Low-Degree Testing. Madhu Sudan MSR. Survey based on many works. of /02/2015 CMSA: Low-degree Testing 1

Size: px
Start display at page:

Download "Low-Degree Testing. Madhu Sudan MSR. Survey based on many works. of /02/2015 CMSA: Low-degree Testing 1"

Transcription

1 Low-Degree Testing Madhu Sudan MSR Survey based on many works 09/02/2015 CMSA: Low-degree Testing 1

2 Kepler s Problem Tycho Brahe (~ ): Wished to measure planetary motion accurately. To confirm sun revolved around earth (+ other planets around sun) Spent 10% of Danish GNP Johannes Kepler (~ s): Believed Copernicus s picture: planets in circular orbits. Addendum: Ratio of orbits based on Löwner-John ratios of platonic solids. Stole Brahe s data (1601). Source: Michael Fowler, Galileo & Einstein, U. Virginia Worked on it for nine years. Disproved Addendum; Confirmed Copernicus (circle -> ellipse); discovered laws of planetary motion. Nine Years? To check if data fits a low-degree polynomial? 09/02/2015 CMSA: Low-degree Testing 2

3 Low-degree Testing Notation: F q = finite field of cardinality q Problem: Given f: F q n F q and d N, is f essentially a deg. d (n-var.) polynomial? With few queries for values of f( ) essentially : deg x 2 y 3 = 5 Must accept if deg f d. deg m = max(deg m ) Reject w.h.p. if δ f, g.1, g with deg g d δ f, g q n x f x g x } Warning: Refinements and Variations later. 09/02/2015 CMSA: Low-degree Testing 3

4 This talk Some motivations Some results Some proofs 09/02/2015 CMSA: Low-degree Testing 4

5 Why Polynomials? Robustness! Polynomial Distance Lemma: Let f, g: F q n F q, w. deg f, deg g d, f g d < q: δ f, g 1 d q Generally: δ f, g q d q 1 (w.l.o.g. deg xi f < q)! No dependence on n! δ d,q Min. Dist. Between degree d polynomials over F q Used in Error-correcting Codes: Information: Coefficients of polynomials Encoding: Evaluations Robust: Changing few values doesn t cause ambiguity. 09/02/2015 CMSA: Low-degree Testing 5

6 Formal Definitions and Parameters (l, ε)-local low-degree test: Selects queries Q = x 1,, x l F q n Accept iff f Q S. Guarantees: and set S {h: Q F} deg f d Accepts w.p. 1 f, Pr rejection ε δ d f δ d f l, α -robust if f, E Q,S δ f Q, S α δ d f min g deg g d δ f, g General goal: Minimize l, while maximizing ε, α ε α ε l local distance vs. global distance 09/02/2015 CMSA: Low-degree Testing 6

7 What can be achieved? (d = 1) The functions: c 0 + n i=1 c i x i c 0 c n F q } (n + 1)-dimensional vector space over F q Distance: δ d,q = 1 1 q l, ε, α =? l > 2; l = 3 achievable iff q > 2, with ε, α > 0 l = 4: Test: αf u + βf v + γf v = f αu + βv + γw ; Linearity Testing [BlumLubyRubinfeld] Achieves ε = 1! [BellareCoppersmithHåstadKiwiSudan] Proof ingredient: Discrete Fourier Analysis. 09/02/2015 CMSA: Low-degree Testing 7

8 Generalizing to higher d Optimal locality =? Test =? Best soundness ε =? Best robustness α =? How do the above depend on n, q, d? 09/02/2015 CMSA: Low-degree Testing 8

9 Why Low-degree Testing? Polynomials: Makes data robust Low-degree Testing: Makes proofs robust Proof = Data that makes Theorem obvious/verifiable [Gödel,Church,Turing,Cook,Levin] Robust Proof = One that implies truth of theorem based on local tests (Holographic Proofs, Probabilistically Checkable Proofs) [Arora,Babai,Feige,Fortnow,Goldwasser,Levin,Lovasz,Lund,Rompel,Safra,Sipser,Szegedy] (Mod Details): To robustify Proof Π of Assertion T, encode Π using multivariate polynomial encoding; Verify proof Π by first a low-degree test; and then more standard tests. 09/02/2015 CMSA: Low-degree Testing 9

10 Why low-degree testing - II Codes are extremal combinatorial objects Lead to many other extremal objects (expanders, extractors, pseudo-random generators, condensers ) Low-degree testing: further embellishes such connections. E.g. [BGHMRS]: G n,d,q = V, E ; V = f: F q n F q, deg f d ; f, g E f g (near)-maximally zero. LDT G n,d,q is a small-set expander! 09/02/2015 CMSA: Low-degree Testing 10

11 Formal Definitions and Parameters (l, ε)-local low-degree test: n Selects queries Q = x 1,, x l F q and set S {h: Q F} Accept iff f Q S. Guarantees: deg f d Accepts w.p. 1 f, Pr rejection ε δ d f l, α -robust if f, E Q,S δ f Q, S α δ d f General goal: Minimize l, while maximizing ε, α 09/02/2015 CMSA: Low-degree Testing 11

12 A natural test f: F q n F q with deg f d affine subspaces A F q n s. t. dim A = t, deg f A Converse? Fact: q, d t = t q,d s. t. affine A s. t. dim A = t, deg f d A deg f d Natural test: Pick random subspace A s. t. dim A = t t q,d ; Accept if deg f A d. d 09/02/2015 CMSA: Low-degree Testing 12

13 Locality of subspace tests d+1 q 1 t q,d 2(d+1) q 1. (Precisely t q,d = d+1 q q p ) Locality of test q Θ d q Codes + duality Locality of any non-trivial constraint q Ω d q How good are the tests? ε =?; α =? Does using t > t q,d help? 09/02/2015 CMSA: Low-degree Testing 13

14 Results (Disclaimer: Long history not elaborated below.) Fix q; d ; sound! Theorem 1: [BKSSZ,HSS,HRS] q ε = ε q > 0, s.t. d, n, f the t q,d -dimensional test rejects f w.p. ε δ d f Fix d q < 1; q ; robust! Theorem 2: [GHS] δ > 0 α > 0 s.t. q, d, n, f w. d < 1 δ q, the 2-dim. test satisfies E A δ d f A α δ d f. d q 0; x Maximal robustness Theorem 3: [RS] α < 1, δ < 1 s.t. q, d, n, f w. d < 1 δ q, the 2-dim. test satisfies E A δ d f A α δ d f. 09/02/2015 CMSA: Low-degree Testing 14

15 Theorem 1: Context + Ideas Fix q = 2. Alternative view of test: f a x f x + a f(a) discrete derivative deg f d deg f a d 1 deg f a1,,a d+1 < 0 f a1,,a d+1 = 0 Rejection Prob. ρ f = Pr 1 a1 a(d+1) f a1 a(d+1) 0 (1 2ρ f ) 2 d special case of Gowers norm Strong Inverse Conjecture ρ f 1 2 as δ d f 1 2. Falsified by [LovettMeshulamSamorodnitsky],[GreenTao]: f = Sym 2 t x 1 x n ; d = 2 t 1; δ d f = 1 2 o n(1); ρ f /02/2015 CMSA: Low-degree Testing 15

16 Theorem 1 (contd.) So ρ f 1 as δ f 1 ; but is ρ f > 0? 2 2 Prior to [BKSSZ]: ρ f > 4 d [BKSSZ] Lemma: ρ f min{ε 2, 2 d δ f } Key ingredient in proof: Suppose δ d f > 2 d On how many hyperplanes H can deg f H d? 09/02/2015 CMSA: Low-degree Testing 16

17 Hyperplanes δ d f > 2 d #{H s.t. deg f H d}? 1. H s.t. deg f H > d: defn of testing dimension. 2. Pr deg f H d 1 deg H q xi f < q What we needed: #{H s.t. deg f H d} O(2 d ) 09/02/2015 CMSA: Low-degree Testing 17

18 General q Lemma: q c s.t. if δ d f q t q,d then # H s. t. deg f H d c q t q,d Ingredients in proof: q = 2: Simple symmetry of subspaces, linear algebra. q = 3: Roth s theorem General q: Density Hales-Jewett theorem 09/02/2015 CMSA: Low-degree Testing 18

19 Theorem 2: Ideas Theorem 2: [GHS] δ > 0 α > 0 s.t. q, d, n, f w. d < 1 δ q, the 2-dim. test satisfies E A δ d f A α δ d f. When d < q, polynomials are good codes! Is this sufficient for low-degree testing? Investigated in computational complexity since 90s. Linearity insufficient. [Folklore] Local constraints insufficient. [BHR05] Symmetry: Automorphisms of domain preserving space of functions? Cyclicity: Insufficient [BSS] Affine-invariance: Weakly sufficient [KS] (ε exp( d)) 09/02/2015 CMSA: Low-degree Testing 19

20 Theorem 2 (contd.) Lifted families [GuoKoppartyS.14] Fix B h: F q t F q base family (affine-invariant) Its n-dim lift is B n C = f: F q n F q Lifted families of functions are nice Inherit distance of base family (almost) affine A, dim A = t, f A B Generalize low-degree property: B = h: F q t q,d F q deg h d Yield new codes of high rate Have a natural test: Pick random t-dim subspace A and test if δ f A B Does this test work? [Haramaty, Ron-Zewi, S.14] Yes, with ε = ε q Is the test robust? Don t know, but The 2t -dim test is! [Guo,Haramaty,S 15] with α = α δ B Low-degree testing (Theorem 2) follows. 09/02/2015 CMSA: Low-degree Testing 20

21 Testing Lifted Codes - 1 For simplicity B h: F q F q (t = 1). General geometry + symmetry Robustness of B 4 > 0 Robustness of B n > 0 How to analyze robustness of the test for constant n? 09/02/2015 CMSA: Low-degree Testing 21

22 Tensors: Key to understanding Lifts Given F f: S F q and G g: T F q, F G = h: S T F q x, y, h, y F & h x, G F n = F F F B n B n ; B n = T T B n (affine transform T) (n 1)-dim test for B n : Fix coordinate at random and test if f, x i, B n 1 [Viderman 13]: Test is α δ B,n -robust. Hope: Use B n = T T B n to show that testing for random T(B n ) suffices; δ A f, δ B f small δ A B f small 09/02/2015 CMSA: Low-degree Testing 22

23 Actual Analysis Say testing B 4 by querying 2-d subspace. Let C a = {f f line B for coordinate parallel line, and line in direction a} B 4 = a C a ; C a not a tensor code, but modification of tensor analysis works! a C a B 4 is still an error-correcting code. So δ Ca f, δ Cb f small δ Ca C b f small! Putting things together Theorem 2. 09/02/2015 CMSA: Low-degree Testing 23

24 Wrapping up Low-degree testing: Basic, easy to state, problem. Quite useful in complexity, combinatorics. Powerful theorems known. Other connections? 09/02/2015 CMSA: Low-degree Testing 24

25 Thank You! 09/02/2015 CMSA: Low-degree Testing 25

26 (Appendix) References Page 7 Manuel Blum, Michael Luby, Ronitt Rubinfeld: Self-Testing/Correcting with Applications to Numerical Problems. J. Comput. Syst. Sci. 47(3): (1993) Mihir Bellare, Don Coppersmith, Johan Håstad, Marcos A. Kiwi, Madhu Sudan: Linearity testing in characteristic two. IEEE Transactions on Information Theory 42(6): (1996) Page 9 (See references in survey below) Probabilistically Checkable Proofs, Madhu Sudan. Communications of the ACM, 52(3):76-84, March Page 14 Optimal testing of Reed-Muller codes. Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David Zuckerman. Electronic Colloquium on Computational Complexity, Technical Report TR , October 2, Optimal testing of multivariate polynomials over small prime fields. Elad Haramaty, Amir Shpilka, and Madhu Sudan. SIAM Journal on Computing, 42(2): , April Absolutely Sound Testing of Lifted Codes. Elad Haramaty, Noga Ron-Zewi and Madhu Sudan. Electronic Colloquium on Computational Complexity, Technical Report TR , February 20, Alan Guo, Elad Haramaty, Madhu Sudan: Robust testing of lifted codes with applications to low-degree testing. Electronic Colloquium on Computational Complexity (ECCC) 22: 43 (2015) Ran Raz, Shmuel Safra: A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant Error-Probability PCP Characterization of NP. STOC 1997: /02/2015 CMSA: Low-degree Testing 26

Two Decades of Property Testing

Two Decades of Property Testing Two Decades of Property Testing Madhu Sudan Microsoft Research 12/09/2014 Invariance in Property Testing @MIT 1 of 29 Kepler s Big Data Problem Tycho Brahe (~1550-1600): Wished to measure planetary motion

More information

Two Decades of Property Testing Madhu Sudan Harvard

Two Decades of Property Testing Madhu Sudan Harvard Two Decades of Property Testing Madhu Sudan Harvard April 8, 2016 Two Decades of Property Testing 1 of 29 Kepler s Big Data Problem Tycho Brahe (~1550-1600): Wished to measure planetary motion accurately.

More information

Property Testing and Affine Invariance Part I Madhu Sudan Harvard University

Property Testing and Affine Invariance Part I Madhu Sudan Harvard University Property Testing and Affine Invariance Part I Madhu Sudan Harvard University December 29-30, 2015 IITB: Property Testing & Affine Invariance 1 of 31 Goals of these talks Part I Introduce Property Testing

More information

Testing Affine-Invariant Properties

Testing Affine-Invariant Properties Testing Affine-Invariant Properties Madhu Sudan Microsoft Surveys: works with/of Eli Ben-Sasson, Elena Grigorescu, Tali Kaufman, Shachar Lovett, Ghid Maatouk, Amir Shpilka. May 23-28, 2011 Bertinoro: Testing

More information

A New Upper Bound on the Query Complexity for Testing Generalized Reed-Muller codes

A New Upper Bound on the Query Complexity for Testing Generalized Reed-Muller codes A New Upper Bound on the Query Complexity for Testing Generalized Reed-Muller codes Noga Ron-Zewi 1 and Madhu Sudan 2 1 Department of Computer Science, Technion, Haifa. nogaz@cs.technion.ac.il 2 Microsoft

More information

Reed-Muller testing and approximating small set expansion & hypergraph coloring

Reed-Muller testing and approximating small set expansion & hypergraph coloring Reed-Muller testing and approximating small set expansion & hypergraph coloring Venkatesan Guruswami Carnegie Mellon University (Spring 14 @ Microsoft Research New England) 2014 Bertinoro Workshop on Sublinear

More information

Lecture 5: Derandomization (Part II)

Lecture 5: Derandomization (Part II) CS369E: Expanders May 1, 005 Lecture 5: Derandomization (Part II) Lecturer: Prahladh Harsha Scribe: Adam Barth Today we will use expanders to derandomize the algorithm for linearity test. Before presenting

More information

Invariance in Property Testing

Invariance in Property Testing Invariance in Property Testing Madhu Sudan Microsoft Research Based on: works with/of Eli Ben-Sasson, Elena Grigorescu, Tali Kaufman, Shachar Lovett, Ghid Maatouk, Amir Shpilka. February 22, 2012 Invariance

More information

A Self-Tester for Linear Functions over the Integers with an Elementary Proof of Correctness

A Self-Tester for Linear Functions over the Integers with an Elementary Proof of Correctness A Self-Tester for Linear Functions over the Integers with an Elementary Proof of Correctness The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Low-Degree Polynomials

Low-Degree Polynomials Low-Degree Polynomials Madhu Sudan Harvard University October 7, 2016 Avi60!! Low-degree Polynomials 1 of 27 October 7, 2016 Avi60!! Low-degree Polynomials 2 of 27 Happy Birthday, Avi!! October 7, 2016

More information

Algebraic Codes and Invariance

Algebraic Codes and Invariance Algebraic Codes and Invariance Madhu Sudan Harvard April 30, 2016 AAD3: Algebraic Codes and Invariance 1 of 29 Disclaimer Very little new work in this talk! Mainly: Ex- Coding theorist s perspective on

More information

Optimal testing of Reed-Muller codes

Optimal testing of Reed-Muller codes Optimal testing of Reed-Muller codes Arnab Bhattacharyya Swastik Kopparty Grant Schoenebeck Madhu Sudan David Zuckerman October 2, 2009 Abstract We consider the problem of testing if a given function f

More information

Locality in Coding Theory

Locality in Coding Theory Locality in Coding Theory Madhu Sudan Harvard April 9, 2016 Skoltech: Locality in Coding Theory 1 Error-Correcting Codes (Linear) Code CC FF qq nn. FF qq : Finite field with qq elements. nn block length

More information

Sublinear Algorithms Lecture 3

Sublinear Algorithms Lecture 3 Sublinear Algorithms Lecture 3 Sofya Raskhodnikova Penn State University Thanks to Madhav Jha (Penn State) for help with creating these slides. Tentative Plan Lecture. Background. Testing properties of

More information

Local Decoding and Testing Polynomials over Grids

Local Decoding and Testing Polynomials over Grids Local Decoding and Testing Polynomials over Grids Madhu Sudan Harvard University Joint work with Srikanth Srinivasan (IIT Bombay) January 11, 2018 ITCS: Polynomials over Grids 1 of 12 DeMillo-Lipton-Schwarz-Zippel

More information

Lecture Notes on Linearity (Group Homomorphism) Testing

Lecture Notes on Linearity (Group Homomorphism) Testing Lecture Notes on Linearity (Group Homomorphism) Testing Oded Goldreich April 5, 2016 Summary: These notes present a linearity tester that, on input a description of two groups G,H and oracle access to

More information

The Tensor Product of Two Codes is Not Necessarily Robustly Testable

The Tensor Product of Two Codes is Not Necessarily Robustly Testable The Tensor Product of Two Codes is Not Necessarily Robustly Testable Paul Valiant Massachusetts Institute of Technology pvaliant@mit.edu Abstract. There has been significant interest lately in the task

More information

Testing Low-Degree Polynomials over GF (2)

Testing Low-Degree Polynomials over GF (2) Testing Low-Degree Polynomials over GF (2) Noga Alon Tali Kaufman Michael Krivelevich Simon Litsyn Dana Ron July 9, 2003 Abstract We describe an efficient randomized algorithm to test if a given binary

More information

Building Assignment Testers DRAFT

Building Assignment Testers DRAFT Building Assignment Testers DRAFT Andrew Drucker University of California, San Diego Abstract In this expository paper, we show how to construct Assignment Testers using the Hadamard and quadratic encodings.

More information

Lecture 6. k+1 n, wherein n =, is defined for a given

Lecture 6. k+1 n, wherein n =, is defined for a given (67611) Advanced Topics in Complexity: PCP Theory November 24, 2004 Lecturer: Irit Dinur Lecture 6 Scribe: Sharon Peri Abstract In this lecture we continue our discussion of locally testable and locally

More information

2-Transitivity is Insufficient for Local Testability

2-Transitivity is Insufficient for Local Testability 2-Transitivity is Insufficient for Local Testability Elena Grigorescu MIT CSAIL elena g@mit.edu Tali Kaufman MIT & IAS kaufmant@mit.edu Madhu Sudan MIT CSAIL madhu@mit.edu Abstract A basic goal in Property

More information

Almost transparent short proofs for NP R

Almost transparent short proofs for NP R Brandenburgische Technische Universität, Cottbus, Germany From Dynamics to Complexity: A conference celebrating the work of Mike Shub Toronto, May 10, 2012 Supported by DFG under GZ:ME 1424/7-1 Outline

More information

Succinct Representation of Codes with Applications to Testing

Succinct Representation of Codes with Applications to Testing Succinct Representation of Codes with Applications to Testing Elena Grigorescu 1, Tali Kaufman 1, and Madhu Sudan 2 1 MIT, Cambridge, MA, USA, {elena g,kaufmant}@mit.edu 2 Microsoft Research, Cambridge,

More information

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction U.C. Berkeley Handout N2 CS294: PCP and Hardness of Approximation January 23, 2006 Professor Luca Trevisan Scribe: Luca Trevisan Notes for Lecture 2 These notes are based on my survey paper [5]. L.T. Statement

More information

Finite fields, randomness and complexity. Swastik Kopparty Rutgers University

Finite fields, randomness and complexity. Swastik Kopparty Rutgers University Finite fields, randomness and complexity Swastik Kopparty Rutgers University This talk Three great problems: Polynomial factorization Epsilon-biased sets Function uncorrelated with low-degree polynomials

More information

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Moses Charikar Konstantin Makarychev Yury Makarychev Princeton University Abstract In this paper we present approximation algorithms

More information

Learning and Fourier Analysis

Learning and Fourier Analysis Learning and Fourier Analysis Grigory Yaroslavtsev http://grigory.us CIS 625: Computational Learning Theory Fourier Analysis and Learning Powerful tool for PAC-style learning under uniform distribution

More information

Tolerant Versus Intolerant Testing for Boolean Properties

Tolerant Versus Intolerant Testing for Boolean Properties Tolerant Versus Intolerant Testing for Boolean Properties Eldar Fischer Faculty of Computer Science Technion Israel Institute of Technology Technion City, Haifa 32000, Israel. eldar@cs.technion.ac.il Lance

More information

Tolerant Versus Intolerant Testing for Boolean Properties

Tolerant Versus Intolerant Testing for Boolean Properties Electronic Colloquium on Computational Complexity, Report No. 105 (2004) Tolerant Versus Intolerant Testing for Boolean Properties Eldar Fischer Lance Fortnow November 18, 2004 Abstract A property tester

More information

Linear-algebraic pseudorandomness: Subspace Designs & Dimension Expanders

Linear-algebraic pseudorandomness: Subspace Designs & Dimension Expanders Linear-algebraic pseudorandomness: Subspace Designs & Dimension Expanders Venkatesan Guruswami Carnegie Mellon University Simons workshop on Proving and Using Pseudorandomness March 8, 2017 Based on a

More information

With P. Berman and S. Raskhodnikova (STOC 14+). Grigory Yaroslavtsev Warren Center for Network and Data Sciences

With P. Berman and S. Raskhodnikova (STOC 14+). Grigory Yaroslavtsev Warren Center for Network and Data Sciences L p -Testing With P. Berman and S. Raskhodnikova (STOC 14+). Grigory Yaroslavtsev Warren Center for Network and Data Sciences http://grigory.us Property Testing [Goldreich, Goldwasser, Ron; Rubinfeld,

More information

PSRGs via Random Walks on Graphs

PSRGs via Random Walks on Graphs Spectral Graph Theory Lecture 11 PSRGs via Random Walks on Graphs Daniel A. Spielman October 3, 2012 11.1 Overview There has been a lot of work on the design of Pseudo-Random Number Generators (PSRGs)

More information

Low Rate Is Insufficient for Local Testability

Low Rate Is Insufficient for Local Testability Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 4 (200) Low Rate Is Insufficient for Local Testability Eli Ben-Sasson Michael Viderman Computer Science Department Technion Israel

More information

Towards the Sliding Scale Conjecture (Old & New PCP constructions)

Towards the Sliding Scale Conjecture (Old & New PCP constructions) Towards the Sliding Scale Conjecture (Old & New PCP constructions) Prahladh Harsha TIFR [Based on joint works with Irit Dinur & Guy Kindler] Outline Intro, Background & Context Goals and questions in this

More information

Lecture 16: Constraint Satisfaction Problems

Lecture 16: Constraint Satisfaction Problems A Theorist s Toolkit (CMU 18-859T, Fall 2013) Lecture 16: Constraint Satisfaction Problems 10/30/2013 Lecturer: Ryan O Donnell Scribe: Neal Barcelo 1 Max-Cut SDP Approximation Recall the Max-Cut problem

More information

Improved low-degree testing and its applications

Improved low-degree testing and its applications Improved low-degree testing and its applications Sanjeev Arora Princeton University Madhu Sudan y IBM T. J. Watson Research Center Abstract NP = PCP(log n; ) and related results crucially depend upon the

More information

Highly resilient correctors for polynomials

Highly resilient correctors for polynomials Highly resilient correctors for polynomials Peter Gemmell Madhu Sudan Abstract We consider the problem of correcting programs that compute multivariate polynomials over large finite fields and give an

More information

High-rate Locally-testable Codes with Quasi-polylogarithmic Query Complexity

High-rate Locally-testable Codes with Quasi-polylogarithmic Query Complexity High-rate Locally-testable Codes with Quasi-polylogarithmic Query Complexity Swastik Kopparty, Or Meir, Noga Ron-Zewi, Shubhangi Saraf September 5, 205 Abstract An error correcting code is said to be locally

More information

Two Query PCP with Sub-Constant Error

Two Query PCP with Sub-Constant Error Electronic Colloquium on Computational Complexity, Report No 71 (2008) Two Query PCP with Sub-Constant Error Dana Moshkovitz Ran Raz July 28, 2008 Abstract We show that the N P-Complete language 3SAT has

More information

On Sums of Locally Testable Affine Invariant Properties

On Sums of Locally Testable Affine Invariant Properties On Sums of Locally Testable Affine Invariant Properties Eli Ben-Sasson, Elena Grigorescu, Ghid Maatouk, Amir Shpilka, and Madhu Sudan Abstract. Affine-invariant properties are an abstract class of properties

More information

Algebraic Property Testing: The Role of Invariance

Algebraic Property Testing: The Role of Invariance Algebraic Property Testing: The Role of Invariance Tali Kaufman Madhu Sudan November 2, 2007 Abstract We argue that the symmetries of a property being tested play a central role in property testing. We

More information

Advanced Algorithms (XIII) Yijia Chen Fudan University

Advanced Algorithms (XIII) Yijia Chen Fudan University Advanced Algorithms (XIII) Yijia Chen Fudan University The PCP Theorem Theorem NP = PCP(log n, 1). Motivation Approximate solutions Definition (Approximation of MAX-3SAT) For every 3CNF formula ϕ, the

More information

Probabilistically Checkable Proofs

Probabilistically Checkable Proofs Probabilistically Checkable Proofs Madhu Sudan Microsoft Research June 11, 2015 TIFR: Probabilistically Checkable Proofs 1 Can Proofs be Checked Efficiently? The Riemann Hypothesis is true (12 th Revision)

More information

Sub-Constant Error Low Degree Test of Almost Linear Size

Sub-Constant Error Low Degree Test of Almost Linear Size Sub-Constant rror Low Degree Test of Almost Linear Size Dana Moshkovitz Ran Raz March 9, 2006 Abstract Given a function f : F m F over a finite field F, a low degree tester tests its agreement with an

More information

List-decoding algorithms for lifted codes

List-decoding algorithms for lifted codes List-decoding algorithms for lifted codes Alan Guo Swastik Kopparty March 2, 2016 Abstract Lifted Reed-Solomon codes are a natural affine-invariant family of error-correcting codes which generalize Reed-Muller

More information

ALL codes discussed in this paper are linear. We study. Locally Testable Cyclic Codes. László Babai, Amir Shpilka, and Daniel Štefankovič

ALL codes discussed in this paper are linear. We study. Locally Testable Cyclic Codes. László Babai, Amir Shpilka, and Daniel Štefankovič Locally Testable Cyclic Codes László Babai, Amir Shpilka, and Daniel Štefankovič Abstract Cyclic linear codes of block length over a finite field are linear subspaces of that are invariant under a cyclic

More information

Alan Xinyu Guo. at the. February A uthor , x... Department of Electrical Engineering and Computer Science December 12, 2012

Alan Xinyu Guo. at the. February A uthor , x... Department of Electrical Engineering and Computer Science December 12, 2012 Some closure features of locally testable affine-invariant properties ARCHMEs by Alan Xinyu Guo B.S. in Mathematics, Duke University (2011) Submitted to the Department of Electrical Engineering and Computer

More information

Affine extractors over large fields with exponential error

Affine extractors over large fields with exponential error Affine extractors over large fields with exponential error Jean Bourgain Zeev Dvir Ethan Leeman Abstract We describe a construction of explicit affine extractors over large finite fields with exponentially

More information

Key words. Affine/cyclic invariance, BCH codes, locally-testable codes, single orbit.

Key words. Affine/cyclic invariance, BCH codes, locally-testable codes, single orbit. SUCCICT REPRESETATIO OF CODES WITH APPLICATIOS TO TESTIG ELEA GRIGORESCU, TALI KAUFMA, AD MADHU SUDA Abstract. Motivated by questions in property testing, we search for linear error-correcting codes that

More information

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14 6.841/18.405J: Advanced Complexity Wednesday, April 2, 2003 Lecture Lecture 14 Instructor: Madhu Sudan In this lecture we cover IP = PSPACE Interactive proof for straightline programs. Straightline program

More information

Cube vs. Cube Low Degree Test

Cube vs. Cube Low Degree Test Cube vs Cube Low Degree Test Amey Bhangale 1, Irit Dinur 2, and Inbal Livni Navon 3 1 Department of Computer Science, Rutgers University, Piscataway, USA ameybhangale@rutgersedu 2 Faculty of Computer Science

More information

Succinct Representation of Codes with Applications to Testing

Succinct Representation of Codes with Applications to Testing Succinct Representation of Codes with Applications to Testing Elena Grigorescu elena-g@purdue.edu Tali Kaufman kaufmant@mit.edu February 4, 2013 Madhu Sudan madhu@mit.edu Abstract Motivated by questions

More information

Improved Hardness of Approximating Chromatic Number

Improved Hardness of Approximating Chromatic Number Improved Hardness of Approximating Chromatic Number Sangxia Huang KTH Royal Institute of Technology Stockholm, Sweden sangxia@csc.kth.se April 13, 2013 Abstract We prove that for sufficiently large K,

More information

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science April 18, 2016 Lecturer: Ola Svensson Lecture 8 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Testing Linear-Invariant Non-Linear Properties

Testing Linear-Invariant Non-Linear Properties Testing Linear-Invariant Non-Linear Properties Arnab Bhattacharyya Victor Chen Madhu Sudan Ning Xie Abstract We consider the task of testing properties of Boolean functions that are invariant under linear

More information

Lecture 2: January 18

Lecture 2: January 18 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 2: January 18 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Quasi-Random PCP and Hardness of 2-Catalog Segmentation

Quasi-Random PCP and Hardness of 2-Catalog Segmentation Quasi-Random PCP and Hardness of 2-Catalog Segmentation Rishi Saket Carnegie Mellon University rsaket@cs.cmu.edu ABSTRACT. We study the problem of 2-Catalog Segmentation which is one of the several variants

More information

CS369E: Communication Complexity (for Algorithm Designers) Lecture #8: Lower Bounds in Property Testing

CS369E: Communication Complexity (for Algorithm Designers) Lecture #8: Lower Bounds in Property Testing CS369E: Communication Complexity (for Algorithm Designers) Lecture #8: Lower Bounds in Property Testing Tim Roughgarden March 12, 2015 1 Property Testing We begin in this section with a brief introduction

More information

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing Afonso S. Bandeira April 9, 2015 1 The Johnson-Lindenstrauss Lemma Suppose one has n points, X = {x 1,..., x n }, in R d with d very

More information

NP-hardness of coloring 2-colorable hypergraph with poly-logarithmically many colors

NP-hardness of coloring 2-colorable hypergraph with poly-logarithmically many colors Electronic Colloquium on Computational Complexity, Report No. 73 (2018) NP-hardness of coloring 2-colorable with poly-logarithmically many colors Amey Bhangale April 21, 2018 Abstract We give very short

More information

Lecture 16 November 6th, 2012 (Prasad Raghavendra)

Lecture 16 November 6th, 2012 (Prasad Raghavendra) 6.841: Advanced Complexity Theory Fall 2012 Lecture 16 November 6th, 2012 (Prasad Raghavendra) Prof. Dana Moshkovitz Scribe: Geng Huang 1 Overview In this lecture, we will begin to talk about the PCP Theorem

More information

Self-Testing Polynomial Functions Efficiently and over Rational Domains

Self-Testing Polynomial Functions Efficiently and over Rational Domains Chapter 1 Self-Testing Polynomial Functions Efficiently and over Rational Domains Ronitt Rubinfeld Madhu Sudan Ý Abstract In this paper we give the first self-testers and checkers for polynomials over

More information

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany Santaló s Summer School, Part 3, July, 2012 joint work with Martijn Baartse (work supported by DFG, GZ:ME 1424/7-1) Outline 1 Introduction 2 Long transparent proofs for NP R 3 The real PCP theorem First

More information

On Axis-Parallel Tests for Tensor Product Codes

On Axis-Parallel Tests for Tensor Product Codes Electronic Colloquium on Computational Complexity, Report No. 110 (2017) On Axis-Parallel Tests for Tensor Product Codes Alessandro Chiesa alexch@berkeley.edu UC Berkeley Peter Manohar manohar@berkeley.edu

More information

Higher-order Fourier Analysis and Applications

Higher-order Fourier Analysis and Applications Higher-order Fourier Analysis and Applications Hamed Hatami 1 Pooya Hatami 2 Shachar Lovett 3 April 17, 2018 1 McGill University. hatami@cs.mcgill.ca 2 UT Austin pooyahat@gmail.com 3 UC San Diego lovett@cs.ucsd.edu

More information

The Complexity of the Matroid-Greedoid Partition Problem

The Complexity of the Matroid-Greedoid Partition Problem The Complexity of the Matroid-Greedoid Partition Problem Vera Asodi and Christopher Umans Abstract We show that the maximum matroid-greedoid partition problem is NP-hard to approximate to within 1/2 +

More information

Approximation & Complexity

Approximation & Complexity Summer school on semidefinite optimization Approximation & Complexity David Steurer Cornell University Part 1 September 6, 2012 Overview Part 1 Unique Games Conjecture & Basic SDP Part 2 SDP Hierarchies:

More information

Noisy Interpolating Sets for Low Degree Polynomials

Noisy Interpolating Sets for Low Degree Polynomials Noisy Interpolating Sets for Low Degree Polynomials Zeev Dvir Amir Shpilka Abstract A Noisy Interpolating Set (NIS) for degree d polynomials is a set S F n, where F is a finite field, such that any degree

More information

Locally Testable Codes Require Redundant Testers

Locally Testable Codes Require Redundant Testers Locally Testable Codes Require Redundant Testers Eli Ben-Sasson Dept. of Computer Science Technion Haifa 32000, Israel eli@cs.technion.ac.il Tali Kaufman Dept. of Computer Science and Applied Mathematics

More information

Lecture 10 + additional notes

Lecture 10 + additional notes CSE533: Information Theorn Computer Science November 1, 2010 Lecturer: Anup Rao Lecture 10 + additional notes Scribe: Mohammad Moharrami 1 Constraint satisfaction problems We start by defining bivariate

More information

Lecture 15: A Brief Look at PCP

Lecture 15: A Brief Look at PCP IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 15: A Brief Look at PCP David Mix Barrington and Alexis Maciel August 4, 2000 1. Overview

More information

Symmetric LDPC codes are not necessarily locally testable

Symmetric LDPC codes are not necessarily locally testable Symmetric LDPC codes are not necessarily locally testable Eli Ben-Sasson Ghid Maatouk Amir Shpilka Madhu Sudan Abstract Locally testable codes, i.e., codes where membership in the code is testable with

More information

Probabilistically Checkable Proofs Over the Reals

Probabilistically Checkable Proofs Over the Reals Electronic Notes in Theoretical Computer Science 123 (2005) 165 177 www.elsevier.com/locate/entcs Probabilistically Checkable Proofs Over the Reals Klaus Meer 1,2 Department of Mathematics and Computer

More information

Lecture 20: Course summary and open problems. 1 Tools, theorems and related subjects

Lecture 20: Course summary and open problems. 1 Tools, theorems and related subjects CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 20: Course summary and open problems Dec. 7, 2005 Lecturer: Ryan O Donnell Scribe: Ioannis Giotis Topics we discuss in this

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at 16th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2013 and

More information

Robust local testability of tensor products of LDPC codes

Robust local testability of tensor products of LDPC codes Robust local testability of tensor products of LDPC codes Irit Dinur 1, Madhu Sudan, and Avi Wigderson 3 1 Hebrew University, Jerusalem, Israel. dinuri@cs.huji.ac.il Massachusetts Institute of Technology,

More information

Approximating MAX-E3LIN is NP-Hard

Approximating MAX-E3LIN is NP-Hard Approximating MAX-E3LIN is NP-Hard Evan Chen May 4, 2016 This lecture focuses on the MAX-E3LIN problem. We prove that approximating it is NP-hard by a reduction from LABEL-COVER. 1 Introducing MAX-E3LIN

More information

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell Lower bounds on the size of semidefinite relaxations David Steurer Cornell James R. Lee Washington Prasad Raghavendra Berkeley Institute for Advanced Study, November 2015 overview of results unconditional

More information

Poly-logarithmic independence fools AC 0 circuits

Poly-logarithmic independence fools AC 0 circuits Poly-logarithmic independence fools AC 0 circuits Mark Braverman Microsoft Research New England January 30, 2009 Abstract We prove that poly-sized AC 0 circuits cannot distinguish a poly-logarithmically

More information

Electronic Colloquium on Computational Complexity, Report No. 17 (1999)

Electronic Colloquium on Computational Complexity, Report No. 17 (1999) Electronic Colloquium on Computational Complexity, Report No. 17 (1999) Improved Testing Algorithms for Monotonicity Yevgeniy Dodis Oded Goldreich y Eric Lehman z Sofya Raskhodnikova x Dana Ron { Alex

More information

Local correctability of expander codes

Local correctability of expander codes Local correctability of expander codes Brett Hemenway Rafail Ostrovsky Mary Wootters IAS April 4, 24 The point(s) of this talk Locally decodable codes are codes which admit sublinear time decoding of small

More information

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Eclipses and Forces Jan 21, 2004 1) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Review Lots of motion The Moon revolves around the Earth Eclipses Solar Lunar the Sun, Earth and Moon must all be

More information

Approximability of Dense Instances of Nearest Codeword Problem

Approximability of Dense Instances of Nearest Codeword Problem Approximability of Dense Instances of Nearest Codeword Problem Cristina Bazgan 1, W. Fernandez de la Vega 2, Marek Karpinski 3 1 Université Paris Dauphine, LAMSADE, 75016 Paris, France, bazgan@lamsade.dauphine.fr

More information

Multi-Linearity Self-Testing with Relative Error

Multi-Linearity Self-Testing with Relative Error Theory of Computing Systems manuscript No (will be inserted by the editor) Multi-Linearity Self-Testing with Relative Error Frédéric Magniez CNRS LRI, Université Paris Sud, 91405 Orsay, France, e-mail:

More information

Tight Lower Bounds for Testing Linear Isomorphism

Tight Lower Bounds for Testing Linear Isomorphism Tight Lower Bounds for Testing Linear Isomorphism Elena Grigorescu Karl Wimmer Ning Xie Abstract We study lower bounds for testing membership in families of linear/affine-invariant Boolean functions over

More information

Lecture 17 November 8, 2012

Lecture 17 November 8, 2012 6.841: Advanced Complexity Theory Fall 2012 Prof. Dana Moshkovitz Lecture 17 November 8, 2012 Scribe: Mark Bun 1 Overview In the previous lecture, we saw an overview of probabilistically checkable proofs,

More information

Symmetric LDPC codes are not necessarily locally testable

Symmetric LDPC codes are not necessarily locally testable Symmetric LDPC codes are not necessarily locally testable Eli Ben-Sasson, Ghid Maatouk, Amir Shpilka, and Madhu Sudan Faculty of Computer Science, Technion, Haifa, Israel, eli,shpilka@cs.technion.ac.il

More information

Basic Probabilistic Checking 3

Basic Probabilistic Checking 3 CS294: Probabilistically Checkable and Interactive Proofs February 21, 2017 Basic Probabilistic Checking 3 Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Izaak Meckler Today we prove the following

More information

Tutorial: Locally decodable codes. UT Austin

Tutorial: Locally decodable codes. UT Austin Tutorial: Locally decodable codes Anna Gál UT Austin Locally decodable codes Error correcting codes with extra property: Recover (any) one message bit, by reading only a small number of codeword bits.

More information

Noisy Interpolating Sets for Low Degree Polynomials

Noisy Interpolating Sets for Low Degree Polynomials Noisy Interpolating Sets for Low Degree Polynomials Zeev Dvir Amir Shpilka Abstract A Noisy Interpolating Set (NIS) for degree-d polynomials is a set S F n, where F is a finite field, such that any degree-d

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Lecture 28: A Computational Lens on Proofs December 6th, 2016 Evolution of proof First there was GORM GORM = Good Old Regular Mathematics Pythagoras s

More information

7 Study Guide. Gravitation Vocabulary Review

7 Study Guide. Gravitation Vocabulary Review Date Period Name CHAPTER 7 Study Guide Gravitation Vocabulary Review Write the term that correctly completes the statement. Use each term once. Kepler s second law Newton s law of universal gravitation

More information

A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems Yuichi Yoshida National Institute of Informatics and Preferred Infrastructure, Inc June 1, 2014 Yuichi Yoshida

More information

Today. Few Comments. PCP Theorem, Simple proof due to Irit Dinur [ECCC, TR05-046]! Based on some ideas promoted in [Dinur- Reingold 04].

Today. Few Comments. PCP Theorem, Simple proof due to Irit Dinur [ECCC, TR05-046]! Based on some ideas promoted in [Dinur- Reingold 04]. Today Few Comments PCP Theorem, Simple proof due to Irit Dinur [ECCC, TR05-046]! Based on some ideas promoted in [Dinur- Reingold 04]. Remarkably simple novel proof. Leads to new quantitative results too!

More information

Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs

Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs Colleen M. Swanson Computer Science & Engineering Division University of Michigan Ann Arbor, MI 48109,

More information

On the Fourier spectrum of symmetric Boolean functions

On the Fourier spectrum of symmetric Boolean functions On the Fourier spectrum of symmetric Boolean functions Amir Shpilka Technion and MSR NE Based on joint work with Avishay Tal 1 Theme: Analysis of Boolean functions Pick favorite representation: Fourier

More information

A list-decodable code with local encoding and decoding

A list-decodable code with local encoding and decoding A list-decodable code with local encoding and decoding Marius Zimand Towson University Department of Computer and Information Sciences Baltimore, MD http://triton.towson.edu/ mzimand Abstract For arbitrary

More information

Approximation Resistance from Pairwise Independent Subgroups

Approximation Resistance from Pairwise Independent Subgroups 1/19 Approximation Resistance from Pairwise Independent Subgroups Siu On Chan UC Berkeley 2/19 Max-CSP Goal: Satisfy the maximum fraction of constraints Examples: 1 MAX-3XOR: x 1 + x 10 + x 27 = 1 x 4

More information

Notice that lemma 4 has nothing to do with 3-colorability. To obtain a better result for 3-colorable graphs, we need the following observation.

Notice that lemma 4 has nothing to do with 3-colorability. To obtain a better result for 3-colorable graphs, we need the following observation. COMPSCI 632: Approximation Algorithms November 1, 2017 Lecturer: Debmalya Panigrahi Lecture 18 Scribe: Feng Gui 1 Overview In this lecture, we examine graph coloring algorithms. We first briefly discuss

More information

LUCK S THEOREM ALEX WRIGHT

LUCK S THEOREM ALEX WRIGHT LUCK S THEOREM ALEX WRIGHT Warning: These are the authors personal notes for a talk in a learning seminar (October 2015). There may be incorrect or misleading statements. Corrections welcome. 1. Convergence

More information