A COMPARATIVE ANALYSIS OF THE COMPUTATIONAL STABILITY FOR GALERKIN FINITE ELEMENT AND DIFFERENCE SCHEMES OF NONLINEAR ADVECTION EQUATION

Size: px
Start display at page:

Download "A COMPARATIVE ANALYSIS OF THE COMPUTATIONAL STABILITY FOR GALERKIN FINITE ELEMENT AND DIFFERENCE SCHEMES OF NONLINEAR ADVECTION EQUATION"

Transcription

1 INTERNATIONAL JOURNAL OF INFORMATION AND SYSTEMS SCIENCES Volume, Number 3, Pages c 006 Institute for Scientific Computing and Information A COMPARATIVE ANALYSIS OF THE COMPUTATIONAL STABILITY FOR GALERKIN FINITE ELEMENT AND DIFFERENCE SCHEMES OF NONLINEAR ADVECTION EQUATION XIAOZHONG YANG, GUANGHUI WANG, AND YANGGUO LIU, XIAOJUN HOU Abstract. The problem of nonlinear stability of computational schemes is very important in numerical weather forecasts and climate simulations. In this paper, using the heuristic stability analysis method, and concerning a nonlinear advection equation, we compare and contrast the stability criterion of Galerkin Finite Element Method scheme with that of general difference schemes, and especially, point out that the stability criterion of Galerkin FEM scheme approximation is consistent with that of original partial differential equation. Further, the work affirms the superiority of the Galerkin FEM scheme to the general difference schemes on the point-view of computational stability. Finally, several numerical examples on nonlinear stability are given, from which the conditions for nonlinear instability are highlighted. Key Words. nonlinear computational stability, Galerkin FEM scheme, difference scheme, stability criterion, heuristic stability analysis 1. Introduction Most problems concerning unsteady, low-speed fluid dynamics such as simulations of climate changes and numerical weather forecasting involve searching for solutions of nonlinear partial differential equations. No matter what kind of numerical methods are used, including difference method, FEM and spectral method, nonlinear computational instability may occur. It can not be overcome by reducing the time step. Usually, the approximate solution displays a character of mutation or rapid exponential increase. So, it is necessary to do some nonlinear computational stability analysis to some typical advection equations. Much work[1-9] has been done, all those problems were attacked step by step, but still it is far from complete resolution. In this paper, on the base of our preceding work, we discuss and contrast the nonlinear computational stability criterion of two kinds of numerical schemes of nonlinear advection equation, Galerkin FEM and difference Received by the editors October 15, 005 and, in revised form, February 1, 006. The Proect Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry No. 383(005) and North China Electric Power University (005). 336

2 COMPUTATIONAL STABILITY OF GALERKIN FEM AND FDM 337 approximation, with the aids of the heuristic Method analysis, special solution and numerical examples, therefore, extend our preceding results. It shows that the nonlinear computational stability is closely connected with the structure of numerical scheme and the initial condition. In addition, the difference schemes should keep as much as possible the physical characteristics of original differential equations, especially the conservation of total energy, which is an important measure to depress the nonlinear computational instability. Finally, several numerical examples are given, from which the conditions for nonlinear instability are highlighted.. Equations and semi-discrete Galerkin FEM scheme.1. Stability of semi-discrete Galerkin FEM scheme. Simply, we mainly discuss the uniform grid case. In order to approach one-dimensional nonlinear advection equation, (1) () where i i t (N i, N ) + i (N i, N ) = t + u = 0 xb x a N xb i (N i, N ) = x a i u i u i (N i N i, N ) = 0 N i (x)n (x)dx N i (x) N i (x) N (x)dx (x a, x b ) is a segment on x-axis. Accordingly, () is the Galerkin FEM scheme of formula (1). Especially, we set x i constant, and take ax + b as the basic functions, on the region (x i, x i+1 ), () takes the form, x i (3) 3 t + x i t 3 u iu i 1 6 u i+1u i u iu i u i+1u i+1 = 0 At the same time, on the region (x i 1, x i ), () takes the form, x i 1 (4) + x i 3 t 3 t 1 6 u i 1u i u iu i u i 1u i u iu i = 0 Plus (3) and (4) together, we have the Galerkin FEM scheme on (x i 1, x i+1 ), ( 1 i 1 (5) + 4 i 6 t t + ) i t 3 (u i+1 + u i + u i 1 ) u i+1 u i 1 = 0 By taking the lumping technique, we have, i (6) t [(u i+1 u i 1) + u i (u i+1 u i 1 )] = 0 It can be proved directly that (6) always ensures the conservation of total energy 1 u under the periodical boundary, and ensures the limit of u

3 338 X. YANG, G. WANG, AND Y. LIU AND X. HOU. Therefore, (6) will never lead to nonlinear computational instability. It yields that Theorem 1. The semi-galerkin FEM scheme formula (5) of the equation t + u = 0 is absolutely computational stable... The stability of general semi-discrete schemes. For the convenience of constructing the difference scheme, we generalize (1) to (7) + (1 )u t + = 0 (0 1) By differentiating (7) spatially with centric finite difference scheme, we have (8) du (t) t + (1 )u (t) u +1(t) u 1 (t) + u +1 (t) u 1 (t) = 0 It is easy to see that in the case = 3, (8) degenerate into (6), and is nonlinear computational stable. While for the case 3, it has to be discussed in other ways. Similar to [3], we set (9) u(t) = C(t)cos π + S(t)sinπ + U(t)cosπ + V (t) By substituting (9) into (7), we have a general differential equation group, (10) dc dt ds = 1 x S(U + V ) + x S(U V ) x C(U V ) + x C(U + V ) = 1 dt = 1 du dt dv dt = 0 x SC 3. The nonlinear stability analysis of full-discrete Leap-frog scheme 3.1. The stability analysis of full-discrete Galerkin FEM scheme. Firstly, we give the explicit leap-frog scheme of (6), (11) u n+1 +1 un un+1 u n 1 + un+1 1 un x (un +1+u n +u n 1)(u n +1 u n 1) = 0 t t t We analyze the stability of (11) with heuristic method. By expanding the spatial terms with Taylor series, u n +1 = u n + n x + 1 u n x u n 6 3 x u n 4 4 x4 + O( x 5 ) u n 1 = u n n x + 1 u n x 1 3 u n 6 3 x u n 4 4 x4 + O( x 5 ) We have, (1) 1 x (un +1 [ + un + un 1 )(un +1 un 1 ) ] n [ = 1 x 3u + u x u 1 x 4 + O( x 5 ) 4 x u 3 x 3 + O( x 5 ) [ ] 3 n = 6u + u 3 u x + u 3 x 3 + O( x 4 ) ] n

4 COMPUTATIONAL STABILITY OF GALERKIN FEM AND FDM 339 So, we have the modified partial differential equation of (11) { (13) + u = t u( [ )3 3 u t x] u + [ 1 6 ( t u 3 + x u) 1 6 x u ] 3 u + O( t x + x 4 ) 3 It is well known that a numerical scheme is stable when it is dissipative. In other words, the stability of (11) requires that the dissipative coefficient of the right term in (13) must be greater than zero, ( 3 (14) u t + 1 ) 6 x > 0 It requires (x,0) > 0 for t > 0, especially, requires > 0 for t = 0. therefore, we have Theorem. For the stability of the full-discrete Galerkin FEM scheme (11) of advection equation (1), the necessary condition is (x,0) > 0, the initial function u(x, 0) must be a monotonously increasing. 3.. The stability analysis of Leap-Frog full-discrete difference scheme. By taking the central difference scheme to the temporal term in (8), we have the Leap-frog full discrete difference scheme, u n+1 u n 1 (15) + (1 )u n u n +1 un 1 + (u n +1 ) (u n 1 ) = 0 t By expanding its terms as Taylor series, u n+1 u n 1 t (1 )u n = t u 6 t 3 t + O( t 4 ) ( = (1 )u n ) u 6 3 x + O( t 4 ) u n +1 un 1 (u n +1 + un 1 )(un +1 un 1 ) = [ u 6 3 x + O( x 4 ) ] [ ] u n + u x + O( x 4 ) We have the modified differential equation of (15), { (16) t + u = u x + 3 u t u + u ( 3 ) t u3 3 u t u 3 u 3 6 x + O( t 4, x 4 ) 3 The scheme (15) is stable only if the second-order dissipative coefficient in (16) is positive, (3u t x ) > 0. There are two cases in which the condition is matched, 1) In the case that < 0 and u t x < 3 for any t > 0, the scheme is stable. In the case that (x,0) > 0 and 3 < u t x < 1 where 0 < 1 for any t > 0, the scheme is also stable. Therefore, we have

5 340 X. YANG, G. WANG, AND Y. LIU AND X. HOU Theorem 3. For the Leap-frog full-discrete difference scheme (15), the necessary condition of computational stability is (x,0) < 0 and u t x < 3, or (x,0) > 0 and 3 < u t x < 1 (0 < 1). 4. Several Numerical examples In order to clarify the relationship among the nonlinear computational instability, scheme and initial values further, we have the following numerical examples. By differentiating the time-derivative terms in (10), we have (17) C n+1 C n 1 = t x [( 1)U n V n ]S n S n+1 S n 1 = t x [( 1)U n + V n ]C n U n+1 U n 1 = t x ( 1)Sn C n V n+1 V n 1 = 0 Having x = 0.1, t = 0.004, and initial values C 1 = C 0, S 1 = S 0, U 1 = U 0, V 1 = V 0 (the values of C 0, S 0, U 0, V 0 displayed in table 1) The results of the numerical examples show that, the nonlinear computational stability is very closely related to the parameter and initial values. Especially, when = 1 and = 3 the schemes are stable for any initial values we taken. When = 3 and = 1, the cases are ust corresponding to the degenerated Galerkin FEM scheme and a transient energy conservation scheme respectively. These results show that the energy conservation scheme and FEM scheme are much more easier stable. 5. Summary and Discussion Through the above stability analysis and numerical examples, we get the results which extend the analysis in [5-6] concerning computational stability. They are simply summarized as following. (1) In this paper, all time-differential terms are approximated as explicit Leap-frog schemes, results show that the nonlinear computational instability more likely occur in these schemes. () From the qualitative analysis of differential equations, we know that, when the initial function u 0 (x) is monotonous non-decreasing, u 0 (x) 0, the global classical solution of nonlinear advection equation t + u = 0 exists in upper half-space (u(x, 0) = u 0 (x), t 0, ). But while u 0 (x) < 0, there is no global classical solution, rather, the blow-up must will occur in finite time. So the criterion ( (x,0) > 0) obtained from heuristic stability analysis of Galerkin FEM approximation is ust consistent with that of stability theories of differential equation. From both the qualitative theories analysis and numerical examples, we can see that generally the stability of Galerkin FEM approximation is better than that of difference scheme. Further, the computational precision of Galerkin FEM approximation is better than that of difference scheme. The point is ust we always emphasize that the difference equation should keep as much as possible the physical nature of original differential equations, It is also the precondition of computational stability.

6 COMPUTATIONAL STABILITY OF GALERKIN FEM AND FDM 341 Table 1. The computational stability cases of (17) Group Initial values stability C 0 S 0 U 0 V 0 I unstable 1/ stable /3 stable II unstable 1/ stable /3 stable III unstable 1/ stable /3 stable IV unstable 1/ stable /3 stable V stable 1/ stable /3 stable 1 stable V I unstable 1/ stable /3 stable 1 stable (3) It is shown in Table 1 that the scheme is more likely stable when = 1 and 3 than when = 0 and 1, because at the cases = 1 and 3, the energy conservation is almost kept. So, constructing the schemes which keep energy conservation is useful way to overcome the nonlinear computational instability. In other words, destroying the energy conservation may lead to nonlinear computational instability more easily. (4) The instability criteria show that whether the nonlinear computational instability occur is closely related to initial function u(x, 0). (5) It should be noted that the stability criteria obtained by heuristic method are only necessary conditions for computational stability. Although they are weak condition, we can use them to analyze the stability of some schemes which are too complex to apply delicate analysis and save huge unnecessary computation. (6) The nonlinear advection equation we discussed in this paper is named as shock equation in high-speed fluid dynamic, generally, its global classical solution does not exists, and blow-up will occur in finite time. That is the

7 34 X. YANG, G. WANG, AND Y. LIU AND X. HOU necessary condition of nonlinear computational instability. Some work has shown that there is not nonlinear computational instability if the global classical solution of the equation exist. In another word, if the solution of original differential equation is not smoothly (showing discontinuity and bifurcation), and matches the instability conditions (especially the improper initial conditions), then the nonlinear computational instability may occur. References [1] Zeng Qingcun, Several problems of the computational stability.chinese Journal of Atmospheric Sciences (in Chinese), :3,181. [] Shuman,F.G., Analysis and experiment in nonlinear computational stability. NMC office Note. 94. [3] Zeng Qingcun, Ji Zhongzhen, On the computational stability of evolution equations. Chinese Journal of Computational Mathematics (in Chinese). 3:1, pp [4] Ji Zhongzhen, Wang Bin, Further discussion on the construction and application of difference scheme of evolution equations Chinese Journal of Atmospheric Sciences (in Chinese). 5:(1991), pp [5] Lin Wantao, Ji Zhongzhen, Li Shuanglin, Yang Xiaozhong, 000. Research on the comparative for conservation schemes and non-conservation schemes. Progress in Natural Science (in Chinese). 10, pp [6] Ji Zhongzhen, Lin Wantao, Yang Xiaozhong, 001. Problems of nonlinear computational instability in evolution equations. Advances in Atmospheric Sciences. 3, pp [7] Xin Xiaokang, Liu Ruxun, Jiang Bocheng, Computational Fluid Dynamics (in Chinese) Changsha: University of Science and Technology for National Defense Press. pp [8] Wu Jianghang, Han Qingshu, The Theory, Method and Application of Computational Fluid Dynamics (in Chinese). Beiing: Science Press, pp [9] Hirt, C. W., Henistis stability theory for finite difference equation. J. Comp. Phys.., pp School of Mathematics and Physics, North China Electric Power University, Beiing 1006, China Center for Numerical Prediction Research, Chinese Academy of Meteorological Sciences, Beiing , China School of Mathematics and Physics, North China Electric Power University, Beiing 1006, China

Finite difference method for solving Advection-Diffusion Problem in 1D

Finite difference method for solving Advection-Diffusion Problem in 1D Finite difference method for solving Advection-Diffusion Problem in 1D Author : Osei K. Tweneboah MATH 5370: Final Project Outline 1 Advection-Diffusion Problem Stationary Advection-Diffusion Problem in

More information

Sensitivity of Nonlinearity on the ENSO Cycle in a Simple Air-Sea Coupled Model

Sensitivity of Nonlinearity on the ENSO Cycle in a Simple Air-Sea Coupled Model ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2009, VOL. 2, NO. 1, 1 6 Sensitivity of Nonlinearity on the ENSO Cycle in a Simple Air-Sea Coupled Model LIN Wan-Tao LASG, Institute of Atmospheric Physics, Chinese

More information

:,,, T, Yamamoto PACC: 9260X, China Academic Journal Electronic Publishing House. All rights reserved.

:,,, T, Yamamoto PACC: 9260X, China Academic Journal Electronic Publishing House. All rights reserved. 55 6 2006 6 100023290Π2006Π55 (06) Π3180208 ACTA PHYSICA SINICA Vol. 55,No. 6,June,2006 ν 2006 Chin. Phys. Soc. 3 1) 2) 2) 3) g 3) 4) 1) (, 225009) 2) ( 2, 100029) 3) (,, 100081) 4) (, 100029) (2005 7

More information

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Science and Technology, Dalian University of Technology, Dalian , P. R. China b Electronic Supplementary Information for Fabrication of Superior-Performance SnO 2 @C Composites for Lithium-Ion Anodes Using Tubular Mesoporous Carbons with Thin Carbon Wall and High Pore Volume Fei Han,

More information

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang Abstract This paper deals with

More information

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes Science in China Series A: Mathematics Aug., 008, Vol. 51, No. 8, 1549 1560 www.scichina.com math.scichina.com www.springerlink.com A class of the fourth order finite volume Hermite weighted essentially

More information

Fourier analysis for discontinuous Galerkin and related methods. Abstract

Fourier analysis for discontinuous Galerkin and related methods. Abstract Fourier analysis for discontinuous Galerkin and related methods Mengping Zhang and Chi-Wang Shu Abstract In this paper we review a series of recent work on using a Fourier analysis technique to study the

More information

Deep buried tunnel surrounding rock stability analysis of the cusp catastrophe theory

Deep buried tunnel surrounding rock stability analysis of the cusp catastrophe theory Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 3, 5(9):57-54 Research Article ISSN : 975-7384 COEN(USA) : JCPRC5 eep buried tunnel surrounding rock stability analysis of

More information

Li Ruo. Adaptive Mesh Method, Numerical Method for Fluid Dynamics, Model Reduction of Kinetic Equation

Li Ruo. Adaptive Mesh Method, Numerical Method for Fluid Dynamics, Model Reduction of Kinetic Equation Li Ruo Contact Information Mailing Address: School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China Tel: 86-10-6276-7345(O), 86-150-1019-4872(M) E-mail: rli@math.pku.edu.cn Homepage:

More information

Time stepping methods

Time stepping methods Time stepping methods ATHENS course: Introduction into Finite Elements Delft Institute of Applied Mathematics, TU Delft Matthias Möller (m.moller@tudelft.nl) 19 November 2014 M. Möller (DIAM@TUDelft) Time

More information

Radiation energy flux of Dirac field of static spherically symmetric black holes

Radiation energy flux of Dirac field of static spherically symmetric black holes Radiation energy flux of Dirac field of static spherically symmetric black holes Meng Qing-Miao( 孟庆苗 ), Jiang Ji-Jian( 蒋继建 ), Li Zhong-Rang( 李中让 ), and Wang Shuai( 王帅 ) Department of Physics, Heze University,

More information

Analogue Correction Method of Errors by Combining Statistical and Dynamical Methods

Analogue Correction Method of Errors by Combining Statistical and Dynamical Methods NO.3 REN Hongli and CHOU Jifan 367 Analogue Correction Method of Errors by Combining Statistical and Dynamical Methods REN Hongli 1,2 ( ) and CHOU Jifan 2 ( ) 1 Laboratory for Climate Studies,National

More information

LOCAL WELL-POSEDNESS FOR AN ERICKSEN-LESLIE S PARABOLIC-HYPERBOLIC COMPRESSIBLE NON-ISOTHERMAL MODEL FOR LIQUID CRYSTALS

LOCAL WELL-POSEDNESS FOR AN ERICKSEN-LESLIE S PARABOLIC-HYPERBOLIC COMPRESSIBLE NON-ISOTHERMAL MODEL FOR LIQUID CRYSTALS Electronic Journal of Differential Equations, Vol. 017 (017), No. 3, pp. 1 8. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu LOCAL WELL-POSEDNESS FOR AN ERICKSEN-LESLIE S

More information

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1551-1555 1551 DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS by Zhan-Hong WAN a*, Zhen-Jiang YOU b, and Chang-Bin WANG c a Department of Ocean

More information

Numerical Methods for Partial Differential Equations CAAM 452. Spring 2005

Numerical Methods for Partial Differential Equations CAAM 452. Spring 2005 Numerical Methods for Partial Differential Equations Instructor: Tim Warburton Class Location: Duncan Hall 1046 Class Time: 9:5am to 10:40am Office Hours: 10:45am to noon in DH 301 CAAM 45 Spring 005 Homeworks

More information

Finite Difference Solution of the Heat Equation

Finite Difference Solution of the Heat Equation Finite Difference Solution of the Heat Equation Adam Powell 22.091 March 13 15, 2002 In example 4.3 (p. 10) of his lecture notes for March 11, Rodolfo Rosales gives the constant-density heat equation as:

More information

THE APPLICATION OF GREY SYSTEM THEORY TO EXCHANGE RATE PREDICTION IN THE POST-CRISIS ERA

THE APPLICATION OF GREY SYSTEM THEORY TO EXCHANGE RATE PREDICTION IN THE POST-CRISIS ERA International Journal of Innovative Management, Information & Production ISME Internationalc20 ISSN 285-5439 Volume 2, Number 2, December 20 PP. 83-89 THE APPLICATION OF GREY SYSTEM THEORY TO EXCHANGE

More information

The Spring Predictability Barrier Phenomenon of ENSO Predictions Generated with the FGOALS-g Model

The Spring Predictability Barrier Phenomenon of ENSO Predictions Generated with the FGOALS-g Model ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, VOL. 3, NO. 2, 87 92 The Spring Predictability Barrier Phenomenon of ENSO Predictions Generated with the FGOALS-g Model WEI Chao 1,2 and DUAN Wan-Suo 1 1

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Attractor of a Shallow Water Equations Model

Attractor of a Shallow Water Equations Model Thai Journal of Mathematics Volume 5(2007) Number 2 : 299 307 www.math.science.cmu.ac.th/thaijournal Attractor of a Shallow Water Equations Model S. Sornsanam and D. Sukawat Abstract : In this research,

More information

Universal Associated Legendre Polynomials and Some Useful Definite Integrals

Universal Associated Legendre Polynomials and Some Useful Definite Integrals Commun. Theor. Phys. 66 0) 158 Vol. 66, No., August 1, 0 Universal Associated Legendre Polynomials and Some Useful Definite Integrals Chang-Yuan Chen í ), 1, Yuan You ), 1 Fa-Lin Lu öß ), 1 Dong-Sheng

More information

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components Applied Mathematics Volume 202, Article ID 689820, 3 pages doi:0.55/202/689820 Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Archives of Hydro-Engineering and Environmental Mechanics Vol. 56 (29), No. 3 4, pp. 121 137 IBW PAN, ISSN 1231 3726 Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Dariusz

More information

q t = F q x. (1) is a flux of q due to diffusion. Although very complex parameterizations for F q

q t = F q x. (1) is a flux of q due to diffusion. Although very complex parameterizations for F q ! Revised Tuesday, December 8, 015! 1 Chapter 7: Diffusion Copyright 015, David A. Randall 7.1! Introduction Diffusion is a macroscopic statistical description of microscopic advection. Here microscopic

More information

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007.

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007. 1 0. CHEMICAL TRACER MODELS: AN INTRODUCTION Concentrations of chemicals in the atmosphere are affected by four general types of processes: transport, chemistry, emissions, and deposition. 3-D numerical

More information

Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series

Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series Journal of Mathematics and Statistics 8 (4): 500-505, 2012 ISSN 1549-3644 2012 doi:10.3844/jmssp.2012.500.505 Published Online 8 (4) 2012 (http://www.thescipub.com/jmss.toc) Seasonal Autoregressive Integrated

More information

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler:

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: Lecture 7 18.086 Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: U j,n+1 t U j,n = U j+1,n 2U j,n + U j 1,n x 2 Expected accuracy: O(Δt) in time,

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

New interpretation of homotopy perturbation method

New interpretation of homotopy perturbation method From the SelectedWorks of Ji-Huan He 26 New interpretation of homotopy perturbation method Ji-Huan He, Donghua University Available at: https://works.bepress.com/ji_huan_he/3/ International Journal of

More information

Potential Symmetries and Differential Forms. for Wave Dissipation Equation

Potential Symmetries and Differential Forms. for Wave Dissipation Equation Int. Journal of Math. Analysis, Vol. 7, 2013, no. 42, 2061-2066 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.36163 Potential Symmetries and Differential Forms for Wave Dissipation

More information

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations Khosro Shahbazi 1, Paul F. Fischer 2 and C. Ross Ethier 1 1 University of Toronto and 2 Argonne National

More information

Computational challenges in Numerical Weather Prediction

Computational challenges in Numerical Weather Prediction Computational challenges in Numerical Weather Prediction Mike Cullen Oxford 15 September 2008 Contents This presentation covers the following areas Historical background Current challenges Why does it

More information

New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect

New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect Commun. Theor. Phys. 70 (2018) 803 807 Vol. 70, No. 6, December 1, 2018 New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect Guang-Han

More information

Filtering Sparse Regular Observed Linear and Nonlinear Turbulent System

Filtering Sparse Regular Observed Linear and Nonlinear Turbulent System Filtering Sparse Regular Observed Linear and Nonlinear Turbulent System John Harlim, Andrew J. Majda Department of Mathematics and Center for Atmosphere Ocean Science Courant Institute of Mathematical

More information

Test Study on Uniaxial Compressive Strength of Fine Sandstone after High. Temperature. Chongbang XU1, a *

Test Study on Uniaxial Compressive Strength of Fine Sandstone after High. Temperature. Chongbang XU1, a * International Conference on Advances in Energy and Environmental Science (ICAEES 2015) Test Study on Uniaxial Compressive Strength of Fine Sandstone after High Temperature Chongbang XU1, a * 1 Research

More information

Study on Settlement Prediction Model of High-Speed Railway Bridge Pile Foundation

Study on Settlement Prediction Model of High-Speed Railway Bridge Pile Foundation Journal of Applied Science and Engineering, Vol. 18, No. 2, pp. 187 193 (2015) DOI: 10.6180/jase.2015.18.2.12 Study on Settlement Prediction Model of High-Speed Railway Bridge Pile Foundation Zhong-Bo

More information

The Evaluation Methods of Collision. Between Space Debris and Spacecraft

The Evaluation Methods of Collision. Between Space Debris and Spacecraft The Evaluation Methods of Collision Between Space Debris and Spacecraft Wang Xinfeng, Li Yanjun, Northwestern Polytechnical University, Xi an, 710072 Wu Gongyou Xi an Jiaotong University, Xi an 710048

More information

Grey forecasting model with polynomial term and its optimization

Grey forecasting model with polynomial term and its optimization Grey forecasting model with polynomial term and its optimization Luo Dang, Wei Baolei School of Mathematics and Statistics, orth China University of Water Resources and Electric Power, Zhengzhou 4546,

More information

HOMEWORK 4: Numerical solution of PDEs for Mathmatical Models, Analysis and Simulation, Fall 2011 Report due Mon Nov 12, Maximum score 6.0 pts.

HOMEWORK 4: Numerical solution of PDEs for Mathmatical Models, Analysis and Simulation, Fall 2011 Report due Mon Nov 12, Maximum score 6.0 pts. HOMEWORK 4: Numerical solution of PDEs for Mathmatical Models, Analysis and Simulation, Fall 2011 Report due Mon Nov 12, 2012. Maximum score 6.0 pts. Read Strang s (old) book, Sections 3.1-3.4 and 6.4-6.5.

More information

ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION

ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION THERMAL SCIENCE, Year 07, Vol., No. 4, pp. 70-705 70 Introduction ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION by Da-Jiang DING, Di-Qing JIN, and Chao-Qing DAI * School of Sciences,

More information

TWELVE LIMIT CYCLES IN A CUBIC ORDER PLANAR SYSTEM WITH Z 2 -SYMMETRY. P. Yu 1,2 and M. Han 1

TWELVE LIMIT CYCLES IN A CUBIC ORDER PLANAR SYSTEM WITH Z 2 -SYMMETRY. P. Yu 1,2 and M. Han 1 COMMUNICATIONS ON Website: http://aimsciences.org PURE AND APPLIED ANALYSIS Volume 3, Number 3, September 2004 pp. 515 526 TWELVE LIMIT CYCLES IN A CUBIC ORDER PLANAR SYSTEM WITH Z 2 -SYMMETRY P. Yu 1,2

More information

Reliability analysis of different structure parameters of PCBA under drop impact

Reliability analysis of different structure parameters of PCBA under drop impact Journal of Physics: Conference Series PAPER OPEN ACCESS Reliability analysis of different structure parameters of PCBA under drop impact To cite this article: P S Liu et al 2018 J. Phys.: Conf. Ser. 986

More information

Supporting Information (SI) Headspace Solid-Phase Microextraction Coupled to. Miniaturized Microplasma Optical Emission Spectrometry

Supporting Information (SI) Headspace Solid-Phase Microextraction Coupled to. Miniaturized Microplasma Optical Emission Spectrometry Supporting Information (SI) Headspace Solid-Phase Microextraction Coupled to Miniaturized Microplasma Optical Emission Spectrometry for Detection of Mercury and Lead Chengbin Zheng,, Ligang Hu, Xiandeng

More information

Introduction to the Chinese Giant Solar Telescope

Introduction to the Chinese Giant Solar Telescope First Asia-Pacific Solar Physics Meeting ASI Conference Series, 2011, Vol. 2, pp 31 36 Edited by Arnab Rai Choudhuri & Dipankar Banerjee Introduction to the Chinese Giant Solar Telescope Y. Y. Deng (On

More information

1. Introduction , Campus, Karaman, Turkey b Department of Mathematics, Science Faculty of Selcuk University, 42100, Campus-Konya, Turkey

1. Introduction , Campus, Karaman, Turkey b Department of Mathematics, Science Faculty of Selcuk University, 42100, Campus-Konya, Turkey Application of Differential Transform Method for El Nino Southern Oscillation (ENSO) Model with compared Adomian Decomposition and Variational Iteration Methods Murat Gubes a, H. Alpaslan Peer b, Galip

More information

Research Article The Mathematical Study of Pest Management Strategy

Research Article The Mathematical Study of Pest Management Strategy Discrete Dynamics in Nature and Society Volume 22, Article ID 25942, 9 pages doi:.55/22/25942 Research Article The Mathematical Study of Pest Management Strategy Jinbo Fu and Yanzhen Wang Minnan Science

More information

The Method of Obtaining Best Unary Polynomial for the Chaotic Sequence of Image Encryption

The Method of Obtaining Best Unary Polynomial for the Chaotic Sequence of Image Encryption Journal of Information Hiding and Multimedia Signal Processing c 2017 ISSN 2073-4212 Ubiquitous International Volume 8, Number 5, September 2017 The Method of Obtaining Best Unary Polynomial for the Chaotic

More information

Stability and hybrid synchronization of a time-delay financial hyperchaotic system

Stability and hybrid synchronization of a time-delay financial hyperchaotic system ISSN 76-7659 England UK Journal of Information and Computing Science Vol. No. 5 pp. 89-98 Stability and hybrid synchronization of a time-delay financial hyperchaotic system Lingling Zhang Guoliang Cai

More information

Shiraz University of Technology. From the SelectedWorks of Habibolla Latifizadeh. Habibolla Latifizadeh, Shiraz University of Technology

Shiraz University of Technology. From the SelectedWorks of Habibolla Latifizadeh. Habibolla Latifizadeh, Shiraz University of Technology Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 013 Variational iteration method for Nonlinear Oscillators: A comment on Application of Laplace Iteration method to Study

More information

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Jianxian Qiu School of Mathematical Science Xiamen University jxqiu@xmu.edu.cn http://ccam.xmu.edu.cn/teacher/jxqiu

More information

ROTATIONAL STABILITY OF A CHARGED DIELEC- TRIC RIGID BODY IN A UNIFORM MAGNETIC FIELD

ROTATIONAL STABILITY OF A CHARGED DIELEC- TRIC RIGID BODY IN A UNIFORM MAGNETIC FIELD Progress In Electromagnetics Research Letters, Vol. 11, 103 11, 009 ROTATIONAL STABILITY OF A CHARGED DIELEC- TRIC RIGID BODY IN A UNIFORM MAGNETIC FIELD G.-Q. Zhou Department of Physics Wuhan University

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Introduction to Hyperbolic Equations The Hyperbolic Equations n-d 1st Order Linear

More information

A Multi-Dimensional Limiter for Hybrid Grid

A Multi-Dimensional Limiter for Hybrid Grid APCOM & ISCM 11-14 th December, 2013, Singapore A Multi-Dimensional Limiter for Hybrid Grid * H. W. Zheng ¹ 1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy

More information

Partial differential equations

Partial differential equations Partial differential equations Many problems in science involve the evolution of quantities not only in time but also in space (this is the most common situation)! We will call partial differential equation

More information

Numerical simulation of inertia friction welding process of GH4169 alloy

Numerical simulation of inertia friction welding process of GH4169 alloy J. Phys. IV France 120 (2004) 681-687 EDP Sciences, Les Ulis DOI: 10.1051/jp4:2004120078 Numerical simulation of inertia friction welding process of GH4169 alloy Zhang Liwen, Liu Chengdong, Qi Shaoan,

More information

Self-similar solutions for the diffraction of weak shocks

Self-similar solutions for the diffraction of weak shocks Self-similar solutions for the diffraction of weak shocks Allen M. Tesdall John K. Hunter Abstract. We numerically solve a problem for the unsteady transonic small disturbance equations that describes

More information

Applications of Differential Transform Method for ENSO Model with compared ADM and VIM M. Gübeş

Applications of Differential Transform Method for ENSO Model with compared ADM and VIM M. Gübeş Applications of Differential Transform Method for ENSO Model with compared ADM and VIM M. Gübeş Department of Mathematics, Karamanoğlu Mehmetbey University, Karaman/TÜRKİYE Abstract: We consider some of

More information

Open Access Study on Reservoir-caprock Assemblage by Dual Logging Parameter Method

Open Access Study on Reservoir-caprock Assemblage by Dual Logging Parameter Method Send Orders for Reprints to reprints@benthamscience.ae 282 The Open Petroleum Engineering Journal, 2015, 8, (Suppl 1: M4) 282-287 Open Access Study on Reservoir-caprock Assemblage by Dual Logging Parameter

More information

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications)

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications) Chapter 6 Finite Element Method Literature: (tiny selection from an enormous number of publications) K.J. Bathe, Finite Element procedures, 2nd edition, Pearson 2014 (1043 pages, comprehensive). Available

More information

Analysis on Characteristics of Precipitation Change from 1957 to 2015 in Weishan County

Analysis on Characteristics of Precipitation Change from 1957 to 2015 in Weishan County Journal of Geoscience and Environment Protection, 2017, 5, 125-133 http://www.scirp.org/journal/gep ISSN Online: 2327-4344 ISSN Print: 2327-4336 Analysis on Characteristics of Precipitation Change from

More information

Study on Optimal Design of Automotive Body Structure Crashworthiness

Study on Optimal Design of Automotive Body Structure Crashworthiness 7 th International LS-DYNA Users Conference Simulation Technology () Study on Optimal Design of Automotive Body Structure Crashworthiness Wang Hailiang Lin Zhongqin Jin Xianlong Institute for Automotive

More information

First Order Differential Equations f ( x,

First Order Differential Equations f ( x, Chapter d dx First Order Differential Equations f ( x, ).1 Linear Equations; Method of Integrating Factors Usuall the general first order linear equations has the form p( t ) g ( t ) (1) where pt () and

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Antony Jameson Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

More information

Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres

Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres ANZIAM J. 50 (CTAC2008) pp.c90 C106, 2008 C90 Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres M. Ganesh 1 Q. T. Le Gia 2 (Received 14 August 2008; revised 03

More information

ROBUST PASSIVE OBSERVER-BASED CONTROL FOR A CLASS OF SINGULAR SYSTEMS

ROBUST PASSIVE OBSERVER-BASED CONTROL FOR A CLASS OF SINGULAR SYSTEMS INTERNATIONAL JOURNAL OF INFORMATON AND SYSTEMS SCIENCES Volume 5 Number 3-4 Pages 480 487 c 2009 Institute for Scientific Computing and Information ROBUST PASSIVE OBSERVER-BASED CONTROL FOR A CLASS OF

More information

Blow-up of solutions for the sixth-order thin film equation with positive initial energy

Blow-up of solutions for the sixth-order thin film equation with positive initial energy PRAMANA c Indian Academy of Sciences Vol. 85, No. 4 journal of October 05 physics pp. 577 58 Blow-up of solutions for the sixth-order thin film equation with positive initial energy WENJUN LIU and KEWANG

More information

Introduction to Fluid Dynamics

Introduction to Fluid Dynamics Introduction to Fluid Dynamics Roger K. Smith Skript - auf englisch! Umsonst im Internet http://www.meteo.physik.uni-muenchen.de Wählen: Lehre Manuskripte Download User Name: meteo Password: download Aim

More information

Finite Difference Methods Assignments

Finite Difference Methods Assignments Finite Difference Metods Assignments Anders Söberg and Aay Saxena, Micael Tuné, and Maria Westermarck Revised: Jarmo Rantakokko June 6, 1999 Teknisk databeandling Assignment 1: A one-dimensional eat equation

More information

Exact Solutions for Generalized Klein-Gordon Equation

Exact Solutions for Generalized Klein-Gordon Equation Journal of Informatics and Mathematical Sciences Volume 4 (0), Number 3, pp. 35 358 RGN Publications http://www.rgnpublications.com Exact Solutions for Generalized Klein-Gordon Equation Libo Yang, Daoming

More information

Discretization- Finite difference, Finite element methods

Discretization- Finite difference, Finite element methods Discretization- Finite difference, Finite element methods Q. Identify the natural and essential boundary conditions of the following differential equation: d d y a( ) b( ) + =, for < < ; subject to the

More information

Elastic behaviour of an edge dislocation near a sharp crack emanating from a semi-elliptical blunt crack

Elastic behaviour of an edge dislocation near a sharp crack emanating from a semi-elliptical blunt crack Chin. Phys. B Vol. 19, No. 1 010 01610 Elastic behaviour of an edge dislocation near a sharp crack emanating from a semi-elliptical blunt crack Fang Qi-Hong 方棋洪, Song Hao-Peng 宋豪鹏, and Liu You-Wen 刘又文

More information

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 975 98 c International Academic Publishers Vol. 43, No. 6, June 15, 005 Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Determination of Gas Well Productivity by Logging Parameters

Determination of Gas Well Productivity by Logging Parameters Earth Science Research; Vol. 6, No. ; 017 ISSN 197-054 E-ISSN 197-0550 Published by Canadian Center of Science and Education Determination of Gas Well Productivity by Logging Parameters Weijun Hao 1, Zhihong

More information

Damage Localization, Sensitivity of Energy Release and Catastrophe Transition

Damage Localization, Sensitivity of Energy Release and Catastrophe Transition Damage Localization, Sensitivity of Energy Release and Catastrophe Transition Y.L.Bai (1), H.L.Li (1), F.J.Ke (1,2) and M.F.Xia (1,3) (1) LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing

More information

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows SP and DSS for Filtering Sparse Geophysical Flows Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows Presented by Nan Chen, Michal Branicki and Chenyue

More information

Research Article. World Journal of Engineering Research and Technology WJERT.

Research Article. World Journal of Engineering Research and Technology WJERT. wjert, 2015, Vol. 1, Issue 1, 27-36 Research Article ISSN 2454-695X WJERT www.wjert.org COMPENSATOR TUNING FOR DISTURBANCE REJECTION ASSOCIATED WITH DELAYED DOUBLE INTEGRATING PROCESSES, PART I: FEEDBACK

More information

ALGEBRAIC FLUX CORRECTION FOR FINITE ELEMENT DISCRETIZATIONS OF COUPLED SYSTEMS

ALGEBRAIC FLUX CORRECTION FOR FINITE ELEMENT DISCRETIZATIONS OF COUPLED SYSTEMS Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS 2007 M. Papadrakakis, E. Oñate and B. Schrefler (Eds) c CIMNE, Barcelona, 2007 ALGEBRAIC FLUX CORRECTION

More information

AMS 212A Applied Mathematical Methods I Lecture 14 Copyright by Hongyun Wang, UCSC. with initial condition

AMS 212A Applied Mathematical Methods I Lecture 14 Copyright by Hongyun Wang, UCSC. with initial condition Lecture 14 Copyright by Hongyun Wang, UCSC Recap of Lecture 13 Semi-linear PDE a( x, t) u t + b( x, t)u = c ( x, t, u ) x Characteristics: dt d = a x, t dx d = b x, t with initial condition t ( 0)= t 0

More information

2. Conservation of Mass

2. Conservation of Mass 2 Conservation of Mass The equation of mass conservation expresses a budget for the addition and removal of mass from a defined region of fluid Consider a fixed, non-deforming volume of fluid, V, called

More information

A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations

A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations Institute for Mathematics Applied to the Geosciences (IMAGe) National Center for Atmospheric Research (NCAR) Boulder CO

More information

Pseudo-seismic wavelet transformation of transient electromagnetic response in engineering geology exploration

Pseudo-seismic wavelet transformation of transient electromagnetic response in engineering geology exploration GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L645, doi:.29/27gl36, 27 Pseudo-seismic wavelet transformation of transient electromagnetic response in engineering geology exploration G. Q. Xue, Y. J. Yan, 2 and

More information

COMPARISON OF THE INFLUENCES OF INITIAL ERRORS AND MODEL PARAMETER ERRORS ON PREDICTABILITY OF NUMERICAL FORECAST

COMPARISON OF THE INFLUENCES OF INITIAL ERRORS AND MODEL PARAMETER ERRORS ON PREDICTABILITY OF NUMERICAL FORECAST CHINESE JOURNAL OF GEOPHYSICS Vol.51, No.3, 2008, pp: 718 724 COMPARISON OF THE INFLUENCES OF INITIAL ERRORS AND MODEL PARAMETER ERRORS ON PREDICTABILITY OF NUMERICAL FORECAST DING Rui-Qiang, LI Jian-Ping

More information

13A. 4 Analysis and Impact of Super-obbed Doppler Radial Velocity in the NCEP Grid-point Statistical Interpolation (GSI) Analysis System

13A. 4 Analysis and Impact of Super-obbed Doppler Radial Velocity in the NCEP Grid-point Statistical Interpolation (GSI) Analysis System 13A. 4 Analysis and Impact of Super-obbed Doppler Radial Velocity in the NCEP Grid-point Statistical Interpolation (GSI) Analysis System Shun Liu 1, Ming Xue 1,2, Jidong Gao 1,2 and David Parrish 3 1 Center

More information

Information retrieval methods for high resolution γ-ray spectra

Information retrieval methods for high resolution γ-ray spectra Nuclear Science and Techniques 23 (2012) 332 336 Information retrieval methods for high resolution γ-ray spectra WU Hexi 1,2,* ZHANG Huaiqiang 2 LIU Qingcheng 1,2,* YANG Bo 2 WEI Qianglin 2 YUAN Xinyu

More information

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically Finite difference and finite element methods Lecture 1 Scope of the course Analysis and implementation of numerical methods for pricing options. Models: Black-Scholes, stochastic volatility, exponential

More information

Acceleration of Time Integration

Acceleration of Time Integration Acceleration of Time Integration edited version, with extra images removed Rick Archibald, John Drake, Kate Evans, Doug Kothe, Trey White, Pat Worley Research sponsored by the Laboratory Directed Research

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

Delay-Dependent Exponential Stability of Linear Systems with Fast Time-Varying Delay

Delay-Dependent Exponential Stability of Linear Systems with Fast Time-Varying Delay International Mathematical Forum, 4, 2009, no. 39, 1939-1947 Delay-Dependent Exponential Stability of Linear Systems with Fast Time-Varying Delay Le Van Hien Department of Mathematics Hanoi National University

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

Comparison between Wavenumber Truncation and Horizontal Diffusion Methods in Spectral Models

Comparison between Wavenumber Truncation and Horizontal Diffusion Methods in Spectral Models 152 MONTHLY WEATHER REVIEW Comparison between Wavenumber Truncation and Horizontal Diffusion Methods in Spectral Models PETER C. CHU, XIONG-SHAN CHEN, AND CHENWU FAN Department of Oceanography, Naval Postgraduate

More information

Numerical Methods for Problems with Moving Fronts Orthogonal Collocation on Finite Elements

Numerical Methods for Problems with Moving Fronts Orthogonal Collocation on Finite Elements Electronic Text Provided with the Book Numerical Methods for Problems with Moving Fronts by Bruce A. Finlayson Ravenna Park Publishing, Inc., 635 22nd Ave. N. E., Seattle, WA 985-699 26-524-3375; ravenna@halcyon.com;www.halcyon.com/ravenna

More information

PACS: Wc, Bh

PACS: Wc, Bh Acta Phys. Sin. Vol. 61, No. 19 (2012) 199203 * 1) 1) 2) 2) 1) (, 100081 ) 2) (, 730000 ) ( 2012 1 12 ; 2012 3 14 ).,, (PBEP).,, ;,.,,,,. :,,, PACS: 92.60.Wc, 92.60.Bh 1,,, [1 3]. [4 6].,., [7] [8] [9],,,

More information

Nonlinear fastest growing perturbation and the first kind of predictability

Nonlinear fastest growing perturbation and the first kind of predictability Vol. 44 No. SCIENCE IN CHINA (Series D) December Nonlinear fastest growing perturbation and the first kind of predictability MU Mu ( ) & WANG Jiacheng ( ) LASG, Institute of Atmospheric Physics, Chinese

More information

Arbitrary High-Order Discontinuous Galerkin Method for Solving Electromagnetic Field Problems in Time Domain

Arbitrary High-Order Discontinuous Galerkin Method for Solving Electromagnetic Field Problems in Time Domain Arbitrary High-Order Discontinuous Galerkin Method for Solving Electromagnetic Field Problems in Time Domain KAI PAPKE, CHRISTIAN R. BAHLS AND URSULA VAN RIENEN University of Rostock, Institute of General

More information