Advanced Algorithms (XIII) Yijia Chen Fudan University

Size: px
Start display at page:

Download "Advanced Algorithms (XIII) Yijia Chen Fudan University"

Transcription

1 Advanced Algorithms (XIII) Yijia Chen Fudan University

2 The PCP Theorem Theorem NP = PCP(log n, 1).

3 Motivation

4 Approximate solutions Definition (Approximation of MAX-3SAT) For every 3CNF formula ϕ, the value of ϕ Thus val(ϕ) := # clauses in ϕ satisfied by z max assignment z # clauses in ϕ ϕ is satisfiable val(ϕ) = 1. For every ρ 1, an algorithm A is a ρ-approximation algorithm for MAX-3SAT if for every 3CNF formula ϕ with m clauses, A(ϕ) outputs an assignment satisfying at least ρ val(ϕ) m of ϕ s clauses.

5 1/2-Approximation for MAX-3SAT The algorithm assigns values to the variables one by one in a greedy fashion, whereby the ith variable is assigned the value that results in satisfying at least 1/2 the clauses in which it appears.

6 The minimum vertex cover problem MIN-VERTEX-COVER Input: A graph G = (V, E). Solution: S V with S e for every e E. Cost: S. Goal: max. For ρ 1, a ρ-approximation algorithm for MIN-VERTEX-COVER is an algorithm that on input a graph G outputs a vertex cover whose size is at most 1/ρ times the size of the minimum vertex cover.

7 1/2-Approximation for MIN-VERTEX-COVER 1. Start with S. 2. Pick any edge e = {u, v}. 3. S S {u, v}. 4. Delete u, v, and all edges adjacent to them. 5. If the graph is not empty, then goto 2, else output S.

8 Two Views of the PCP Theorem

9 New, extremely robust proof systems. Approximating combinatorial optimization problems.

10 Let A be any one of the usual axiomatic systems of mathematics for which proofs can be verified by a deterministic TM in time that is polynomial in the length of the proof. Then L = { ϕ, 1 n ϕ has a proof in A of length n }. The PCP Theorem asserts that L has probabilistically checkable certificates: proofs are probabilistically checkable by examining only a constant number of bits in them.

11 A standard definition of NP L NP if there is a polynomial time Turing machine V that, given input x, checks certificates (or membership proofs) to the effect that x L: x L = πv π (x) = 1 x / L = πv π (x) = 0, where V π denotes a verifier with access to certificate π.

12 PCP Definition Let L be a language and q, r : N N. We say that L has an (r(n), q(n))-pcp verifier if there is a polynomial time probabilistic algorithm V satisfying: 1. Efficiency: On input x {0, 1} n and given random access to a string π {0, 1} of length at most q(n)2 r(n), V uses at most r(n) random coins and makes at most q(n) nonadaptive queries to locations of π. 2. Completeness: If x L, then there exists a proof π {0, 1} with Pr [ V π (x) = 1 ] = Soundness: If x / L then for every proof π {0, 1}, Pr [ V π (x) = 1 ] 1/2.

13 PCP ( r(n), q(n) ) Definition L PCP ( r(n), q(n) ) if there are some constants c, d > 0 such that L has a (c r(n), d q(n))-pcp verifier. Theorem NP = PCP(log n, 1).

14 Remarks 1. By the soundness, if x / L then the verifier has to reject every proof with probability at least 1/2, the most difficult part of the proof. 2. Proofs checkable by an (r, q)-verifier are of length at most q2 r, since such a verifier can look on at most this number of locations. 3. PCP ( r(n), q(n) ) ( ) NTIME 2 O(r(n)) q(n). 4. For different NP languages the (O(log n), O(1))-verifiers might use a different constant number of query bits. However, since every NP language is reducible to SAT, all these numbers can be upper bounded by the number of query bits required by a verifier for SAT. 5. The constant 1/2 in the soundness is arbitrary, in the sense that changing it to any other positive constant smaller than 1 will not change the class of languages defined. A PCP verifier with soundness 1/2 that uses r coins and makes q queries can be converted into a PCP verifier using cr coins and cq queries with soundness 2 c by just repeating its execution c times.

15 GNI PCP ( poly(n), 1 ) The graph non-isomorphism problem is defined as GNI = { (G 0, G 1) G0 and G 0 are two non-isomorphic graphs }. Assume G 0 and G 1 are both of n vertices. The proof π contains, for each graph H with n nodes, π(h) {0, 1} corresponding to whether H G 0 or H G 1, otherwise, arbitrary. The verifier randomly picks b {0, 1} and a permutation. She applies the permutation to G b to obtain an isomorphic graph H. Then she accepts iff π(h) = b. If G 0 G 1, then the correct π makes the verifier accept with probability 1. If G 1 G 2, then the probability that any π makes the verifier accept is at most 1/2.

16 Theorem NEXP = PCP ( poly(n), 1 ).

17 PCP and hardness of approximation Theorem PCP Theorem: Hardness of approximation view There exists ρ < 1 such that for every L NP there is a polynomial time function f mapping strings to (representations of) 3CNF formulas such that x L = val(f (x)) = 1 x / L = val(f (x)) < ρ. Corollary There exists some constant ρ < 1 such that if there is a polynomial time ρ-approximation algorithm for MAX-3SAT then P = NP.

18 Equivalence of the Two Views

19 Constraint satisfaction problems (CSP) Definition Let q N. Then a qcsp instance ϕ is a collection of functions ϕ 1,..., ϕ m (i.e., constraints) from {0, 1} n to {0, 1} such that each function ϕ i depends on at most q of its input locations: for every i [m] there exist j 1,..., j q [n] and f : {0, 1} q {0, 1} such that ϕ i (u) = f ( u j1,..., u jq ) for every u {0, 1} n. An assignment u {0, 1} n satisfies ϕ i if ϕ i (u) = 1. Let i [m] val(ϕ) = max ϕ i(m). u m ϕ is satisfiable if val(ϕ) = 1. We call q the arity of ϕ.

20 Remarks 1. The size of a qcsp-instance is the number of constraints it has. 2. We can always assume n qm. 3. A qcsp instance over n variables with m constraints can be described by a binary string of length O ( mq2 q log n ). 4. The simple greedy approximation algorithm for 3SAT can be generalized for the MAXqCSP problem of maximizing the number of satisfied constraints in a given qcsp instance. For any qcsp instance ϕ with m constraints, this algorithm will output an assignment satisfying val(ϕ)m/2 q constraints.

21 Gap CSP Definition Let q N and ρ 1. Then the ρ-gapqcsp is the problem of determining for a given qcsp-instance ϕ whether: 1. val(ϕ) = 1 (ϕ is a YES instance of ρ-gapqcsp), or 2. val(ϕ) < ρ (ϕ is a NO instance). ρ-gapqcsp is NP-hard if there is a polynomial time function f mapping strings to (representations of) qcsp instances satisfying: 1. Completeness: x L = val(f (x)) = Soundness: x / L = val(f (x)) ρ. Theorem There exist constants q N and ρ R with 0 < ρ < 1 such that ρ-gapqcsp is NP-hard.

22 Equivalence of the two views Theorem The following are equivalent. 1. NP = PCP(log n, 1). 2. There exist constants q N and ρ R with 0 < ρ < 1 such that ρ-gapqcsp is NP-hard.

23 PCP = GAP From NP PCP(log n, 1) we show 1/2-GAPqCSP is NP-hard for some q N. 3SAT has a verifier V which makes q queries and uses c log n random coins. Let x {0, 1} n and r {0, 1} c log n. Then V x,r is the function that on input π outputs 1 if V accepts π on input x and coins r. V x,r depends on at most q locations. Thus for every x {0, 1} n ϕ = { V x,r }r {0,1} c log n is a polynomial-sized qcsp instance. Since V runs in polynomial time, x ϕ is computable in polynomial time. By the completeness, if x 3SAT, then val(ϕ) = 1. By the soundness, if x / 3SAT, then val(ϕ) 1/2.

24 GAP = PCP Assume ρ-gapqcsp is NP-hard for some ρ < 1 and q N. Then this easily translates into a PCP with q queries, ρ soundness, and logarithmic randomness for any language L NP: Given an input x, the verifier V will run the reduction f (x) to obtain a qcsp instance ϕ = { ϕ i }i [m]. V expects π to be an assignment to the variables of ϕ, which it will verify by choosing a random i [m] and checking that ϕ i is satisfied (by making q queries). If x L, then the verifier will accept with probability 1. If x / L, it will accept with probability at most ρ.

25 NP PCP(poly(n), 1)

26 Walsh-Hadamard code The Walsh-Hadamard code encode bit strings of length n by linear functions in n variables over GF(2). Let u {0, 1} n. Then WH(u) = x u x = i [n] u i x i (mod2).

27 Random Subsum Principle Theorem Let u v. Then Pr x [ u x v x ] = 1/2.

28 Local testing of Walsh-Hadamard code Definition Let ρ R with 0 ρ 1. Two functions f, g : {0, 1} n {0, 1} are ρ-close if Pr x [ f (x) = g(x) ] ρ. f is ρ-close to a linear function if there exists a linear function g such that f and g are ρ-close. Theorem Let f : {0, 1} n {0, 1} be such that [ ] f (x + y) = f (x) + f (y) ρ Pr x,y for some ρ > 1/2. Then f is ρ-close to a linear function.

29 Local decoding of Walsh-Hadamard code Let δ < 1/4 and f : {0, 1} n {0, 1} be (1 δ)-close to some linear function f. Then f is uniquely determined. Suppose we are given x {0, 1} n and random access to f. Can we obtain the value f (x) using only a constant number of queries? 1. Choose x R {0, 1} n. 2. x x + x. 3. y f (x ) and y f (x ). 4. Output y + y. Lemma Pr [ f (x) = y + y ] 1 2δ.

30 Systems of quadratic equations over GF(2) (QUADEQ) Example The all one assignment satisfies u 1u 2 + u 3u 4 + u 1u 5 = 1 u 2u 3 + u 1u 4 = 0 u 1u 4 + u 3u 5 + u 3u 4 = 1. QUADEQ is the problem, given m n 2 matrix A and an m-dimensional vector b, of finding an n 2 -dimensional vector U satisfying 1. AU = b, 2. U is the tensor product u u of some n-dimensional vector u Lemma QUADEQ is NP-complete.

DRAFT. PCP and Hardness of Approximation. Chapter 19

DRAFT. PCP and Hardness of Approximation. Chapter 19 Chapter 19 PCP and Hardness of Approximation...most problem reductions do not create or preserve such gaps...to create such a gap in the generic reduction (cf. Cook)...also seems doubtful. The intuitive

More information

PCP Theorem and Hardness of Approximation

PCP Theorem and Hardness of Approximation PCP Theorem and Hardness of Approximation An Introduction Lee Carraher and Ryan McGovern Department of Computer Science University of Cincinnati October 27, 2003 Introduction Assuming NP P, there are many

More information

[PCP Theorem is] the most important result in complexity theory since Cook s Theorem. Ingo Wegener, 2005

[PCP Theorem is] the most important result in complexity theory since Cook s Theorem. Ingo Wegener, 2005 PCP Theorem [PCP Theorem is] the most important result in complexity theory since Cook s Theorem. Ingo Wegener, 2005 Computational Complexity, by Fu Yuxi PCP Theorem 1 / 88 S. Arora, C. Lund, R. Motwani,

More information

Lecture 18: PCP Theorem and Hardness of Approximation I

Lecture 18: PCP Theorem and Hardness of Approximation I Lecture 18: and Hardness of Approximation I Arijit Bishnu 26.04.2010 Outline 1 Introduction to Approximation Algorithm 2 Outline 1 Introduction to Approximation Algorithm 2 Approximation Algorithm Approximation

More information

1 Agenda. 2 History. 3 Probabilistically Checkable Proofs (PCPs). Lecture Notes Definitions. PCPs. Approximation Algorithms.

1 Agenda. 2 History. 3 Probabilistically Checkable Proofs (PCPs). Lecture Notes Definitions. PCPs. Approximation Algorithms. CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 20 April 12, 2010 Scribe: Jonathan Pines 1 Agenda. PCPs. Approximation Algorithms. PCPs = Inapproximability. 2 History. First, some history

More information

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science April 18, 2016 Lecturer: Ola Svensson Lecture 8 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction U.C. Berkeley Handout N2 CS294: PCP and Hardness of Approximation January 23, 2006 Professor Luca Trevisan Scribe: Luca Trevisan Notes for Lecture 2 These notes are based on my survey paper [5]. L.T. Statement

More information

Solution of Exercise Sheet 12

Solution of Exercise Sheet 12 Complexity Theory (fall 2016) Solution of Exercise Sheet 12 Dominique Unruh Problem 1: Deterministic PCPs PCP stands for probabilistically checkable proofs. We will now show that the probabilistic part

More information

Lecture 16 November 6th, 2012 (Prasad Raghavendra)

Lecture 16 November 6th, 2012 (Prasad Raghavendra) 6.841: Advanced Complexity Theory Fall 2012 Lecture 16 November 6th, 2012 (Prasad Raghavendra) Prof. Dana Moshkovitz Scribe: Geng Huang 1 Overview In this lecture, we will begin to talk about the PCP Theorem

More information

Non-Approximability Results (2 nd part) 1/19

Non-Approximability Results (2 nd part) 1/19 Non-Approximability Results (2 nd part) 1/19 Summary - The PCP theorem - Application: Non-approximability of MAXIMUM 3-SAT 2/19 Non deterministic TM - A TM where it is possible to associate more than one

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

Almost transparent short proofs for NP R

Almost transparent short proofs for NP R Brandenburgische Technische Universität, Cottbus, Germany From Dynamics to Complexity: A conference celebrating the work of Mike Shub Toronto, May 10, 2012 Supported by DFG under GZ:ME 1424/7-1 Outline

More information

Complexity Classes IV

Complexity Classes IV Complexity Classes IV NP Optimization Problems and Probabilistically Checkable Proofs Eric Rachlin 1 Decision vs. Optimization Most complexity classes are defined in terms of Yes/No questions. In the case

More information

PCP Theorem And Hardness Of Approximation For MAX-SATISFY Over Finite Fields

PCP Theorem And Hardness Of Approximation For MAX-SATISFY Over Finite Fields MM Research Preprints KLMM, AMSS, Academia Sinica Vol. 7, 1 15, July, 008 1 PCP Theorem And Hardness Of Approximation For MAX-SATISFY Over Finite Fields Shangwei Zhao Key Laboratory of Mathematics Mechanization

More information

Lecture 15: A Brief Look at PCP

Lecture 15: A Brief Look at PCP IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 15: A Brief Look at PCP David Mix Barrington and Alexis Maciel August 4, 2000 1. Overview

More information

1 Probabilistically checkable proofs

1 Probabilistically checkable proofs CSC 5170: Theory of Computational Complexity Lecture 12 The Chinese University of Hong Kong 12 April 2010 Interactive proofs were introduced as a generalization of the classical notion of a proof in the

More information

Complexity Classes V. More PCPs. Eric Rachlin

Complexity Classes V. More PCPs. Eric Rachlin Complexity Classes V More PCPs Eric Rachlin 1 Recall from last time Nondeterminism is equivalent to having access to a certificate. If a valid certificate exists, the machine accepts. We see that problems

More information

CS151 Complexity Theory. Lecture 15 May 22, 2017

CS151 Complexity Theory. Lecture 15 May 22, 2017 CS151 Complexity Theory Lecture 15 New topic(s) Optimization problems, Approximation Algorithms, and Probabilistically Checkable Proofs Optimization Problems many hard problems (especially NP-hard) are

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

DD2446 Complexity Theory: Problem Set 4

DD2446 Complexity Theory: Problem Set 4 DD2446 Complexity Theory: Problem Set 4 Due: Friday November 8, 2013, at 23:59. Submit your solutions as a PDF le by e-mail to jakobn at kth dot se with the subject line Problem set 4: your full name.

More information

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D;

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D; Interactive Proofs n x: read-only input finite σ: random bits control Π: Proof work tape Merlin-Arthur games (MA) [Babai] Decision problem: D; input string: x Merlin Prover chooses the polynomial-length

More information

Tool: Linearity Testing and the Walsh-Hadamard Code

Tool: Linearity Testing and the Walsh-Hadamard Code 11.5 NP PCP(poly(n), 1): PCPfromtheWalsh-Hadamardcode 215 compute this mapping. We call reductions with these properties Levin reductions (see the proof of Theorem 2.18). It is worthwhile to observe that

More information

Expander Graphs and Their Applications (X) Yijia Chen Shanghai Jiaotong University

Expander Graphs and Their Applications (X) Yijia Chen Shanghai Jiaotong University Expander Graphs and Their Applications (X) Yijia Chen Shanghai Jiaotong University Review of the Previous Lecture Probabilistic Verifier Definition A verifier V is a probabilistic polynomial time algorithm

More information

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14 6.841/18.405J: Advanced Complexity Wednesday, April 2, 2003 Lecture Lecture 14 Instructor: Madhu Sudan In this lecture we cover IP = PSPACE Interactive proof for straightline programs. Straightline program

More information

CSC 5170: Theory of Computational Complexity Lecture 13 The Chinese University of Hong Kong 19 April 2010

CSC 5170: Theory of Computational Complexity Lecture 13 The Chinese University of Hong Kong 19 April 2010 CSC 5170: Theory of Computational Complexity Lecture 13 The Chinese University of Hong Kong 19 April 2010 Recall the definition of probabilistically checkable proofs (PCP) from last time. We say L has

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

Approximation Algorithms and Hardness of Approximation. IPM, Jan Mohammad R. Salavatipour Department of Computing Science University of Alberta

Approximation Algorithms and Hardness of Approximation. IPM, Jan Mohammad R. Salavatipour Department of Computing Science University of Alberta Approximation Algorithms and Hardness of Approximation IPM, Jan 2006 Mohammad R. Salavatipour Department of Computing Science University of Alberta 1 Introduction For NP-hard optimization problems, we

More information

CS151 Complexity Theory. Lecture 13 May 15, 2017

CS151 Complexity Theory. Lecture 13 May 15, 2017 CS151 Complexity Theory Lecture 13 May 15, 2017 Relationship to other classes To compare to classes of decision problems, usually consider P #P which is a decision class easy: NP, conp P #P easy: P #P

More information

Lecture 26: Arthur-Merlin Games

Lecture 26: Arthur-Merlin Games CS 710: Complexity Theory 12/09/2011 Lecture 26: Arthur-Merlin Games Instructor: Dieter van Melkebeek Scribe: Chetan Rao and Aaron Gorenstein Last time we compared counting versus alternation and showed

More information

A An Overview of Complexity Theory for the Algorithm Designer

A An Overview of Complexity Theory for the Algorithm Designer A An Overview of Complexity Theory for the Algorithm Designer A.1 Certificates and the class NP A decision problem is one whose answer is either yes or no. Two examples are: SAT: Given a Boolean formula

More information

Probabilistically Checkable Proofs. 1 Introduction to Probabilistically Checkable Proofs

Probabilistically Checkable Proofs. 1 Introduction to Probabilistically Checkable Proofs Course Proofs and Computers, JASS 06 Probabilistically Checkable Proofs Lukas Bulwahn May 21, 2006 1 Introduction to Probabilistically Checkable Proofs 1.1 History of Inapproximability Results Before introducing

More information

PROBABILISTIC CHECKING OF PROOFS AND HARDNESS OF APPROXIMATION

PROBABILISTIC CHECKING OF PROOFS AND HARDNESS OF APPROXIMATION PROBABILISTIC CHECKING OF PROOFS AND HARDNESS OF APPROXIMATION YOUNG KUN KO Abstract. This paper introduces basic notions of classic computational complexity theory and probabilistically checkable proof.

More information

Approximation algorithm for Max Cut with unit weights

Approximation algorithm for Max Cut with unit weights Definition Max Cut Definition: Given an undirected graph G=(V, E), find a partition of V into two subsets A, B so as to maximize the number of edges having one endpoint in A and the other in B. Definition:

More information

Keywords. Approximation Complexity Theory: historical remarks. What s PCP?

Keywords. Approximation Complexity Theory: historical remarks. What s PCP? Keywords The following terms should be well-known to you. 1. P, NP, NP-hard, NP-complete. 2. (polynomial-time) reduction. 3. Cook-Levin theorem. 4. NPO problems. Instances. Solutions. For a long time it

More information

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany Santaló s Summer School, Part 3, July, 2012 joint work with Martijn Baartse (work supported by DFG, GZ:ME 1424/7-1) Outline 1 Introduction 2 Long transparent proofs for NP R 3 The real PCP theorem First

More information

Introduction to Advanced Results

Introduction to Advanced Results Introduction to Advanced Results Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Advanced Results 1/26 Outline Boolean Hierarchy Probabilistic Complexity Parameterized

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Lecture Hardness of Set Cover

Lecture Hardness of Set Cover PCPs and Inapproxiability CIS 6930 October 5, 2009 Lecture Hardness of Set Cover Lecturer: Dr. My T. Thai Scribe: Ying Xuan 1 Preliminaries 1.1 Two-Prover-One-Round Proof System A new PCP model 2P1R Think

More information

COMPUTATIONAL COMPLEXITY

COMPUTATIONAL COMPLEXITY COMPUTATIONAL COMPLEXITY A Modern Approach SANJEEV ARORA Princeton University BOAZ BARAK Princeton University {Щ CAMBRIDGE Щ0 UNIVERSITY PRESS Contents About this book Acknowledgments Introduction page

More information

Dinur s Proof of the PCP Theorem

Dinur s Proof of the PCP Theorem Dinur s Proof of the PCP Theorem Zampetakis Manolis School of Electrical and Computer Engineering National Technical University of Athens December 22, 2014 Table of contents 1 Introduction 2 PCP Theorem

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

Lecture 17: Interactive Proof Systems

Lecture 17: Interactive Proof Systems Computational Complexity Theory, Fall 2010 November 5 Lecture 17: Interactive Proof Systems Lecturer: Kristoffer Arnsfelt Hansen Scribe: Søren Valentin Haagerup 1 Interactive Proof Systems Definition 1.

More information

Average case Complexity

Average case Complexity February 2, 2015 introduction So far we only studied the complexity of algorithms that solve computational task on every possible input; that is, worst-case complexity. introduction So far we only studied

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

The Cook-Levin Theorem

The Cook-Levin Theorem An Exposition Sandip Sinha Anamay Chaturvedi Indian Institute of Science, Bangalore 14th November 14 Introduction Deciding a Language Let L {0, 1} be a language, and let M be a Turing machine. We say M

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170 UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, 2003 Notes 22 for CS 170 1 NP-completeness of Circuit-SAT We will prove that the circuit satisfiability

More information

Two Query PCP with Sub-Constant Error

Two Query PCP with Sub-Constant Error Electronic Colloquium on Computational Complexity, Report No 71 (2008) Two Query PCP with Sub-Constant Error Dana Moshkovitz Ran Raz July 28, 2008 Abstract We show that the N P-Complete language 3SAT has

More information

Identifying an Honest EXP NP Oracle Among Many

Identifying an Honest EXP NP Oracle Among Many Identifying an Honest EXP NP Oracle Among Many Shuichi Hirahara The University of Tokyo CCC 18/6/2015 Overview Dishonest oracle Honest oracle Queries Which is honest? Our Contributions Selector 1. We formulate

More information

Computational Complexity: Problem Set 4

Computational Complexity: Problem Set 4 Computational Complexity: Problem Set 4 Due: Friday January 8, 16, at 3:59 AoE. Submit your solutions as a PDF le by e-mail to jakobn at kth dot se with the subject line Problem set 4: your full name.

More information

1 Non-deterministic Turing Machine

1 Non-deterministic Turing Machine 1 Non-deterministic Turing Machine A nondeterministic Turing machine is a generalization of the standard TM for which every configuration may yield none, or one or more than one next configurations. In

More information

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT Definition: A language B is NP-complete if: 1. B NP 2. Every A in NP is poly-time reducible to B That is, A P B When this is true, we say B is NP-hard On

More information

Lecture 22. m n c (k) i,j x i x j = c (k) k=1

Lecture 22. m n c (k) i,j x i x j = c (k) k=1 Notes on Complexity Theory Last updated: June, 2014 Jonathan Katz Lecture 22 1 N P PCP(poly, 1) We show here a probabilistically checkable proof for N P in which the verifier reads only a constant number

More information

BBM402-Lecture 11: The Class NP

BBM402-Lecture 11: The Class NP BBM402-Lecture 11: The Class NP Lecturer: Lale Özkahya Resources for the presentation: http://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-045j-automata-computability-andcomplexity-spring-2011/syllabus/

More information

Lecture 22: Oct 29, Interactive proof for graph non-isomorphism

Lecture 22: Oct 29, Interactive proof for graph non-isomorphism E0 4 Computational Complexity Theory Indian Institute of Science, Bangalore Fall 04 Department of Computer Science and Automation Lecture : Oct 9, 04 Lecturer: Chandan Saha

More information

Lecture 16: Time Complexity and P vs NP

Lecture 16: Time Complexity and P vs NP 6.045 Lecture 16: Time Complexity and P vs NP 1 Time-Bounded Complexity Classes Definition: TIME(t(n)) = { L there is a Turing machine M with time complexity O(t(n)) so that L = L(M) } = { L L is a language

More information

Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION

Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION Complexity Theory Final Exam Please note : If not stated

More information

Lecture 3: Nondeterminism, NP, and NP-completeness

Lecture 3: Nondeterminism, NP, and NP-completeness CSE 531: Computational Complexity I Winter 2016 Lecture 3: Nondeterminism, NP, and NP-completeness January 13, 2016 Lecturer: Paul Beame Scribe: Paul Beame 1 Nondeterminism and NP Recall the definition

More information

BCCS: Computational methods for complex systems Wednesday, 16 June Lecture 3

BCCS: Computational methods for complex systems Wednesday, 16 June Lecture 3 BCCS: Computational methods for complex systems Wednesday, 16 June 2010 Lecturer: Ashley Montanaro 1 Lecture 3 Hardness of approximation 1 Overview In my lectures so far, we ve mostly restricted ourselves

More information

Probabilistic Autoreductions

Probabilistic Autoreductions Probabilistic Autoreductions Liyu Zhang University of Texas Rio Grande Valley Joint Work with Chen Yuan and Haibin Kan SOFSEM 2016 1 Overview Introduction to Autoreducibility Previous Results Main Result

More information

Computability and Complexity Theory: An Introduction

Computability and Complexity Theory: An Introduction Computability and Complexity Theory: An Introduction meena@imsc.res.in http://www.imsc.res.in/ meena IMI-IISc, 20 July 2006 p. 1 Understanding Computation Kinds of questions we seek answers to: Is a given

More information

2 Natural Proofs: a barrier for proving circuit lower bounds

2 Natural Proofs: a barrier for proving circuit lower bounds Topics in Theoretical Computer Science April 4, 2016 Lecturer: Ola Svensson Lecture 6 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Theory of Computation Chapter 12: Cryptography

Theory of Computation Chapter 12: Cryptography Theory of Computation Chapter 12: Cryptography Guan-Shieng Huang Dec. 20, 2006 0-0 Introduction Alice wants to communicate with Bob secretely. x Alice Bob John Alice y=e(e,x) y Bob y??? John Assumption

More information

PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions. My T. Thai

PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions. My T. Thai PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions My T. Thai 1 1 Hardness of Approximation Consider a maximization problem Π such as MAX-E3SAT. To show that it is NP-hard to approximation

More information

arxiv: v2 [cs.fl] 9 Jun 2015

arxiv: v2 [cs.fl] 9 Jun 2015 Strong inapproximability of the shortest reset word Pawe l Gawrychowski and Damian Straszak 2 Institute of Informatics, University of Warsaw, Poland 2 EPFL, Switzerland arxiv:48.5248v2 [cs.fl] 9 Jun 25

More information

Computational complexity lectures. Boston University

Computational complexity lectures. Boston University 1 Computational complexity lectures Peter Gács Boston University 2 1.1 The class structure See the course homepage. 1.2 Description complexity 1 Introduction Showing that it is uncomputable. See the lecture

More information

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity CSE 531: Computational Complexity I Winter 2016 Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity January 22, 2016 Lecturer: Paul Beame Scribe: Paul Beame Diagonalization enabled us to separate

More information

Topics in Complexity Theory

Topics in Complexity Theory Topics in Complexity Theory Announcements Final exam this Friday from 12:15PM-3:15PM Please let us know immediately after lecture if you want to take the final at an alternate time and haven't yet told

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 19 Hardness of Approximation 3 Recap Recap: optimization many decision problems we

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 8: Introduction to Randomized Complexity: - Randomized complexity classes, - Error reduction, - in P/poly - Reingold s Undirected Graph Reachability in RL Randomized

More information

Lecture 10: Hardness of approximating clique, FGLSS graph

Lecture 10: Hardness of approximating clique, FGLSS graph CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 10: Hardness of approximating clique, FGLSS graph Nov. 2, 2005 Lecturer: Venkat Guruswami and Ryan O Donnell Scribe: Ioannis

More information

CS151 Complexity Theory. Lecture 14 May 17, 2017

CS151 Complexity Theory. Lecture 14 May 17, 2017 CS151 Complexity Theory Lecture 14 May 17, 2017 IP = PSPACE Theorem: (Shamir) IP = PSPACE Note: IP PSPACE enumerate all possible interactions, explicitly calculate acceptance probability interaction extremely

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures New topic(s) Umans Complexity Theory Lectures Lecture 15: Approximation Algorithms and Probabilistically Checable Proos (PCPs) Optimization problems,, and Probabilistically Checable Proos 2 Optimization

More information

PCP Soundness amplification Meeting 2 ITCS, Tsinghua Univesity, Spring April 2009

PCP Soundness amplification Meeting 2 ITCS, Tsinghua Univesity, Spring April 2009 PCP Soundness amplification Meeting 2 ITCS, Tsinghua Univesity, Spring 2009 29 April 2009 Speaker: Andrej Bogdanov Notes by: Andrej Bogdanov Recall the definition of probabilistically checkable proofs

More information

CS154, Lecture 18: 1

CS154, Lecture 18: 1 CS154, Lecture 18: 1 CS 154 Final Exam Wednesday December 12, 12:15-3:15 pm STLC 111 You re allowed one double-sided sheet of notes Exam is comprehensive (but will emphasize post-midterm topics) Look for

More information

Lecture 59 : Instance Compression and Succinct PCP s for NP

Lecture 59 : Instance Compression and Succinct PCP s for NP IITM-CS6840: Advanced Complexity Theory March 31, 2012 Lecture 59 : Instance Compression and Succinct PCP s for NP Lecturer: Sivaramakrishnan N.R. Scribe: Prashant Vasudevan 1 Introduction Classical Complexity

More information

Short PCPs with Polylog Query Complexity

Short PCPs with Polylog Query Complexity Short PCPs with Polylog Query Complexity Eli Ben-Sasson Computer Science Department Technion Israel Institute of Technology Haifa, 32000, Israel eli@cs.technion.ac.il Madhu Sudan Computer Science and Artificial

More information

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun 1 Probabilistic Method Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun Turning the MaxCut proof into an algorithm. { Las Vegas Algorithm Algorithm

More information

Theory of Computation Time Complexity

Theory of Computation Time Complexity Theory of Computation Time Complexity Bow-Yaw Wang Academia Sinica Spring 2012 Bow-Yaw Wang (Academia Sinica) Time Complexity Spring 2012 1 / 59 Time for Deciding a Language Let us consider A = {0 n 1

More information

Restricted probabilistically checkable proofs. Jeffrey Finkelstein Computer Science Department, Boston University. May 5, 2015

Restricted probabilistically checkable proofs. Jeffrey Finkelstein Computer Science Department, Boston University. May 5, 2015 Restricted probabilistically checkable proofs Jeffrey Finkelstein Computer Science Department, Boston University 1 Introduction May 5, 2015 In this work we provide some initial structural complexity results

More information

The Complexity of Optimization Problems

The Complexity of Optimization Problems The Complexity of Optimization Problems Summary Lecture 1 - Complexity of algorithms and problems - Complexity classes: P and NP - Reducibility - Karp reducibility - Turing reducibility Uniform and logarithmic

More information

Lecture 24: Randomized Complexity, Course Summary

Lecture 24: Randomized Complexity, Course Summary 6.045 Lecture 24: Randomized Complexity, Course Summary 1 1/4 1/16 1/4 1/4 1/32 1/16 1/32 Probabilistic TMs 1/16 A probabilistic TM M is a nondeterministic TM where: Each nondeterministic step is called

More information

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH.

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH. CMPSCI 601: Recall From Last Time Lecture 26 Theorem: All CFL s are in sac. Facts: ITADD, MULT, ITMULT and DIVISION on -bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE

More information

Lecture 12: Interactive Proofs

Lecture 12: Interactive Proofs princeton university cos 522: computational complexity Lecture 12: Interactive Proofs Lecturer: Sanjeev Arora Scribe:Carl Kingsford Recall the certificate definition of NP. We can think of this characterization

More information

i times p(p(... (p( n))...) = n ki.

i times p(p(... (p( n))...) = n ki. Chapter 7 NP Completeness Exercise 7.1 Show that an algorithm that makes at most a constant number of calls to polynomial-time subroutines runs in polynomial time, but that a polynomial number of calls

More information

SHORT PCPS WITH POLYLOG QUERY COMPLEXITY

SHORT PCPS WITH POLYLOG QUERY COMPLEXITY SIAM J. COMPUT. Vol. 38, No. 2, pp. 551 607 c 2008 Society for Industrial and Applied Mathematics SHORT PCPS WITH POLYLOG QUERY COMPLEXITY ELI BEN-SASSON AND MADHU SUDAN Abstract. We give constructions

More information

Essential facts about NP-completeness:

Essential facts about NP-completeness: CMPSCI611: NP Completeness Lecture 17 Essential facts about NP-completeness: Any NP-complete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomial-time solutions

More information

Probabilistically Checkable Proofs and Approximating Solutions to Hard Problems

Probabilistically Checkable Proofs and Approximating Solutions to Hard Problems Probabilistically Checkable Proofs and Approximating Solutions to Hard Problems Kyle Littlefield June 8, 2005 Contents 1 Introduction 2 2 A Brief Introduction to Theory of Computation 3 2.1 Some Notation...........................

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Announcements Problem Set 9 due right now. Final exam this Monday, Hewlett 200 from 12:15PM- 3:15PM Please let us know immediately after lecture if you want to take the final at

More information

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine.

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine. The Class NP NP is the problems that can be solved in polynomial time by a nondeterministic machine. NP The time taken by nondeterministic TM is the length of the longest branch. The collection of all

More information

On the efficient approximability of constraint satisfaction problems

On the efficient approximability of constraint satisfaction problems On the efficient approximability of constraint satisfaction problems July 13, 2007 My world Max-CSP Efficient computation. P Polynomial time BPP Probabilistic Polynomial time (still efficient) NP Non-deterministic

More information

Today. Few Comments. PCP Theorem, Simple proof due to Irit Dinur [ECCC, TR05-046]! Based on some ideas promoted in [Dinur- Reingold 04].

Today. Few Comments. PCP Theorem, Simple proof due to Irit Dinur [ECCC, TR05-046]! Based on some ideas promoted in [Dinur- Reingold 04]. Today Few Comments PCP Theorem, Simple proof due to Irit Dinur [ECCC, TR05-046]! Based on some ideas promoted in [Dinur- Reingold 04]. Remarkably simple novel proof. Leads to new quantitative results too!

More information

CSE 200 Lecture Notes Turing machine vs. RAM machine vs. circuits

CSE 200 Lecture Notes Turing machine vs. RAM machine vs. circuits CSE 200 Lecture Notes Turing machine vs. RAM machine vs. circuits Chris Calabro January 13, 2016 1 RAM model There are many possible, roughly equivalent RAM models. Below we will define one in the fashion

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

On the Computational Hardness of Graph Coloring

On the Computational Hardness of Graph Coloring On the Computational Hardness of Graph Coloring Steven Rutherford June 3, 2011 Contents 1 Introduction 2 2 Turing Machine 2 3 Complexity Classes 3 4 Polynomial Time (P) 4 4.1 COLORED-GRAPH...........................

More information

Time and space classes

Time and space classes Time and space classes Little Oh (o,

More information

SOLUTION: SOLUTION: SOLUTION:

SOLUTION: SOLUTION: SOLUTION: Convert R and S into nondeterministic finite automata N1 and N2. Given a string s, if we know the states N1 and N2 may reach when s[1...i] has been read, we are able to derive the states N1 and N2 may

More information

Basic Probabilistic Checking 3

Basic Probabilistic Checking 3 CS294: Probabilistically Checkable and Interactive Proofs February 21, 2017 Basic Probabilistic Checking 3 Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Izaak Meckler Today we prove the following

More information

CS 151 Complexity Theory Spring Solution Set 5

CS 151 Complexity Theory Spring Solution Set 5 CS 151 Complexity Theory Spring 2017 Solution Set 5 Posted: May 17 Chris Umans 1. We are given a Boolean circuit C on n variables x 1, x 2,..., x n with m, and gates. Our 3-CNF formula will have m auxiliary

More information