ON TRANSCENDENTAL NUMBERS GENERATED BY CERTAIN INTEGER SEQUENCES

Size: px
Start display at page:

Download "ON TRANSCENDENTAL NUMBERS GENERATED BY CERTAIN INTEGER SEQUENCES"

Transcription

1 iauliai Math. Semin., 8 (16), 2013, 6369 ON TRANSCENDENTAL NUMBERS GENERATED BY CERTAIN INTEGER SEQUENCES Soichi IKEDA, Kaneaki MATSUOKA Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya , Japan; s: m10004u@math.nagoya-u.ac.jp, m10041v@math.nagoya-u.ac.jp Abstract. By generalizing the technique of Dresden [2], we prove a theorem which gives a sucient condition for the transcendence of the numbers generated by certain integer sequences. In the last section, we consider the numbers generated by the last non-zero digits of n n, n nn, n nnn, etc. and the number of trailling zeros of n j, j N, and 10 j, as examples. Key words and phrases: decimal expansion, last non-zero digits, number of trailing zeros, Roth's theorem, transcendental number Mathematics Subject Classication: 11J Introduction There are some transcendental numbers whose transcendence is proved by using their decimal expansion. For example, Champernowne's number [5] and Liouville's number [4] 1 2 n! =

2 64 S. Ikeda, K. Matsuoka are well-known. On the other hand, Dresden proved the transcendence of lnzd(n n )10 n = , (1) where lnzd(x) means that the last non-zero digit of x for x N [2]. For example, lnzd(123) = 3, lnzd(100) = 1 and lnzd(9002) = 2. Incidentally, (1) can be found in [8]. In the present paper, generalizing the technique in Dresden's proof of the transcendence of (1), we prove a theorem which gives us a sucient condition for the transcendence of numbers generated by certain integer sequences. As applications of our theorem, we prove the transcendence of (1), lnzd(n nn )10 n, lnzd(n nnn )10 n, etc., by our theorem. In addition, we also prove the transcendence of (ntz(n j )( mod 10)10 n, j N, 10 j, (2) where (x( mod 10)) {0, 1,..., 9} for x N, and the denition of the function ntz follows: Definition 1. Let n N. We dene ntz(n) = max{l Z 0 : 10 l n}. This denition is the same as in [7]. Incidentally, we can nd the sequences related with ntz in [9] and [10]. Since the function ntz was not considered in Dresden's works [1] and [2], (2) is a new example. This indicates that our theorem can be used for many numbers which were not covered by previous work. 2. Proof of main theorem Definition 2. Let {d n } be a sequence of integers. Let r N with r 2. We dene { d D(n, k, r) = r k 1 n if r n, 0 if r n for n, k N.

3 On transcendental numbers generated by certain integer sequences 65 In order to prove the main theorem, we use Roth's theorem [6]. Theorem A (Roth's theorem). Let α be an algebraic number with deg α 2. For any ϵ > 0, there exist only nitely many rational numbers p q such that α p q < 1 q 2+ε. Now we state the main theorem. Theorem 1. Let g N with g 2. Let {d n } be a sequence of the numbers belonging to the set {0, 1,..., g 1}. If (1) α = i=1 d ig i is an irrational number, (2) there exist r N 2 and a N such that D(n + ar, k, r) = D(n, k, r) holds for any k, n N, (3) there exist innitely many n N such that d r n i = d r n (i+a) holds for any i {1,..., a}, then α is a transcendental number. Proof. For simplicity, we write D(n, k) = D(n, k, r). If we dene s k = D(i, k)g rk 1 i i=1 for k N, then α = k=1 s k and s k Q. From condition (2), we can take g ark 1 as a denominator of s k. Since (g ark 1) (g ark+1 1), we can take g arn 1 as a denominator of In addition, if we dene u n = a i=1 j=0 t n = n s k. k=1 d r n ig (arn j+r ni) = a i=1 j=0 d r n ig rn (aj+i) for n N, then we can also take g arn 1 as a denominator of u n. If we write t n + u n = d ig i, i=1

4 66 S. Ikeda, K. Matsuoka then d i = d i, 1 i (2a + 1)r n 1), holds for any n N which satises condition (3). Moreover, we set q n = g arn 1 and p n = q n (t n + u n ) for n N which satises condition (3). Then α p n = q n (d i d i)g i < (g 1)g i i=(2a+1)r n i=(2a+1)r n = g < g g (2a+1)rn qn 2+1/a 1 q 2+1/2a n holds for suciently large n. Moreover, there exist innitely many p n and q n from condition (3). Therefore, α must be a transcendental number by Roth's theorem. 3. Some examples In this section, we prove the transcendence of some concrete numbers by Theorem 1. (i) The numbers constructed from lnzd(n n ), lnzd(n nn ), etc. First, we dene a function g l (n). Definition 3. Let f(x, y) = x y. For n N, we dene { f(n, 1) = n if l = 1, g l (n) = f(n, g l 1 (n)) if l 2. Note that g 2 (n) = n n, g 3 (n) = n nn and g 4 (n) = n nnn. Our rst purpose is to prove the following proposition. Proposition 1. Let l N with l 2. If we dene α l = then α l is a transcendental number. lnzd(g l (n)) 10 n, Note that Dresden's result is the case l = 2. We set g = r = 10, a = 2, α = α l and d n = d n,l = lnzd(g l (n)) for l N, and prove that α and {d n } satisfy the conditions in Theorem 1 by the following lemmas. Then Theorem 1 implies Proposition 1. We can easily see that the following lemma holds.

5 On transcendental numbers generated by certain integer sequences 67 Lemma 1. For any n, x, y N, (i) if x y( mod 4) and 2 n, then n x n y ( mod 4); (ii) if x y( mod 4), then n x n y ( mod 10); (iii) if 10 x and x y( mod 10) then lnzd(x) = lnzd(y). Lemma 2. For any l, m, n N, holds. g l (n + 4m) g l (n)( mod 4) Proof. In the case l = 1, the assertion of the lemma is trivial. In addition, if l 2 and 2 n, then g l (n + 4m) g l (n) 0( mod 4) holds. Therefore, we may assume that 2 n and l 2. From Lemma 1 (i), in the case l = 2, we have g 2 (n + 4m) = (n + 4m) n+4m n n+4m n n ( mod 4). If g l 1 (n + 4m) g l 1 (n)( mod 4) holds for l 3, then g l (n + 4m) f(n, g l 1 (n + 4m)) f(n, g l 1 (n)) = g l (n)( mod 4) holds by Lemma 1 (i). Lemma 3. For any k, n N, D(n + 20, k) = D(n, k). Proof. In the case 10 n, the assertion of the lemma is trivial. Otherwise, from Lemmas 1 and 2, we obtain and D(n + 20, k) = d 10 k 1 (n+20) = lnzd(f(10 k 1 (n + 20), g l 1 (10 k 1 (n + 20)))) = lnzd(f(n, g l 1 (10 k 1 n k ))) = lnzd(f(n, g l 1 (10 k 1 n))), D(n, k) = lnzd(f(10 k 1 n, g l 1 (10 k 1 n))) = lnzd(f(n, g l 1 (10 k 1 n))). Therefore, D(n + 20, k) = D(n, k). From Lemma 1 (ii) and (iii), we can easily obtain the next lemma.

6 68 S. Ikeda, K. Matsuoka Lemma 4. There exist innitely many n N such that d 10 n i = d 10 n (i+2) for i = 1, 2. Lemma 5. For any l 2, is an irrational number. α l = d n,l 10 n Proof. By contradiction, assume that α l is a rational number. This implies that there exist T, N N such that d n+mt = d n lnzd(g l (n + mt )) = lnzd(g l (n)) holds for any n N and m N. We take j N such that 10 j > max{1000t, N}. Then we have If lnzd(t ) = 5, then we obtain lnzd(g l (10 j + mt )) = lnzd(g l (10 j )) = 1. (3) lnzd(g l (10 j + mt )) = 5 by taking m = 1. This contradicts (3). Otherwise, we take m = 20, and obtain lnzd(g l (10 j + mt )) = lnzd(f(2t, g l 1 (10 j + 20T ))) = 6. This also contradicts (3). (ii) The numbers constructed from ntz(n j ). Our second purpose is to prove the following proposition. Proposition 2. Let j N with 10 j. If we dene α j = (ntz(n j )( mod 10)) 10 n, then α j is a transcendental number, where x( mod 10) {0, 1,..., 9}. Note that if 10 j, then α j = 0. We set g = r = 10, a = 1, α = α j and d n = d n,j = (ntz(n j )( mod 10)), and prove that α and {d n } satisfy the conditions in Theorem 1. Since conditions (2) and (3) in Theorem 1, clearly, hold by the denition of ntz, the remaining task is to prove condition (1). We can easily see that the following lemma holds.

7 On transcendental numbers generated by certain integer sequences 69 Lemma 6. Let a N with 10 a. For any k N, there exist innitely many n N such that ak an( mod 10). Lemma 7. If 10 j, then α j is an irrational number. Proof. By contradiction, assume that α j is rational. This implies that there exist N, T N such that d n,j = d n+t,j for any n N. By Lemma 6, we can choose an l N such that 10 l N, 10 l 1 > T, and jntz(t ) jl( mod 10) hold. For this l, we obtain d 10 l,j = ntz(10 lj )( mod 10) = jl( mod 10), d 10 l +T,j = ntz((10 l + T ) j )( mod 10) = jntz(t )( mod 10). Hence jl( mod 10) = jntz(t )( mod 10). jntz(t )( mod 10). References However, this contradicts jl [1] G. Dresden, Two irrational numbers from last non-zero digits of n! and n n, Math. Mag., 74, (2001). [2] G. Dresden, Three transcendental numbers from the last non-zero digits of n n, F n, and n!, Math. Mag., (2007). [3] R. Euler, J. Sadek, A number that gives the unit degit of n n, J. Recreat. Math., 29(3), (1998). [4] A.O. Gelfond, Transcendental and Algebraic Numbers, Dover, New York, [5] K. Mahler, Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Proc. Konin. Neder. Akad. Wet. Ser. A., 40, (1937). [6] K.F. Roth, Rational approximations to algebraic numbers, Mathematika, 2, 120 (1955). [7] H.S. Warren Jr., Hacker's Delight, Addison, Wesley Professional, [8] On-Line Encyclopedia of Integer Sequences, [9] [10] Received 29 November 2012

NOTES ON IRRATIONALITY AND TRANSCENDENCE

NOTES ON IRRATIONALITY AND TRANSCENDENCE NOTES ON IRRATIONALITY AND TRANSCENDENCE Frits Beukers September, 27 Introduction. Irrationality Definition.. Let α C. We call α irrational when α Q. Proving irrationality and transcendence of numbers

More information

Automatic Sequences and Transcendence of Real Numbers

Automatic Sequences and Transcendence of Real Numbers Automatic Sequences and Transcendence of Real Numbers Wu Guohua School of Physical and Mathematical Sciences Nanyang Technological University Sendai Logic School, Tohoku University 28 Jan, 2016 Numbers

More information

arxiv: v5 [math.nt] 23 May 2017

arxiv: v5 [math.nt] 23 May 2017 TWO ANALOGS OF THUE-MORSE SEQUENCE arxiv:1603.04434v5 [math.nt] 23 May 2017 VLADIMIR SHEVELEV Abstract. We introduce and study two analogs of one of the best known sequence in Mathematics : Thue-Morse

More information

Solutions to Practice Final

Solutions to Practice Final s to Practice Final 1. (a) What is φ(0 100 ) where φ is Euler s φ-function? (b) Find an integer x such that 140x 1 (mod 01). Hint: gcd(140, 01) = 7. (a) φ(0 100 ) = φ(4 100 5 100 ) = φ( 00 5 100 ) = (

More information

ON THE DECIMAL EXPANSION OF ALGEBRAIC NUMBERS

ON THE DECIMAL EXPANSION OF ALGEBRAIC NUMBERS Fizikos ir matematikos fakulteto Seminaro darbai, Šiaulių universitetas, 8, 2005, 5 13 ON THE DECIMAL EXPANSION OF ALGEBRAIC NUMBERS Boris ADAMCZEWSKI 1, Yann BUGEAUD 2 1 CNRS, Institut Camille Jordan,

More information

Note An example of a computable absolutely normal number

Note An example of a computable absolutely normal number Theoretical Computer Science 270 (2002) 947 958 www.elsevier.com/locate/tcs Note An example of a computable absolutely normal number Veronica Becher ; 1, Santiago Figueira Departamento de Computation,

More information

Three Transcendental Numbers From the Last Non-Zero Digits of n n, F n, and n!.

Three Transcendental Numbers From the Last Non-Zero Digits of n n, F n, and n!. Three Transcendental Numbers From the Last Non-Zero Digits of n n, F n, and n! Gregory P Dresden Washington & Lee University Lexington, VA 24450 dresdeng@wluedu In this article, we will construct three

More information

CHAPTER 1 REAL NUMBERS KEY POINTS

CHAPTER 1 REAL NUMBERS KEY POINTS CHAPTER 1 REAL NUMBERS 1. Euclid s division lemma : KEY POINTS For given positive integers a and b there exist unique whole numbers q and r satisfying the relation a = bq + r, 0 r < b. 2. Euclid s division

More information

On the classification of irrational numbers

On the classification of irrational numbers arxiv:506.0044v [math.nt] 5 Nov 07 On the classification of irrational numbers José de Jesús Hernández Serda May 05 Abstract In this note we make a comparison between the arithmetic properties of irrational

More information

Circuit depth relative to a random oracle. Peter Bro Miltersen. Aarhus University, Computer Science Department

Circuit depth relative to a random oracle. Peter Bro Miltersen. Aarhus University, Computer Science Department Circuit depth relative to a random oracle Peter Bro Miltersen Aarhus University, Computer Science Department Ny Munkegade, DK 8000 Aarhus C, Denmark. pbmiltersen@daimi.aau.dk Keywords: Computational complexity,

More information

On the rational approximation to the Thue Morse Mahler number. Yann BUGEAUD

On the rational approximation to the Thue Morse Mahler number. Yann BUGEAUD On the rational approximation to the Thue Morse Mahler number Yann BUGEAUD Abstract. Let (t k ) k 0 be the Thue Morse sequence on {0,1} defined by t 0 = 0, t k = t k and t k+1 = 1 t k for k 0. Let b be

More information

Theorem 1 can be improved whenever b is not a prime power and a is a prime divisor of the base b. Theorem 2. Let b be a positive integer which is not

Theorem 1 can be improved whenever b is not a prime power and a is a prime divisor of the base b. Theorem 2. Let b be a positive integer which is not A RESULT ON THE DIGITS OF a n R. Blecksmith*, M. Filaseta**, and C. Nicol Dedicated to the memory of David R. Richman. 1. Introduction Let d r d r,1 d 1 d 0 be the base b representation of a positive integer

More information

On reaching head-to-tail ratios for balanced and unbalanced coins

On reaching head-to-tail ratios for balanced and unbalanced coins Journal of Statistical Planning and Inference 0 (00) 0 0 www.elsevier.com/locate/jspi On reaching head-to-tail ratios for balanced and unbalanced coins Tamas Lengyel Department of Mathematics, Occidental

More information

2 THE COMPLEXITY OF TORSION-FREENESS On the other hand, the nite presentation of a group G also does not allow us to determine almost any conceivable

2 THE COMPLEXITY OF TORSION-FREENESS On the other hand, the nite presentation of a group G also does not allow us to determine almost any conceivable THE COMPUTATIONAL COMPLEXITY OF TORSION-FREENESS OF FINITELY PRESENTED GROUPS Steffen Lempp Department of Mathematics University of Wisconsin Madison, WI 53706{1388, USA Abstract. We determine the complexity

More information

Continued Fractions New and Old Results

Continued Fractions New and Old Results Continued Fractions New and Old Results Jeffrey Shallit School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1 Canada shallit@cs.uwaterloo.ca https://www.cs.uwaterloo.ca/~shallit Joint

More information

DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM

DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM JUAN LUIS VARONA Abstract. We study the differentiability of the real function

More information

ON PATTERNS OCCURRING IN BINARY ALGEBRAIC NUMBERS

ON PATTERNS OCCURRING IN BINARY ALGEBRAIC NUMBERS ON PATTERNS OCCURRING IN BINARY ALGEBRAIC NUMBERS B. ADAMCZEWSKI AND N. RAMPERSAD Abstract. We prove that every algebraic number contains infinitely many occurrences of 7/3-powers in its binary expansion.

More information

Continued Fractions New and Old Results

Continued Fractions New and Old Results Continued Fractions New and Old Results Jeffrey Shallit School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1 Canada shallit@cs.uwaterloo.ca https://www.cs.uwaterloo.ca/~shallit Joint

More information

8. Dirichlet s Theorem and Farey Fractions

8. Dirichlet s Theorem and Farey Fractions 8 Dirichlet s Theorem and Farey Fractions We are concerned here with the approximation of real numbers by rational numbers, generalizations of this concept and various applications to problems in number

More information

2 MICHAEL FILASETA proved the analogous result for irreducible cubics. Nair [9] has shown that in the case of an irreducible polynomial f(x) of degree

2 MICHAEL FILASETA proved the analogous result for irreducible cubics. Nair [9] has shown that in the case of an irreducible polynomial f(x) of degree SQUAREFREE VALUES OF POLNOMIALS Michael Filaseta*. Introduction. The purpose of this paper is to present some results related to squarefree values of polynomials. For f(x) 2 Z[x] with f(x) 6 0; we dene

More information

Approximation exponents for algebraic functions in positive characteristic

Approximation exponents for algebraic functions in positive characteristic ACTA ARITHMETICA LX.4 (1992) Approximation exponents for algebraic functions in positive characteristic by Bernard de Mathan (Talence) In this paper, we study rational approximations for algebraic functions

More information

TRANSCENDENTAL NUMBERS AND PERIODS. Contents

TRANSCENDENTAL NUMBERS AND PERIODS. Contents TRANSCENDENTAL NUMBERS AND PERIODS JAMES CARLSON Contents. Introduction.. Diophantine approximation I: upper bounds 2.2. Diophantine approximation II: lower bounds 4.3. Proof of the lower bound 5 2. Periods

More information

Common Core Coach. Mathematics. First Edition

Common Core Coach. Mathematics. First Edition Common Core Coach Mathematics 8 First Edition Contents Domain 1 The Number System...4 Lesson 1 Understanding Rational and Irrational Numbers...6 Lesson 2 Estimating the Value of Irrational Expressions...

More information

Test 2. Monday, November 12, 2018

Test 2. Monday, November 12, 2018 Test 2 Monday, November 12, 2018 Instructions. The only aids allowed are a hand-held calculator and one cheat sheet, i.e. an 8.5 11 sheet with information written on one side in your own handwriting. No

More information

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results Euclid s Division Lemma : Given two positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 r < b. Euclid s Division

More information

A version of for which ZFC can not predict a single bit Robert M. Solovay May 16, Introduction In [2], Chaitin introd

A version of for which ZFC can not predict a single bit Robert M. Solovay May 16, Introduction In [2], Chaitin introd CDMTCS Research Report Series A Version of for which ZFC can not Predict a Single Bit Robert M. Solovay University of California at Berkeley CDMTCS-104 May 1999 Centre for Discrete Mathematics and Theoretical

More information

arxiv: v2 [math.nt] 28 Feb 2010

arxiv: v2 [math.nt] 28 Feb 2010 arxiv:002.47v2 [math.nt] 28 Feb 200 Two arguments that the nontrivial zeros of the Riemann zeta function are irrational Marek Wolf e-mail:mwolf@ift.uni.wroc.pl Abstract We have used the first 2600 nontrivial

More information

A class of transcendental numbers with explicit g-adic expansion and the Jacobi Perron algorithm

A class of transcendental numbers with explicit g-adic expansion and the Jacobi Perron algorithm ACTA ARITHMETICA LXI. (992) A class of transcendental numbers with explicit g-adic expansion and the Jacobi Perron algorithm by Jun-ichi Tamura (Tokyo). Introduction. In this paper we give transcendental

More information

The average dimension of the hull of cyclic codes

The average dimension of the hull of cyclic codes Discrete Applied Mathematics 128 (2003) 275 292 www.elsevier.com/locate/dam The average dimension of the hull of cyclic codes Gintaras Skersys Matematikos ir Informatikos Fakultetas, Vilniaus Universitetas,

More information

LECTURE NOTES IN CRYPTOGRAPHY

LECTURE NOTES IN CRYPTOGRAPHY 1 LECTURE NOTES IN CRYPTOGRAPHY Thomas Johansson 2005/2006 c Thomas Johansson 2006 2 Chapter 1 Abstract algebra and Number theory Before we start the treatment of cryptography we need to review some basic

More information

LECTURE 22: COUNTABLE AND UNCOUNTABLE SETS

LECTURE 22: COUNTABLE AND UNCOUNTABLE SETS LECTURE 22: COUNTABLE AND UNCOUNTABLE SETS 1. Introduction To end the course we will investigate various notions of size associated to subsets of R. The simplest example is that of cardinality - a very

More information

An Unusual Continued Fraction

An Unusual Continued Fraction An Unusual Continued Fraction arxiv:505.00667v [math.nt] 4 May 205 Dzmitry Badziahin Department of Mathematical Sciences Durham University Lower Mountjoy Stockton Rd Durham, DH 3LE United Kingdom dzmitry.badziahin@durham.ac.uk

More information

SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS

SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS J MC LAUGHLIN Abstract Let fx Z[x] Set f 0x = x and for n 1 define f nx = ff n 1x We describe several infinite

More information

On repdigits as product of consecutive Lucas numbers

On repdigits as product of consecutive Lucas numbers Notes on Number Theory and Discrete Mathematics Print ISSN 1310 5132, Online ISSN 2367 8275 Vol. 24, 2018, No. 3, 5 102 DOI: 10.7546/nntdm.2018.24.3.5-102 On repdigits as product of consecutive Lucas numbers

More information

A Z q -Fan theorem. 1 Introduction. Frédéric Meunier December 11, 2006

A Z q -Fan theorem. 1 Introduction. Frédéric Meunier December 11, 2006 A Z q -Fan theorem Frédéric Meunier December 11, 2006 Abstract In 1952, Ky Fan proved a combinatorial theorem generalizing the Borsuk-Ulam theorem stating that there is no Z 2-equivariant map from the

More information

A Short Review of Cardinality

A Short Review of Cardinality Christopher Heil A Short Review of Cardinality November 14, 2017 c 2017 Christopher Heil Chapter 1 Cardinality We will give a short review of the definition of cardinality and prove some facts about the

More information

Peter Bala, Nov

Peter Bala, Nov Fractional iteration of a series inversion operator Peter Bala, Nov 16 2015 We consider an operator on formal power series, closely related to the series reversion operator, and show how to dene comple

More information

Let π and e be trancendental numbers and consider the case:

Let π and e be trancendental numbers and consider the case: Jonathan Henderson Abstract: The proposed question, Is π + e an irrational number is a pressing point in modern mathematics. With the first definition of transcendental numbers coming in the 1700 s there

More information

fn" <si> f2(i) i + [/i + [/f] (1.1) ELEMENTARY SEQUENCES (1.2)

fn <si> f2(i) i + [/i + [/f] (1.1) ELEMENTARY SEQUENCES (1.2) Internat. J. Math. & Math. Sci. VOL. 15 NO. 3 (1992) 581-588 581 ELEMENTARY SEQUENCES SCOTT J. BESLIN Department of Mathematics Nicholls State University Thibodaux, LA 70310 (Received December 10, 1990

More information

The Adjoint Action of a Homotopy-associative H-space on its Loop Space.

The Adjoint Action of a Homotopy-associative H-space on its Loop Space. The Adjoint Action of a Homotopy-associative H-space on its Loop Space. Nicholas Nguyen Department of Mathematics University of Kentucky January 17th, 2014 Assumptions Unless specied, All topological spaces:

More information

and ttuu ee 2 (logn loglogn) 1 J

and ttuu ee 2 (logn loglogn) 1 J 282 ON THE DENSITY OF THE ABUNDANT NUMBEBS. But, by Lemma 3, b v a(6 M )^ 2 which is a contradiction. Thus the theorem is established. 4. It will be seen that the method used in this paper leads immediately

More information

Mathematical Induction Assignments

Mathematical Induction Assignments 1 Mathematical Induction Assignments Prove the Following using Principle of Mathematical induction 1) Prove that for any positive integer number n, n 3 + 2 n is divisible by 3 2) Prove that 1 3 + 2 3 +

More information

Lifting to non-integral idempotents

Lifting to non-integral idempotents Journal of Pure and Applied Algebra 162 (2001) 359 366 www.elsevier.com/locate/jpaa Lifting to non-integral idempotents Georey R. Robinson School of Mathematics and Statistics, University of Birmingham,

More information

Mathematical Journal of Okayama University

Mathematical Journal of Okayama University Mathematical Journal of Okayama University Volume 48, Issue 1 2006 Article 1 JANUARY 2006 On Euclidean Algorithm Kaoru Motose Hirosaki University Copyright c 2006 by the authors. Mathematical Journal of

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY ORMAL UMBERS AD UIFORM DISTRIBUTIO WEEKS -3 OPE PROBLEMS I UMBER THEORY SPRIG 28, TEL AVIV UIVERSITY Contents.. ormal numbers.2. Un-natural examples 2.3. ormality and uniform distribution 2.4. Weyl s criterion

More information

DICKSON INVARIANTS HIT BY THE STEENROD SQUARES

DICKSON INVARIANTS HIT BY THE STEENROD SQUARES DICKSON INVARIANTS HIT BY THE STEENROD SQUARES K F TAN AND KAI XU Abstract Let D 3 be the Dickson invariant ring of F 2 [X 1,X 2,X 3 ]bygl(3, F 2 ) In this paper, we prove each element in D 3 is hit by

More information

INTRODUCTION TO TRANSCENDENTAL NUMBERS

INTRODUCTION TO TRANSCENDENTAL NUMBERS INTRODUCTION TO TRANSCENDENTAL NUBERS VO THANH HUAN Abstract. The study of transcendental numbers has developed into an enriching theory and constitutes an important part of mathematics. This report aims

More information

i) G is a set and that is a binary operation on G (i.e., G is closed iii) there exists e 2 G such that a e = e a = a for all a 2 G (i.e.

i) G is a set and that is a binary operation on G (i.e., G is closed iii) there exists e 2 G such that a e = e a = a for all a 2 G (i.e. Math 375 Week 2 2.1 Groups Recall our basic denition: DEFINITION 1 Suppose that: i) G is a set and that is a binary operation on G (i.e., G is closed under ); ii) is associative; iii) there exists e 2

More information

Chapter 12. Algebraic numbers and algebraic integers Algebraic numbers

Chapter 12. Algebraic numbers and algebraic integers Algebraic numbers Chapter 12 Algebraic numbers and algebraic integers 12.1 Algebraic numbers Definition 12.1. A number α C is said to be algebraic if it satisfies a polynomial equation with rational coefficients a i Q.

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

MATH 271 Summer 2016 Practice problem solutions Week 1

MATH 271 Summer 2016 Practice problem solutions Week 1 Part I MATH 271 Summer 2016 Practice problem solutions Week 1 For each of the following statements, determine whether the statement is true or false. Prove the true statements. For the false statement,

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GROUP ACTIONS ON POLYNOMIAL AND POWER SERIES RINGS Peter Symonds Volume 195 No. 1 September 2000 PACIFIC JOURNAL OF MATHEMATICS Vol. 195, No. 1, 2000 GROUP ACTIONS ON POLYNOMIAL

More information

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Lesson 6: Linear independence, matrix column space and null space New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Two linear systems:

More information

April 25 May 6, 2016, Verona, Italy. GAME THEORY and APPLICATIONS Mikhail Ivanov Krastanov

April 25 May 6, 2016, Verona, Italy. GAME THEORY and APPLICATIONS Mikhail Ivanov Krastanov April 25 May 6, 2016, Verona, Italy GAME THEORY and APPLICATIONS Mikhail Ivanov Krastanov Games in normal form There are given n-players. The set of all strategies (possible actions) of the i-th player

More information

Midterm 1. Every element of the set of functions is continuous

Midterm 1. Every element of the set of functions is continuous Econ 200 Mathematics for Economists Midterm Question.- Consider the set of functions F C(0, ) dened by { } F = f C(0, ) f(x) = ax b, a A R and b B R That is, F is a subset of the set of continuous functions

More information

Combinatorics, Automata and Number Theory

Combinatorics, Automata and Number Theory Combinatorics, Automata and Number Theory CANT Edited by Valérie Berthé LIRMM - Université Montpelier II - CNRS UMR 5506 161 rue Ada, F-34392 Montpellier Cedex 5, France Michel Rigo Université de Liège,

More information

Problem Set 5 Solutions

Problem Set 5 Solutions Problem Set 5 Solutions Section 4.. Use mathematical induction to prove each of the following: a) For each natural number n with n, n > + n. Let P n) be the statement n > + n. The base case, P ), is true

More information

A Generalization of Sturmian Sequences; Combinatorial Structure and Transcendence

A Generalization of Sturmian Sequences; Combinatorial Structure and Transcendence A Generalization of Sturmian Sequences; Combinatorial Structure and Transcendence Rebecca N. Risley Department of Mathematics University of North Texas Denton, TX 76203-5116 rnr0002@jove.acs.unt.edu Luca

More information

MA 301 Test 4, Spring 2007

MA 301 Test 4, Spring 2007 MA 0 Test 4, Spring 007 hours, calculator allowed, no notes. Provide paper for the students to do work on. Students should not write answers on test sheet. TA Grades, 5, 6, 7 All answers must be justified.

More information

Master of Arts In Mathematics

Master of Arts In Mathematics ESTIMATING THE FRACTAL DIMENSION OF SETS DETERMINED BY NONERGODIC PARAMETERS A thesis submitted to the faculty of San Francisco State University In partial fulllment of The Requirements for The Degree

More information

On the classication of algebras

On the classication of algebras Technische Universität Carolo-Wilhelmina Braunschweig Institut Computational Mathematics On the classication of algebras Morten Wesche September 19, 2016 Introduction Higman (1950) published the papers

More information

IRRATIONALITY OF π AND e

IRRATIONALITY OF π AND e IRRATIONALITY OF π AND e KEITH CONRAD. Introduction Numerical estimates for π have been found in records of several ancient civilizations. These estimates were all based on inscribing and circumscribing

More information

An Estimate For Heilbronn s Exponential Sum

An Estimate For Heilbronn s Exponential Sum An Estimate For Heilbronn s Exonential Sum D.R. Heath-Brown Magdalen College, Oxford For Heini Halberstam, on his retirement Let be a rime, and set e(x) = ex(2πix). Heilbronn s exonential sum is defined

More information

NOTES ON DIOPHANTINE APPROXIMATION

NOTES ON DIOPHANTINE APPROXIMATION NOTES ON DIOPHANTINE APPROXIMATION Jan-Hendrik Evertse December 11, 2007 8 Approximation of algebraic numbers Literature: W.M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer

More information

1 Solutions to selected problems

1 Solutions to selected problems 1 Solutions to selected problems 1. Let A B R n. Show that int A int B but in general bd A bd B. Solution. Let x int A. Then there is ɛ > 0 such that B ɛ (x) A B. This shows x int B. If A = [0, 1] and

More information

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS UNIT 4 NOTES: PROPERTIES & EXPRESSIONS Vocabulary Mathematics: (from Greek mathema, knowledge, study, learning ) Is the study of quantity, structure, space, and change. Algebra: Is the branch of mathematics

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 Basic Notation The following is standard notation for proofs: A B. A implies B. A B.

More information

SOLUTIONS FOR THE THIRD PROBLEM SET

SOLUTIONS FOR THE THIRD PROBLEM SET SOLUTIONS FOR THE THIRD PROBLEM SET. On the handout about continued fractions, one finds a definition of the function f n (x) for n 0 associated to a sequence a 0,a,... We have discussed the functions

More information

17 Advancement Operator Equations

17 Advancement Operator Equations November 14, 2017 17 Advancement Operator Equations William T. Trotter trotter@math.gatech.edu Review of Recurrence Equations (1) Problem Let r(n) denote the number of regions determined by n lines that

More information

Factoring Polynomials with Rational Coecients. Kenneth Giuliani

Factoring Polynomials with Rational Coecients. Kenneth Giuliani Factoring Polynomials with Rational Coecients Kenneth Giuliani 17 April 1998 1 Introduction Factorization is a problem well-studied in mathematics. Of particular focus is factorization within unique factorization

More information

ON THE CONVERGENCE OF SOME ALTERNATING SERIES

ON THE CONVERGENCE OF SOME ALTERNATING SERIES O THE COVERGECE OF SOME ALTERATIG SERIES AGEL V. KUMCHEV. Introduction This note is motivated by a question that a colleague of the author s often challenges calculus students with: Does the series ( )

More information

1 More concise proof of part (a) of the monotone convergence theorem.

1 More concise proof of part (a) of the monotone convergence theorem. Math 0450 Honors intro to analysis Spring, 009 More concise proof of part (a) of the monotone convergence theorem. Theorem If (x n ) is a monotone and bounded sequence, then lim (x n ) exists. Proof. (a)

More information

Notes on Equidistribution

Notes on Equidistribution otes on Equidistribution Jacques Verstraëte Department of Mathematics University of California, San Diego La Jolla, CA, 92093. E-mail: jacques@ucsd.edu. Introduction For a real number a we write {a} for

More information

LOGARITHMIC MULTIFRACTAL SPECTRUM OF STABLE. Department of Mathematics, National Taiwan University. Taipei, TAIWAN. and. S.

LOGARITHMIC MULTIFRACTAL SPECTRUM OF STABLE. Department of Mathematics, National Taiwan University. Taipei, TAIWAN. and. S. LOGARITHMIC MULTIFRACTAL SPECTRUM OF STABLE OCCUPATION MEASURE Narn{Rueih SHIEH Department of Mathematics, National Taiwan University Taipei, TAIWAN and S. James TAYLOR 2 School of Mathematics, University

More information

(i) 2-5 (ii) (3 + 23) - 23 (v) 2π

(i) 2-5 (ii) (3 + 23) - 23 (v) 2π Number System - Worksheet Question 1: Express the following in the form p/q, where p and q are integers and q 0. Question 2: Express 0.99999... in the form p/q. Are you surprised by your answer? With your

More information

8 The Gelfond-Schneider Theorem and Some Related Results

8 The Gelfond-Schneider Theorem and Some Related Results 8 The Gelfond-Schneider Theorem and Some Related Results In this section, we begin by stating some results without proofs. In 1900, David Hilbert posed a general problem which included determining whether

More information

Proof by Contradiction

Proof by Contradiction Proof by Contradiction MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Proof by Contradiction Fall 2014 1 / 12 Outline 1 Proving Statements with Contradiction 2 Proving

More information

On canonical number systems

On canonical number systems On canonical number systems Shigeki Akiyama and Attila Pethő Abstract. Let P (x) = p d x d +... + Z[x] be such that d 1, p d = 1, 2 and N = {0, 1,..., 1}. We are proving in this note a new criterion for

More information

Jerey Shallit. Department of Computer Science. University of Waterloo. Waterloo, Ontario N2L 3G1. Canada

Jerey Shallit. Department of Computer Science. University of Waterloo. Waterloo, Ontario N2L 3G1. Canada Characteristic Words as Fixed Points of Homomorphisms Jerey Shallit Department of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1 Canada shallit@watdragon.waterloo.edu Abstract. With

More information

A Short Proof of the Transcendence of Thue-Morse Continued Fractions

A Short Proof of the Transcendence of Thue-Morse Continued Fractions A Short Proof of the Transcendence of Thue-Morse Continued Fractions Boris ADAMCZEWSKI and Yann BUGEAUD The Thue-Morse sequence t = (t n ) n 0 on the alphabet {a, b} is defined as follows: t n = a (respectively,

More information

Math 109 HW 9 Solutions

Math 109 HW 9 Solutions Math 109 HW 9 Solutions Problems IV 18. Solve the linear diophantine equation 6m + 10n + 15p = 1 Solution: Let y = 10n + 15p. Since (10, 15) is 5, we must have that y = 5x for some integer x, and (as we

More information

Characters and triangle generation of the simple Mathieu group M 11

Characters and triangle generation of the simple Mathieu group M 11 SEMESTER PROJECT Characters and triangle generation of the simple Mathieu group M 11 Under the supervision of Prof. Donna Testerman Dr. Claude Marion Student: Mikaël Cavallin September 11, 2010 Contents

More information

The Mysterious World of Normal Numbers

The Mysterious World of Normal Numbers University of Alberta May 3rd, 2012 1 2 3 4 5 6 7 Given an integer q 2, a q-normal number is an irrational number whose q-ary expansion is such that any preassigned sequence, of length k 1, of base q digits

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

A Simple Proof of a Remarkable Continued Fraction Identity

A Simple Proof of a Remarkable Continued Fraction Identity A Simple Proof of a Remarkale Continued Fraction Identity P. G. Anderson, T. C. Brown and P. J.-S. Shiue Citation data: P.G. Anderson, T.C. Brown, and P.J.-S. Shiue, A simple proof of a remarkale continued

More information

MATH 361: NUMBER THEORY FOURTH LECTURE

MATH 361: NUMBER THEORY FOURTH LECTURE MATH 361: NUMBER THEORY FOURTH LECTURE 1. Introduction Everybody knows that three hours after 10:00, the time is 1:00. That is, everybody is familiar with modular arithmetic, the usual arithmetic of the

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 1.4.2, 1.4.4, 1.4.9, 1.4.11,

More information

Mathematics 228(Q1), Assignment 2 Solutions

Mathematics 228(Q1), Assignment 2 Solutions Mathematics 228(Q1), Assignment 2 Solutions Exercise 1.(10 marks) A natural number n > 1 is said to be square free if d N with d 2 n implies d = 1. Show that n is square free if and only if n = p 1 p k

More information

be a sequence of positive integers with a n+1 a n lim inf n > 2. [α a n] α a n

be a sequence of positive integers with a n+1 a n lim inf n > 2. [α a n] α a n Rend. Lincei Mat. Appl. 8 (2007), 295 303 Number theory. A transcendence criterion for infinite products, by PIETRO CORVAJA and JAROSLAV HANČL, communicated on May 2007. ABSTRACT. We prove a transcendence

More information

Balance properties of multi-dimensional words

Balance properties of multi-dimensional words Theoretical Computer Science 273 (2002) 197 224 www.elsevier.com/locate/tcs Balance properties of multi-dimensional words Valerie Berthe a;, Robert Tijdeman b a Institut de Mathematiques de Luminy, CNRS-UPR

More information

PROBLEMS ON CONGRUENCES AND DIVISIBILITY

PROBLEMS ON CONGRUENCES AND DIVISIBILITY PROBLEMS ON CONGRUENCES AND DIVISIBILITY 1. Do there exist 1,000,000 consecutive integers each of which contains a repeated prime factor? 2. A positive integer n is powerful if for every prime p dividing

More information

Series of Error Terms for Rational Approximations of Irrational Numbers

Series of Error Terms for Rational Approximations of Irrational Numbers 2 3 47 6 23 Journal of Integer Sequences, Vol. 4 20, Article..4 Series of Error Terms for Rational Approximations of Irrational Numbers Carsten Elsner Fachhochschule für die Wirtschaft Hannover Freundallee

More information

SURGERY EQUIVALENCE AND FINITE TYPE INVARIANTS FOR HOMOLOGY 3-SPHERES L. FUNAR Abstract. One considers two equivalence relations on 3-manifolds relate

SURGERY EQUIVALENCE AND FINITE TYPE INVARIANTS FOR HOMOLOGY 3-SPHERES L. FUNAR Abstract. One considers two equivalence relations on 3-manifolds relate SURGERY EQUIVALENCE AND FINITE TYPE INVARIANTS FOR HOMOLOGY 3-SPHERES L. FUNAR Abstract. One considers two equivalence relations on 3-manifolds related to nite type invariants. The rst one requires to

More information

AUTOMATIC SEQUENCES GENERATED BY SYNCHRONIZING AUTOMATA FULFILL THE SARNAK CONJECTURE

AUTOMATIC SEQUENCES GENERATED BY SYNCHRONIZING AUTOMATA FULFILL THE SARNAK CONJECTURE AUTOMATIC SEQUENCES GENERATED BY SYNCHRONIZING AUTOMATA FULFILL THE SARNAK CONJECTURE JEAN-MARC DESHOUILLERS, MICHAEL DRMOTA, AND CLEMENS MÜLLNER Abstract. We prove that automatic sequences generated by

More information

Realization of set functions as cut functions of graphs and hypergraphs

Realization of set functions as cut functions of graphs and hypergraphs Discrete Mathematics 226 (2001) 199 210 www.elsevier.com/locate/disc Realization of set functions as cut functions of graphs and hypergraphs Satoru Fujishige a;, Sachin B. Patkar b a Division of Systems

More information

Properties of Arithmetical Functions

Properties of Arithmetical Functions Properties of Arithmetical Functions Zack Clark Math 336, Spring 206 Introduction Arithmetical functions, as dened by Delany [2], are the functions f(n) that take positive integers n to complex numbers.

More information

f(x n ) [0,1[ s f(x) dx.

f(x n ) [0,1[ s f(x) dx. ACTA ARITHMETICA LXXX.2 (1997) Dyadic diaphony by Peter Hellekalek and Hannes Leeb (Salzburg) 1. Introduction. Diaphony (see Zinterhof [13] and Kuipers and Niederreiter [6, Exercise 5.27, p. 162]) is a

More information

Introduction to Groups

Introduction to Groups Introduction to Groups S F Ellermeyer November 2, 2006 A group, G, is a set, A, endowed with a single binary operation,, such that: The operation is associative, meaning that a (b c) = (a b) c for all

More information