PLC Papers Created For:

Size: px
Start display at page:

Download "PLC Papers Created For:"

Transcription

1 PLC Papers Created For: Year 11 Topic Practice Paper: Solving Quadratics (Graphically)

2 Quadratic equations (graphical methods) 1 Grade 6 Objective: Find approximate solutions to quadratic equations using a graph Question 1. a) Complete the table below to work out values for the graph of = for values of x from 5 4. Plot the graph using 5 4 and b) Use your graph to estimate the solutions of the two roots of =0 (Total 3 marks)

3 Question 2. a) Complete the table below to work out values for the graph of = for values of x from 2 4 then draw the graph. b) Use your graph to find the y-value when =1.5 (Total 3 marks)

4 Question 3. a) Using suitable axes draw the graph of = for 2 5 b) What is the value of when = 0.5 c) For what values of x does 2 4 2= 4 (Total 4 marks) TOTAL /10

5 Quadratic equations (graphical methods) 2 Grade 6 Objective: Find approximate solutions to quadratic equations using a graph Question 1. a) Complete the table below to work out values for the graph of = for values of x from 3 5. Plot the graph using 3 5 and b) Use your graph to estimate the solutions of the two roots of = 0 Question 2. (Total 3 marks)

6 a) Complete the table below to work out values for the graph of = for values of x from 2 4 then draw the graph. b) Use your graph to find the y-value when = 3.5 (Total 3 marks)

7 Question 3. a) Using suitable axes draw the graph of = for 2 6 b) What is the value of when = 1.5 c) For what values of x does = 4 (Total 4 marks) TOTAL /10

8 Quadratic equations (graphical methods) 3 Grade 6 Objective: Find approximate solutions to quadratic equations using a graph Question 1. A ball thrown straight up in the air from a starting point 2 above ground level at a speed of 12 / has a height h at any time that is given by the equation: h = a) Draw the graph of the path of the ball for 0 3 b) Use your graph to estimate the time that the ball will hit the ground. c) Use your graph to estimate the highest point the ball reaches. (Total 5 marks)

9 Question 2. When a driver needs to stop a car, the approximate stopping distance (d) in feet is given by the equation: = h h h h a) Draw the graph of the stopping distance for 0 50 b) Use your graph to estimate the speed that requires a stopping distance of 150 c) Use your graph to estimate the stopping distance for car travelling at 20 h Total /10 (Total 5 marks)

10 Quadratic equations (graphical methods) 4 Grade 6 Objective: Find approximate solutions to quadratic equations using a graph Question 1. A scientific study found that a driver s reaction time ( ) to audio stimuli and their reaction time ( ) to visual stimuli (both measured in milliseconds) can be modelled by the following equations: ( ) = ( ) = a) On the same set of axes, draw both graphs for 16 70

11 b) Estimate the reaction time to audio stimuli for a 45 driver c) Estimate the reaction time to visual stimuli for a 65 driver d) Compare and contrast a driver s reaction audio and visual stimuli throughout their life Total /10 (Total 10 marks)

12 PLC Papers Created For: Year 11 Topic Practice Paper: Solving Quadratics (Graphically)

13 Quadratic equations (graphical methods) 1 Grade 6 Solutions Objective: Find approximate solutions to quadratic equations using a graph Question 1. a) Complete the table below to work out values for the graph of = for values of x from 5 4. Plot the graph using 5 4 and b) Use your graph to estimate the solutions of the two roots of = (A1 (Total 3 marks)

14 Question 2. a) Complete the table below to work out values for the graph of = for values of x from 2 4 then draw the graph. b) Use your graph to find the y-value when = < < 5.5 (Total 3 marks)

15 Question 3. a) Using suitable axes draw the graph of = for 2 5 b) What is the value of when = c) For what values of x does = and (Total 4 marks) TOTAL /10

16 Quadratic equations (graphical methods) 2 Grade 6 SOLUTIONS Objective: Find approximate solutions to quadratic equations using a graph Question 1. a) Complete the table below to work out values for the graph of = for values of x from 3 5. Plot the graph using 3 5 and b) Use your graph to estimate the solutions of the two roots of = < < < < 4.5 (Total 3 marks)

17 Question 2. a) Complete the table below to work out values for the graph of = for values of x from 2 4 then draw the graph. b) Use your graph to find the y-value when = < < 1 (Total 3 marks)

18 Question 3. a) Using suitable axes draw the graph of = for 2 6 b) What is the value of when = < < 3 c) For what values of x does = 4 1 < < 0 5 < < 6 (Total 4 marks) TOTAL /10

19 Quadratic equations (graphical methods) 3 Grade 6 SOLUTIONS Objective: Find approximate solutions to quadratic equations using a graph Question 1. A ball thrown straight up in the air from a starting point 2 above ground level at a speed of 12 / has a height h at any time that is given by the equation: h = a) Draw the graph of the path of the ball for 0 3 (A2) b) Use your graph to estimate the time that the ball will hit the ground. 2 < < 3 c) Use your graph to estimate the highest point the ball reaches. 9 < h < 9.5 (Total 5 marks)

20 Question 2. When a driver needs to stop a car, the approximate stopping distance (d) in feet is given by the equation: = h h h h a) Draw the graph of the stopping distance for 0 50 (A2) b) Use your graph to estimate the speed that requires a stopping distance of < < 40 c) Use your graph to estimate the stopping distance for car travelling at 20 h 62 < < 67 (Total 5 marks) Total /10

21 Quadratic equations (graphical methods) 4 Grade 6 SOLUTIONS Objective: Find approximate solutions to quadratic equations using a graph Question 1. A scientific study found that a driver s reaction time ( ) to audio stimuli and their reaction time ( ) to visual stimuli (both measured in milliseconds) can be modelled by the following equations: ( ) = ( ) = a) On the same set of axes, draw both graphs for (A2) (A4) b) Estimate the reaction time to audio stimuli for a 45 driver 10 < ( ) < 12 c) Estimate the reaction time to visual stimuli for a 65 driver 28 < ( ) < 30

22 d) Compare and contrast a driver s reaction audio and visual stimuli throughout their life Reaction to audio stimuli is always faster than reaction to visual stimuli for any age. Reactions to both stimuli slow with age once beyond 30 years The fastest response times to visual stimuli are given by people in their early 20s The fastest response times to audio stimuli are given by people about 30 years old. (any two of the above or other justified comment B2) (Total 10 marks) Total /10

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Quadratics intervention Deduce quadratic roots algebraically 1 Grade 6 Objective: Deduce roots algebraically. Question 1. Factorise and solve the equation x 2 8x + 15 = 0 Question

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Daniel Inequalities Inequalities on number lines 1 Grade 4 Objective: Represent the solution of a linear inequality on a number line. Question 1 Draw diagrams to represent these

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

Physics! Unit 2 Review Constant Acceleration Particle Model

Physics! Unit 2 Review Constant Acceleration Particle Model Physics! Unit 2 Review Constant Acceleration Particle Model Name 1. Use the graph to answer the following questions. a. Describe the motion of the object. b. Determine the of the object from the graph.

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

STRAIGHT LINE MOTION TEST

STRAIGHT LINE MOTION TEST STRAIGHT LINE MOTION TEST Name: 1. The number of significant figures in the number 0.030 is a) b) 3 c) d) 5. The number 35.5 rounded to significant figures is a) 35.0 b) 35 c) 35.5 d) 0 3. Five different

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

Chapter 1 Notes: Quadratic Functions

Chapter 1 Notes: Quadratic Functions 19 Chapter 1 Notes: Quadratic Functions (Textbook Lessons 1.1 1.2) Graphing Quadratic Function A function defined by an equation of the form, The graph is a U-shape called a. Standard Form Vertex Form

More information

Chapter 2.7 and 7.3. Lecture 5

Chapter 2.7 and 7.3. Lecture 5 Chapter 2.7 and 7.3 Chapter 2 Polynomial and Rational Functions 2.1 Complex Numbers 2.2 Quadratic Functions 2.3 Polynomial Functions and Their Graphs 2.4 Dividing Polynomials; Remainder and Factor Theorems

More information

9/7/2017. Week 2 Recitation: Chapter 2: Problems 5, 19, 25, 29, 33, 39, 49, 58.

9/7/2017. Week 2 Recitation: Chapter 2: Problems 5, 19, 25, 29, 33, 39, 49, 58. 9/7/7 Week Recitation: Chapter : Problems 5, 9, 5, 9, 33, 39, 49, 58. 5. The data in the following table describe the initial and final positions of a moving car. The elapsed time for each of the three

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

6.1 Quadratic Expressions, Rectangles, and Squares. 1. What does the word quadratic refer to? 2. What is the general quadratic expression?

6.1 Quadratic Expressions, Rectangles, and Squares. 1. What does the word quadratic refer to? 2. What is the general quadratic expression? Advanced Algebra Chapter 6 - Note Taking Guidelines Complete each Now try problem in your notes and work the problem 6.1 Quadratic Expressions, Rectangles, and Squares 1. What does the word quadratic refer

More information

ALGEBRA UNIT 11-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION (DAY 1)

ALGEBRA UNIT 11-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION (DAY 1) ALGEBRA UNIT 11-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION (DAY 1) The Quadratic Equation is written as: ; this equation has a degree of. Where a, b and c are integer coefficients (where a 0)

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14.

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14. 4-6 Study Guide and Intervention Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form ax 2 + bx + c = 0. Quadratic Formula The solutions of

More information

Chapter 2. Linear and Quadratic Function

Chapter 2. Linear and Quadratic Function Chapter. Linear and Quadratic Function.1 Properties of Linear Functions and Linear Models.8 Equations and Inequalities Involving the Absolute Value.3 Quadratic Functions and Their Zeros.4 Properties of

More information

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. Worksheet 3 Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. 1. The object is moving away from the origin at a constant (steady) speed. 2. The object

More information

2 If ax + bx + c = 0, then x = b) What are the x-intercepts of the graph or the real roots of f(x)? Round to 4 decimal places.

2 If ax + bx + c = 0, then x = b) What are the x-intercepts of the graph or the real roots of f(x)? Round to 4 decimal places. Quadratic Formula - Key Background: So far in this course we have solved quadratic equations by the square root method and the factoring method. Each of these methods has its strengths and limitations.

More information

Chapter 5: Quadratic Applications

Chapter 5: Quadratic Applications Algebra 2 and Trigonometry Honors Chapter 5: Quadratic Applications Name: Teacher: Pd: Table of Contents Day 1: Finding the roots of quadratic equations using various methods. SWBAT: Find the roots of

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

Section 2: Acceleration

Section 2: Acceleration : Acceleration Preview Key Ideas Bellringer Acceleration and Motion Calculating Acceleration Math Skills Graphing Accelerated Motion Graphing Skills Essential Questions Section 11-2 1. What is acceleration,

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

1.5 Look Out Below! A Solidify Understanding Task

1.5 Look Out Below! A Solidify Understanding Task 22 1.5 Look Out Below A Solidify Understanding Task What happens when you drop a ball? It falls to the ground. That question sounds as silly as Why did the chicken cross the road? (To get to the other

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

MAT135 Review for Test 4 Dugopolski Sections 7.5, 7.6, 8.1, 8.2, 8.3, 8.4

MAT135 Review for Test 4 Dugopolski Sections 7.5, 7.6, 8.1, 8.2, 8.3, 8.4 Sections 7.5, 7.6, 8.1, 8., 8., 8.4 1. Use the discriminant to determine the number and type(s) of solutions for 4x 8x 4 0. One real solution B. One complex solution Two real solutions Two complex solutions.

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

Calculating Acceleration

Calculating Acceleration Calculating Acceleration Textbook pages 392 405 Before You Read Section 9. 2 Summary How do you think a velocity-time graph might differ from the position-time graph you learned about in the previous chapter?

More information

1 (a) A bus travels at a constant speed. It stops for a short time and then travels at a higher constant speed.

1 (a) A bus travels at a constant speed. It stops for a short time and then travels at a higher constant speed. 1 (a) A bus travels at a constant. It stops for a short time and then travels at a higher constant. Using the axes in Fig. 1.1, draw a distance-time graph for this bus journey. distance time Fig. 1.1 [3]

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION AP Physics Section 2-1 Reference Frames and Displacement Model the velocity of the ball from the time it leaves my hand till the time it hits the ground?

More information

Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3)

Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3) Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3) Objectives: To obtain an understanding of position, velocity, and acceleration

More information

Math 521B Chapter 4 Test (33 marks) Name:

Math 521B Chapter 4 Test (33 marks) Name: Math 521B Chapter 4 Test (33 marks) Name: Multiple Choice Identify the choice that best completes the statement or answers the question. (10 marks) 1. What are the x-intercepts of the quadratic function

More information

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills 3.3 Acceleration Constant speed is easy to understand. However, almost nothing moves with constant speed for long. When the driver steps on the gas pedal, the speed of the car increases. When the driver

More information

FORCE AND MOTION Study Notes

FORCE AND MOTION Study Notes FORCE AND MOTION Study Notes FORCE: a push or pull acting on an object. examples of forces are gravity, friction, magnetism, and applied forces. Forces cause an object to change its speed, direction, or

More information

PHYS.1410 Physics I Exam 1 Spring 2016 (version A)

PHYS.1410 Physics I Exam 1 Spring 2016 (version A) PHYS.1410 Physics I Exam 1 Spring 016 (version A) Recitation Section Number Name (PRINT) / LAST FIRST Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

When a is positive, the parabola opens up and has a minimum When a is negative, the parabola opens down and has a maximum

When a is positive, the parabola opens up and has a minimum When a is negative, the parabola opens down and has a maximum KEY CONCEPTS For a quadratic relation of the form y = ax 2 + c, the maximum or minimum value occurs at c, which is the y-intercept. When a is positive, the parabola opens up and has a minimum When a is

More information

Unit four review. Name: Class: Date: Short Answer

Unit four review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Unit four review Short Answer 1. Graph the quadratic function y = 3x 2 6x + 5. Use the graph to determine the zeros of the function if they exist. 2. For what values of k does

More information

Acceleration review. Regular

Acceleration review. Regular Acceleration review Regular Book pg 82 #91 A car is traveling 20m/s when the driver sees a child standing on the road. She takes 0.80s to react, then steps on the brakes and slows at 7.0m/s 2. How far

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 1: Interpreting Structure in Expressions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 1: Interpreting Structure in Expressions Instruction Prerequisite Skills This lesson requires the use of the following skills: evaluating expressions using the order of operations evaluating expressions for a given value identifying parts of an expression

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

Choose the best answer for each of Questions 1-14 below. Mark your answer on your scantron form using a #2 pencil.

Choose the best answer for each of Questions 1-14 below. Mark your answer on your scantron form using a #2 pencil. Name: Section #: PART I: MULTIPLE CHOICE QUESTIONS (5 pts each) Choose the best answer for each of Questions 1-14 below. Mark your answer on your scantron form using a # pencil. 1. Young s modulus describes

More information

Ch 2 Homework. Follow the instructions on the problems and show your work clearly.

Ch 2 Homework. Follow the instructions on the problems and show your work clearly. Ch 2 Homework Name: Follow the instructions on the problems and show your work clearly. 1. (Problem 3) A person travels by car from one city to another with different constant speeds between pairs of cities.

More information

Given a polynomial and one of its factors, find the remaining factors of the polynomial. 4. x 3 6x x 6; x 1 SOLUTION: Divide by x 1.

Given a polynomial and one of its factors, find the remaining factors of the polynomial. 4. x 3 6x x 6; x 1 SOLUTION: Divide by x 1. Use synthetic substitution to find f (4) and f ( 2) for each function. 2. f (x) = x 4 + 8x 3 + x 2 4x 10 Divide the function by x 4. The remainder is 758. Therefore, f (4) = 758. Divide the function by

More information

2018 AP PHYSICS 1 FREE-RESPONSE QUESTIONS. PHYSICS 1 Section II 1 Questions Time 25 minutes

2018 AP PHYSICS 1 FREE-RESPONSE QUESTIONS. PHYSICS 1 Section II 1 Questions Time 25 minutes 2018 AP FREE-RESPONSE QUESTIONS Time 25 minutes Directions: Question 1 is a long free-response question that requires about 25 minutes to answer and is worth 12 points. Show your work for each part in

More information

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Whether you think you can or think you can t, you re usually right. Henry Ford It is our attitude at the beginning of a difficult task which, more

More information

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

Velocity, Speed, and Acceleration. Unit 1: Kinematics

Velocity, Speed, and Acceleration. Unit 1: Kinematics Velocity, Speed, and Acceleration Unit 1: Kinematics Speed vs Velocity Speed is a precise measurement of how fast you are going. It is your distance traveled over time. Speed is a scalar quantity. To measure

More information

MSLC Math 1075 Final Exam Review. 1. Factor completely Solve the absolute value equation algebraically. g. 8x b. 4x 2 5x. f.

MSLC Math 1075 Final Exam Review. 1. Factor completely Solve the absolute value equation algebraically. g. 8x b. 4x 2 5x. f. MSLC Math 07 Final Exam Review Disclaimer: This should NOT be used as your only guide for what to study.. Factor completely. a. x y xy xy mn n 7x x x x 0xy x y e. xy y x y f. z z 7 g. mn m n h. c d i.

More information

Pre-Test for One-Dimensional Motion

Pre-Test for One-Dimensional Motion Pre-Test for One-Dimensional Motion 1.) Let's say that during a thunderstorm you measure the time lag between the flash and the thunderclap to be 3 seconds. If the speed of sound is about 340 m/s, which

More information

CHAPTER 3 ACCELERATED MOTION

CHAPTER 3 ACCELERATED MOTION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 3 ACCELERATED MOTION Day Plans for the day Assignments for the day 1 3.1 Acceleration o Changing Velocity

More information

Angel International School - Manipay 1 st Term Examination November, 2015

Angel International School - Manipay 1 st Term Examination November, 2015 Grade 09 Angel International School - Manipay 1 st Term Examination November, 2015 Physics Duration: 3.00 Hours Index No:- Part 1 1) What is the SI unit of mass? a) kg b) mg c) g d) t 2) Which list contains

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION AP Physics Section 2-1 Reference Frames and Displacement Model the velocity of the ball from the time it leaves my hand till the time it hits the ground?

More information

Proportional Relationships (situations)

Proportional Relationships (situations) Proportional Relationships (situations) Recall: A proportion is an equality between two ratios or two rates. If the ratio of a to b is equal to the ratio of c to d, then... The following situations are

More information

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2)

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) 1. Speed is the absolute value of. 2. If the velocity and acceleration have the sign (either both positive

More information

PUM Physics II - Kinematics Lesson 12 Solutions Page 1 of 16

PUM Physics II - Kinematics Lesson 12 Solutions Page 1 of 16 PUM Physics II - Kinematics Lesson 12 Solutions Page 1 of 16 12.1 Hypothesize (Derive a Mathematical Model) Graphically we know that the area beneath a velocity vs. time graph line represents the displacement

More information

CC Algebra Quadratic Functions Test Review. 1. The graph of the equation y = x 2 is shown below. 4. Which parabola has an axis of symmetry of x = 1?

CC Algebra Quadratic Functions Test Review. 1. The graph of the equation y = x 2 is shown below. 4. Which parabola has an axis of symmetry of x = 1? Name: CC Algebra Quadratic Functions Test Review Date: 1. The graph of the equation y = x 2 is shown below. 4. Which parabola has an axis of symmetry of x = 1? a. c. c. b. d. Which statement best describes

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

Kinematics Multiple-Choice Questions

Kinematics Multiple-Choice Questions Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle. Which of the following

More information

Logarithmic Differentiation (Sec. 3.6)

Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation Use logarithmic differentiation if you are taking the derivative of a function whose formula has a lot of MULTIPLICATION, DIVISION, and/or

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Vectors and Kinematics Notes 1 Review

Vectors and Kinematics Notes 1 Review Velocity is defined as the change in displacement with respect to time. Vectors and Kinematics Notes 1 Review Note that this formula is only valid for finding constant velocity or average velocity. Also,

More information

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute Physics 30S Unit 2 Motion Graphs Mrs. Kornelsen Teulon Collegiate Institute 1 Grade 11 Physics Graphing Properties Property d-t Graph v-t Graph a-t Graph Not Moving Does Not Apply Constant Velocity Change

More information

( ) f ( x 1 ) . x 2. To find the average rate of change, use the slope formula, m = f x 2

( ) f ( x 1 ) . x 2. To find the average rate of change, use the slope formula, m = f x 2 Common Core Regents Review Functions Quadratic Functions (Graphs) A quadratic function has the form y = ax 2 + bx + c. It is an equation with a degree of two because its highest exponent is 2. The graph

More information

SYSTEMS OF THREE EQUATIONS

SYSTEMS OF THREE EQUATIONS SYSTEMS OF THREE EQUATIONS 11.2.1 11.2.4 This section begins with students using technology to eplore graphing in three dimensions. By using strategies that they used for graphing in two dimensions, students

More information

Interactive Engagement via Thumbs Up. Today s class. Next class. Chapter 2: Motion in 1D Example 2.10 and 2.11 Any Question.

Interactive Engagement via Thumbs Up. Today s class. Next class. Chapter 2: Motion in 1D Example 2.10 and 2.11 Any Question. PHYS 01 Interactive Engagement via Thumbs Up 1 Chap.1 Sumamry Today s class SI units Dimensional analysis Scientific notation Errors Vectors Next class Chapter : Motion in 1D Example.10 and.11 Any Question

More information

Sierzega: Kinematics 10 Page 1 of 14

Sierzega: Kinematics 10 Page 1 of 14 Sierzega: Kinematics 10 Page 1 of 14 10.1 Hypothesize (Derive a Mathematical Model) Graphically we know that the area beneath a velocity vs. time graph line represents the displacement of an object. For

More information

Chapter 2 Section 2: Acceleration

Chapter 2 Section 2: Acceleration Chapter 2 Section 2: Acceleration Motion Review Speed is the rate that an object s distance changes Distance is how far an object has travelled Speed = distance/time Velocity is rate that an object s displacement

More information

Honors Physics / Unit 01 / CVPM. Name:

Honors Physics / Unit 01 / CVPM. Name: Name: Constant Velocity Model The front of each model packet should serve as a storehouse for things you ll want to be able to quickly look up later. We will usually try to give you some direction on a

More information

5-6 The Remainder and Factor Theorems

5-6 The Remainder and Factor Theorems Use synthetic substitution to find f (4) and f ( 2) for each function. 1. f (x) = 2x 3 5x 2 x + 14 58; 20 2. f (x) = x 4 + 8x 3 + x 2 4x 10 758; 46 3. NATURE The approximate number of bald eagle nesting

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

Lesson 3 Velocity Graphical Analysis

Lesson 3 Velocity Graphical Analysis Physics 2 Lesson 3 Velocity Graphical Analysis I. Pearson Textbook Reference Refer to pages 11 to 2. II. Position-time Graphs Position-time graphs indicate the position of an object relative to a reference

More information

NUMB3RS Activity: Fresh Air and Parabolas. Episode: Pandora s Box

NUMB3RS Activity: Fresh Air and Parabolas. Episode: Pandora s Box Teacher Page 1 NUMB3RS Activity: Fresh Air and Parabolas Topic: Quadratic functions, trajectories, vectors, parametric functions Grade Level: 10-1 Objective: Students will investigate linear and quadratic

More information

Unit 9: Quadratics Intercept Form

Unit 9: Quadratics Intercept Form For Teacher Use Packet Score: Name: Period: Algebra 1 Unit 9: Quadratics Intercept Form Note & Homework Packet Date Topic/Assignment HW Page 9-A Graphing Parabolas in Intercept Form 9-B Solve Quadratic

More information

Quadratic Inequalities in One Variable

Quadratic Inequalities in One Variable Quadratic Inequalities in One Variable Quadratic inequalities in one variable can be written in one of the following forms: a b c + + 0 a b c + + 0 a b c + + 0 a b c + + 0 Where a, b, and c are real and

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: Algebra and proof 2 Grade 8 Objective: Use algebra to construct proofs Question 1 a) If n is a positive integer explain why the expression 2n + 1 is always an odd number. b) Use

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 11 Topic Practice Paper: Factorising Quadratics Factorising difficult quadratic expressions 1 Grade 7 Objective: Factorise a quadratic expression of the form ax 2 + bx + c

More information

Understanding. 28. Given:! d inital. = 1750 m [W];! d final Required:!! d T Analysis:!! d T. Solution:!! d T

Understanding. 28. Given:! d inital. = 1750 m [W];! d final Required:!! d T Analysis:!! d T. Solution:!! d T Unit 1 Review, pages 100 107 Knowledge 1. (c). (c) 3. (b) 4. (d) 5. (b) 6. (c) 7. (d) 8. (b) 9. (d) 10. (b) 11. (b) 1. True 13. True 14. False. The average velocity of an object is the change in displacement

More information

Kinematics in One Dimension

Kinematics in One Dimension Kinematics in One imension Return to Table of ontents Kin in One imension Review of 1 Kinematics Kinematics is the description of how objects move with respect to a defined reference frame. isplacement

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: Algebra and proof 2 Grade 8 Objective: Use algebra to construct proofs Question 1 a) If n is a positive integer explain why the expression 2n + 1 is always an odd number. b) Use

More information

MAFS.8.F.1 Define, evaluate, and compare functions. Nonlinear functions may be included for identifying a function.

MAFS.8.F.1 Define, evaluate, and compare functions. Nonlinear functions may be included for identifying a function. Content Standard MAFS.8.F Functions Assessment Limits Calculator s Context A table of values for x and y is shown. x y 1 5 2 7 3 9 4 11 MAFS.8.F.1 Define, evaluate, and compare functions. MAFS.8.F.1.1

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Car and Bicycle Rider Problem Set 1 A car is driving along a straight line with a speed v 0. At time t = 0 the car is at the

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

3.4 Solutions.notebook March 24, Horizontal Tangents

3.4 Solutions.notebook March 24, Horizontal Tangents Note Fix From 3.3 Horizontal Tangents Just for fun, sketch y = sin x and then sketch its derivative! What do you notice? More on this later 3.4 Velocity and Other Rates of Change A typical graph of the

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

Standard(s): 2.5 TA: Independence Level: % Assistance, coaching, prompting:

Standard(s): 2.5 TA: Independence Level: % Assistance, coaching, prompting: Name: Class: Date: / / Momentum Quiz Review KEY Introductory Physics (670) 1. What unit is momentum measured with? kilograms meters per second 2. Decide if the objects below have momentum or not. Write

More information

accuracy inverse relationship model significant figures dependent variable line of best fit physics scientific law

accuracy inverse relationship model significant figures dependent variable line of best fit physics scientific law A PHYSICS TOOLKIT Vocabulary Review Write the term that correctly completes the statement. Use each term once. accuracy inverse relationship model significant figures dependent variable line of best fit

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information