTRY. Chapter 6 Electronic Structure of Atoms CHEMISTRY The Central Science 8 th Edition Chapter 6 Electronic Structure of Atoms Kozet YAPSAKLI Who are these men? Ancient Philosophy Who: Aristotle, Democritus When: More than 2000 years ago Where:

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Dual Nature of Radiation and Matter

Dual Nature of Radiation and Matter PHYSICS NOTES Dual Nature of Radiation and Matter Emission of electrons: We know that metals have free electrons (negatively charged particles) that are responsible for their conductivity. However, the

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity Text Chapter 2, 8 & 9 3.1 Nature of light, elementary spectroscopy. 3.2 The quantum theory and the Bohr atom. 3.3 Quantum mechanics; the orbital concept. 3.4 Electron configurations of atoms 3.5 The periodic

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

AP Chemistry. Chapter 6 Electronic Structure of Atoms

AP Chemistry. Chapter 6 Electronic Structure of Atoms AP Chemistry Chapter 6 Electronic Structure of Atoms Section 6.1 Wave Nature of Light When we say "light," we generally are referring to visible light a type of electromagnetic radiation But actually Visible

More information

General Chemistry. Contents. Chapter 9: Electrons in Atoms. Contents. 9-1 Electromagnetic Radiation. EM Radiation. Frequency, Wavelength and Velocity

General Chemistry. Contents. Chapter 9: Electrons in Atoms. Contents. 9-1 Electromagnetic Radiation. EM Radiation. Frequency, Wavelength and Velocity General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 9: Electrons in Atoms Philip Dutton University of Windsor, Canada N9B 3P4 Contents 9-1 Electromagnetic

More information

Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure.

Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 6 Section 1 6: The Marathon Adapted from: John D. Bookstaver St. Charles Community College

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 All the fifty years of conscious brooding have brought me no closer to answer the question, What are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself. -Albert

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Lenard s experiment The photon model Light as photons Einstein s explanation of the photoelectric effect Photon energy Electron volts Electron energy 1 Lenard s experiment Philipp

More information

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed.

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed. Ch. 7 The Quantum Mechanical Atom Brady & Senese, 5th Ed. Index 7.1. Electromagnetic radiation provides the clue to the electronic structures of atoms 7.2. Atomic line spectra are evidence that electrons

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

--Exam 3 Oct 3. are. absorbed. electrons. described by. Quantum Numbers. Core Electrons. Valence Electrons. basis for.

--Exam 3 Oct 3. are. absorbed. electrons. described by. Quantum Numbers. Core Electrons. Valence Electrons. basis for. Chapter 7 Announcements Quantum Theory and Atomic Structure --Exam 3 Oct 3 --Chapter 7/8/9/10 Chapter 7: Skip Spectral Analysis p. 226-227. Skip calculations for de Broglie and Heisenburg, conceptual understanding

More information

Chemistry 1B-01, Fall 2016 Sessions 1-2. Chemistry 1B. Fall lectures topics 1-2. [ch 12 pp ] 7th

Chemistry 1B-01, Fall 2016 Sessions 1-2. Chemistry 1B. Fall lectures topics 1-2. [ch 12 pp ] 7th Chemistry 1B Fall 2016 lectures topics 1-2 [ch 12 pp 522-537] 7th 1 goals of lectures 1-2 The laws of nature in 1900 (successful for describing large objects) describe particles AND describe waves Experiments

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( ) " = h mv

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( )  = h mv From Last Time Wavelengths of massive objects Light shows both particle and wavelike properties Matter shows both particle and wavelike properties. How can we make sense of this? debroglie wavelength =

More information

PHY202 Quantum Mechanics. Topic 1. Introduction to Quantum Physics

PHY202 Quantum Mechanics. Topic 1. Introduction to Quantum Physics PHY202 Quantum Mechanics Topic 1 Introduction to Quantum Physics Outline of Topic 1 1. Dark clouds over classical physics 2. Brief chronology of quantum mechanics 3. Black body radiation 4. The photoelectric

More information

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect.

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. Chapter 1 Photoelectric Effect Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. History The photoelectric effect and its understanding

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron?

AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron? AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron? 2. What was it that J. J. Thomson actually measured? 3. Regarding

More information

The Bohr Model of the Atom

The Bohr Model of the Atom Unit 4: The Bohr Model of the Atom Properties of light Before the 1900 s, light was thought to behave only as a wave. Light is a type of electromagnetic radiation - a form of energy that exhibits wave

More information

8 Wavefunctions - Schrödinger s Equation

8 Wavefunctions - Schrödinger s Equation 8 Wavefunctions - Schrödinger s Equation So far we have considered only free particles - i.e. particles whose energy consists entirely of its kinetic energy. In general, however, a particle moves under

More information

Quantum Mechanics. Watkins, Phys 365,

Quantum Mechanics. Watkins, Phys 365, Quantum Mechanics Objectives: quantitative description of the behavior of nature at the atomic scale Central Idea: Wave-particle duality Particles obeyed classical physics: discrete, indivisible, could

More information

The Death of Classical Physics. The Rise of the Photon

The Death of Classical Physics. The Rise of the Photon The Death of Classical Physics The Rise of the Photon A fundamental question: What is Light? James Clerk Maxwell 1831-1879 Electromagnetic Wave Max Planck 1858-1947 Photon Maxwell's Equations (1865) Maxwell's

More information

Rutherford Model 1911

Rutherford Model 1911 Rutherford Model 1911 Positive charge is concentrated in a very small nucleus. So a- particles can sometimes approach very close to the charge Ze in the nucleus and the Coulomb force F 1 4πε o ( Ze)( Ze)

More information

Chapter 7. Quantum Theory and the Electronic Structure of Atoms

Chapter 7. Quantum Theory and the Electronic Structure of Atoms Chapter 7 Quantum Theory and the Electronic Structure of Atoms This chapter introduces the student to quantum theory and the importance of this theory in describing electronic behavior. Upon completion

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy L 35 Modern Physics [1] Introduction- quantum physics Particles of light PHOTONS The photoelectric effect Photocells & intrusion detection devices The Bohr atom emission & absorption of radiation LASERS

More information

The Structure of the Atom Review

The Structure of the Atom Review The Structure of the Atom Review Atoms are composed of PROTONS + positively charged mass = 1.6726 x 10 27 kg NEUTRONS neutral mass = 1.6750 x 10 27 kg ELECTRONS negatively charged mass = 9.1096 x 10 31

More information