Filtering Sparse Regular Observed Linear and Nonlinear Turbulent System

Size: px
Start display at page:

Download "Filtering Sparse Regular Observed Linear and Nonlinear Turbulent System"

Transcription

1 Filtering Sparse Regular Observed Linear and Nonlinear Turbulent System John Harlim, Andrew J. Majda Department of Mathematics and Center for Atmosphere Ocean Science Courant Institute of Mathematical Sciences, New York University July 22, 28

2 What is filtering (data assimilation)? A predictor-corrector method that includes observations (via Bayesian update) to improve the real time prediction.

3 Difficulties in Real Time Filtering and Prediction of Turbulent Signals from Partial Observations 1. For turbulent signals from nature with many scales, even with mesh refinement the model has inaccuracies from parametrization, under-resolution, etc. How to overcome them? Can judicious model error help filtering?

4 Difficulties in Real Time Filtering and Prediction of Turbulent Signals from Partial Observations 1. For turbulent signals from nature with many scales, even with mesh refinement the model has inaccuracies from parametrization, under-resolution, etc. How to overcome them? Can judicious model error help filtering? 2. Computational efficiency: how big of ensemble is needed in representing the uncertainty of billions of variables?

5 Difficulties in Real Time Filtering and Prediction of Turbulent Signals from Partial Observations 1. For turbulent signals from nature with many scales, even with mesh refinement the model has inaccuracies from parametrization, under-resolution, etc. How to overcome them? Can judicious model error help filtering? 2. Computational efficiency: how big of ensemble is needed in representing the uncertainty of billions of variables? 3. The most accurate ensemble filters is not immune from catastrophic filter divergence (beyond machine infinity).

6 Goal: Provide math guidelines and new numerical strategies thru modern applied math paradigm Modelling Turbulent Signals Filtering Stochastic Langevin Models Complex Nonlinear Dynamical Systems Extended Kalman Filter Classical Criteria: Observability Controllability Numerical Analysis Classical Von-Neumann stability analysis for frozen coef!cient linear systems

7 Filtering Linear Problem Real Space Fourier Space Simplest Tur6ule"t Model Constant Coef!cient Linear Stochastic PDE FT!"depe"de"t Fourier -oe. cie"t Langevin equation Classical Kalman Filter Innovative Strategy Fourier Domain Kalman Filter 8ois9 :6ser;atio"s FT Fourier -oe. cie"ts o. t=e "ois9 o6ser;atio"s

8 How to deal with Sparse Regularly Spaced Observations? ALIASING!! 1.8 m=25, l=3, k=2, N=5 sin(25x) sin(3x) sin(3x j )=sin(25x j ).6.4.2!.2!.4!.6!.8!

9 Example: 123 grid pts (61 modes) but only 41 observations (2 modes) available Physical Space sparse observations for P=3 Fourier Space aliasing set!(1) = {1,-4,42} for P=3 and M= aliasing set!(11) = {11,-3,52} for P=3 and M=2

10 Example: Stochastically forced advection-diffusion equation u(x, t) t = 2 u(x, t) µ x x 2 u(x, t)+ F (x, t)+σ(x)ẇ (t), x 2π

11 Example: Stochastically forced advection-diffusion equation u(x, t) t = 2 u(x, t) µ x x 2 u(x, t)+ F (x, t)+σ(x)ẇ (t), x 2π Fourier Domain Kalman Filter (FDKF) dû k (t) = [( µk 2 ik)û k (t) + ˆF k (t)]dt + σ k dw k (t), FDKF : v l (t) = u ki (t) + ηl o (t), k i A(l)

12 Example: Stochastically forced advection-diffusion equation u(x, t) t = 2 u(x, t) µ x x 2 u(x, t)+ F (x, t)+σ(x)ẇ (t), x 2π Fourier Domain Kalman Filter (FDKF) dû k (t) = [( µk 2 ik)û k (t) + ˆF k (t)]dt + σ k dw k (t), FDKF : v l (t) = u ki (t) + ηl o (t), k i A(l) Reduced Fourier Domain Kalman Filter (RFDKF) RFDKF : v l (t) = u l (t) + η o l (t), where η o l (t) N (, r o /2M + 1), k N, l M.

13 Example: Stochastically forced advection-diffusion equation u(x, t) t = 2 u(x, t) µ x x 2 u(x, t)+ F (x, t)+σ(x)ẇ (t), x 2π Fourier Domain Kalman Filter (FDKF) dû k (t) = [( µk 2 ik)û k (t) + ˆF k (t)]dt + σ k dw k (t), FDKF : v l (t) = u ki (t) + ηl o (t), k i A(l) Reduced Fourier Domain Kalman Filter (RFDKF) RFDKF : v l (t) = u l (t) + η o l (t), where η o l (t) N (, r o /2M + 1), k N, l M. Strongly Damped Approximate Filter (SDAF, VSDAF): Observation is modeled as in FDKF but we implement it with dynamic-less unresolved modes. e µk2 1 t = O(1), e µk2 i t = O(ɛ) 1, 2 i P.

14 Skill of cheaper approximate filters with model error depends on observation time at given wave number and how rough spectrum is for truth signal Decorrelation time vs observation time T corr = 1/! k =1/(µ k 2 ) "t 1 =.1 "t 2 =.1 Decorrelation time 1 1!1 1!2 1!3 1! wave number k

15 ETKF Filter Divergence (K = 15, r = 4%), observability is violated Extreme event, t 2 =.1, E k = k 5/3 RMS ETKF, <corr>= filtered unfiltered obs u(x,1!t) ETKF, at T=1!t, corr=.7692 true unfiltered filtered obs time!5! model space 25 ETKF, at T=5!t, corr= ETKF, at T=1!t, corr=.913 u(x,5!t) !5! u(x,1!t) 2 1!1!

16 SDAF high skill (observability is satisfied) Spontaneous development of extreme event for t 2 =.1 and E k = k 5/3 RMS SDAF, <corr>= filtered unfiltered obs u(x,1!t) SDAF, at T=1!t, corr= true unfiltered filtered obs time!5! model space 25 SDAF, at T=5!t, corr= SDAF, at T=1!t, corr= u(x,5!t) !5! model space u(x,1!t) 2 1!1! model space

17 Radical Filtering Strategy for Nonlinear System Stochastically forced linear PDE FT Uncoupled Langevin eqn Replace the Nonlinear terms with an Ornstein-Uhlenbeck process Nonlinear Chaotic Dynamical Systems FT Coupled nonlinear ODE through nonlinear terms

18 Filtering turbulent nonlinear dynamical systems L-96 model (Lorenz 1996), 4 modes. (absorbing ball property) du j dt = (u j+1 u j 2 )u j 1 u j + F, j =,..., J 1 Energy Rescaled Variables: F=6 weakly chaotic F=8 strongly chaotic F=16 fully turbulent 2 F=6 2 F=8 2 F= time

19 Climatological Variance and Correlation time x 1!3 Variance Spectrum F= F=5 F=6 F=8 F= Correlation times F= F=5 F=6 F=8 F=16 6 Variance Correlation time Wave Numbers Wave Numbers Climatological Stochastic Model (CSM): fit the damping coefficient and stochastic noise strength to these climatological statistical quantities.

20 Regularly spaced sparse observations: weakly chaotic regime F = 6, P = 2, r o = 1.96, t = !2!4 EAKF TRUE! space !2!4 EAKF C67! space !2!4 FDKF C67! space !2!4 RFDKF C67! space

21 Regularly spaced sparse observations: weakly chaotic regime F = 6, P = 2, r o = 1.96, t =.234 hrs Table: This is a regime where EAKF true is superior. scheme RMS corr. EAKF true EAKF CSM ETKF true - ETKF CSM FDKF CSM RFDKF CSM No Filter 2.8 -

22 Regularly spaced sparse observations: fully turbulent regime F = 16, P = 2, r o =.81, t =.78 hrs EAKF TRUE EAKF CSM !5!1! space !5!1! space 2 FDKF CSM 2 ETKF CSM !5!5!1!1! space! space

23 Regularly spaced sparse observations: fully turbulent regime F = 16, P = 2, r o =.81, t =.78 hrs Table: This is a regime where FDKF is superior. Scheme RMS corr. EAKF true - EAKF CSM ETKF true - ETKF CSM FDKF CSM No Filter 6.3 -

24 Summary:

25 Summary: For M < N sparse regular observations, FDKF reduces (2N+1)-dim filtering problem to M decoupled P-dim filtering problems with a single scalar observation.

26 Summary: For M < N sparse regular observations, FDKF reduces (2N+1)-dim filtering problem to M decoupled P-dim filtering problems with a single scalar observation. The poor-man s CSM model degrades the filtering skill in the weakly chaotic regime but suggests encouraging results in the strongly chaotic and fully turbulent regimes.

27 Summary: For M < N sparse regular observations, FDKF reduces (2N+1)-dim filtering problem to M decoupled P-dim filtering problems with a single scalar observation. The poor-man s CSM model degrades the filtering skill in the weakly chaotic regime but suggests encouraging results in the strongly chaotic and fully turbulent regimes. Practically, our radical strategy is independent of tunable parameters and ensemble size.

28 Summary: For M < N sparse regular observations, FDKF reduces (2N+1)-dim filtering problem to M decoupled P-dim filtering problems with a single scalar observation. The poor-man s CSM model degrades the filtering skill in the weakly chaotic regime but suggests encouraging results in the strongly chaotic and fully turbulent regimes. Practically, our radical strategy is independent of tunable parameters and ensemble size. Catastrophic filter divergence in a chaotic DS with absorbing ball property needs further mathematical theory.

29 References: MG Majda and Grote, Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems, PNAS 14(4), , 27. CHM Castronovo, Harlim, and Majda, Mathematical test criteria for filtering complex systems: Plentiful observations, J. Comp. Phys., 227(7), , 28. HM1 Harlim and Majda, Filtering nonlinear dynamical systems with linear stochastic models, Nonlinearity 21(6), , 28. HM2 Harlim and Majda, Mathematical test criteria for filtering complex systems: Regularly sparse observations, J. Comp. Phys., 227(1), , 28. HM3 Harlim and Majda, Catastrophic filter divergence in filtering nonlinear dissipative systems, submitted to Comm. Math. Sci., 28.

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows SP and DSS for Filtering Sparse Geophysical Flows Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows Presented by Nan Chen, Michal Branicki and Chenyue

More information

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows June 2013 Outline 1 Filtering Filtering: obtaining the best statistical estimation of a nature

More information

Systematic*strategies*for*real*time*filtering*of* turbulent*signals*in*complex*systems*

Systematic*strategies*for*real*time*filtering*of* turbulent*signals*in*complex*systems* Systematic*strategies*for*real*time*filtering*of* turbulent*signals*in*complex*systems* AndrewJ.Majda DepartmentofMathematicsand CenterofAtmosphereandOceanSciences CourantInstituteofMathematicalSciences

More information

MATHEMATICAL STRATEGIES FOR FILTERING TURBULENT DYNAMICAL SYSTEMS. Andrew J. Majda. John Harlim. Boris Gershgorin

MATHEMATICAL STRATEGIES FOR FILTERING TURBULENT DYNAMICAL SYSTEMS. Andrew J. Majda. John Harlim. Boris Gershgorin DISCRETE AND CONTINUOUS doi:.94/dcds..7.44 DYNAMICAL SYSTEMS Volume 7, Number, June pp. 44 486 MATHEMATICAL STRATEGIES FOR FILTERING TURBULENT DYNAMICAL SYSTEMS Andrew J. Majda Department of Mathematics

More information

Filtering Nonlinear Dynamical Systems with Linear Stochastic Models

Filtering Nonlinear Dynamical Systems with Linear Stochastic Models Filtering Nonlinear Dynamical Systems with Linear Stochastic Models J Harlim and A J Majda Department of Mathematics and Center for Atmosphere and Ocean Science Courant Institute of Mathematical Sciences,

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Courant Institute New York University New York NY www.dtbkelly.com February 12, 2015 Graduate seminar, CIMS David Kelly (CIMS) Data assimilation February

More information

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error Georg Gottwald, Lewis Mitchell, Sebastian Reich* University of Sydney, *Universität Potsdam Durham,

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Kody Law Andy Majda Andrew Stuart Xin Tong Courant Institute New York University New York NY www.dtbkelly.com February 3, 2016 DPMMS, University of Cambridge

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Dynamic Stochastic Superresolution of sparsely observed turbulent systems Citation for published version: Branicki, M & Majda, AJ 23, 'Dynamic Stochastic Superresolution of

More information

FILTERING COMPLEX TURBULENT SYSTEMS

FILTERING COMPLEX TURBULENT SYSTEMS FILTERING COMPLEX TURBULENT SYSTEMS by Andrew J. Majda Department of Mathematics and Center for Atmosphere and Ocean Sciences, Courant Institute for Mathematical Sciences, New York University and John

More information

What do we know about EnKF?

What do we know about EnKF? What do we know about EnKF? David Kelly Kody Law Andrew Stuart Andrew Majda Xin Tong Courant Institute New York University New York, NY April 10, 2015 CAOS seminar, Courant. David Kelly (NYU) EnKF April

More information

Real Time Filtering and Parameter Estimation for Dynamical Systems with Many Degrees of Freedom. NOOOl

Real Time Filtering and Parameter Estimation for Dynamical Systems with Many Degrees of Freedom. NOOOl REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Many contemporary problems in science ranging from protein

Many contemporary problems in science ranging from protein Blended Particle Filters for Large Dimensional Chaotic Dynamical Systems Andrew J. Majda, Di Qi, Themistoklis P. Sapsis Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute

More information

EnKF and filter divergence

EnKF and filter divergence EnKF and filter divergence David Kelly Andrew Stuart Kody Law Courant Institute New York University New York, NY dtbkelly.com December 12, 2014 Applied and computational mathematics seminar, NIST. David

More information

State and Parameter Estimation in Stochastic Dynamical Models

State and Parameter Estimation in Stochastic Dynamical Models State and Parameter Estimation in Stochastic Dynamical Models Timothy DelSole George Mason University, Fairfax, Va and Center for Ocean-Land-Atmosphere Studies, Calverton, MD June 21, 2011 1 1 collaboration

More information

Systematic strategies for real time filtering of turbulent signals in complex systems

Systematic strategies for real time filtering of turbulent signals in complex systems Systematic strategies for real time filtering of turbulent signals in complex systems Statistical inversion theory for Gaussian random variables The Kalman Filter for Vector Systems: Reduced Filters and

More information

Semiparametric modeling: correcting low-dimensional model error in parametric models

Semiparametric modeling: correcting low-dimensional model error in parametric models Semiparametric modeling: correcting low-dimensional model error in parametric models Tyrus Berry a,, John Harlim a,b a Department of Mathematics, the Pennsylvania State University, 09 McAllister Building,

More information

EnKF and Catastrophic filter divergence

EnKF and Catastrophic filter divergence EnKF and Catastrophic filter divergence David Kelly Kody Law Andrew Stuart Mathematics Department University of North Carolina Chapel Hill NC bkelly.com June 4, 2014 SIAM UQ 2014 Savannah. David Kelly

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Lagrangian data assimilation for point vortex systems

Lagrangian data assimilation for point vortex systems JOT J OURNAL OF TURBULENCE http://jot.iop.org/ Lagrangian data assimilation for point vortex systems Kayo Ide 1, Leonid Kuznetsov 2 and Christopher KRTJones 2 1 Department of Atmospheric Sciences and Institute

More information

PREDICTING EXTREME EVENTS FOR PASSIVE SCALAR TURBULENCE IN TWO-LAYER BAROCLINIC FLOWS THROUGH REDUCED-ORDER STOCHASTIC MODELS

PREDICTING EXTREME EVENTS FOR PASSIVE SCALAR TURBULENCE IN TWO-LAYER BAROCLINIC FLOWS THROUGH REDUCED-ORDER STOCHASTIC MODELS PREDICTING EXTREME EVENTS FOR PASSIVE SCALAR TURBULENCE IN TWO-LAYER BAROCLINIC FLOWS THROUGH REDUCED-ORDER STOCHASTIC MODELS DI QI AND ANDREW J. MAJDA Abstract. The capability of using imperfect stochastic

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Controlling overestimation of error covariance in ensemble Kalman filters with sparse observations: A variance limiting Kalman filter

Controlling overestimation of error covariance in ensemble Kalman filters with sparse observations: A variance limiting Kalman filter Controlling overestimation of error covariance in ensemble Kalman filters with sparse observations: A variance limiting Kalman filter Georg A. Gottwald and Lewis Mitchell School of Mathematics and Statistics,

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

Localization and Correlation in Ensemble Kalman Filters

Localization and Correlation in Ensemble Kalman Filters Localization and Correlation in Ensemble Kalman Filters Jeff Anderson NCAR Data Assimilation Research Section The National Center for Atmospheric Research is sponsored by the National Science Foundation.

More information

Aspects of the practical application of ensemble-based Kalman filters

Aspects of the practical application of ensemble-based Kalman filters Aspects of the practical application of ensemble-based Kalman filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008 A Global Atmospheric Model Joe Tribbia NCAR Turbulence Summer School July 2008 Outline Broad overview of what is in a global climate/weather model of the atmosphere Spectral dynamical core Some results-climate

More information

PDEs, part 3: Hyperbolic PDEs

PDEs, part 3: Hyperbolic PDEs PDEs, part 3: Hyperbolic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2011 Hyperbolic equations (Sections 6.4 and 6.5 of Strang). Consider the model problem (the

More information

Bayesian Inverse problem, Data assimilation and Localization

Bayesian Inverse problem, Data assimilation and Localization Bayesian Inverse problem, Data assimilation and Localization Xin T Tong National University of Singapore ICIP, Singapore 2018 X.Tong Localization 1 / 37 Content What is Bayesian inverse problem? What is

More information

Forecasting Turbulent Modes with Nonparametric Diffusion Models: Learning from Noisy Data

Forecasting Turbulent Modes with Nonparametric Diffusion Models: Learning from Noisy Data Forecasting Turbulent Modes with Nonparametric Diffusion Models: Learning from Noisy Data Tyrus Berry Department of Mathematics, The Pennsylvania State University, University Park, PA 682 John Harlim Department

More information

Data Assimilation Research Testbed Tutorial

Data Assimilation Research Testbed Tutorial Data Assimilation Research Testbed Tutorial Section 2: How should observations of a state variable impact an unobserved state variable? Multivariate assimilation. Single observed variable, single unobserved

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

Filtering the Navier-Stokes Equation

Filtering the Navier-Stokes Equation Filtering the Navier-Stokes Equation Andrew M Stuart1 1 Mathematics Institute and Centre for Scientific Computing University of Warwick Geometric Methods Brown, November 4th 11 Collaboration with C. Brett,

More information

Physics Constrained Nonlinear Regression Models for Time Series

Physics Constrained Nonlinear Regression Models for Time Series Physics Constrained Nonlinear Regression Models for Time Series Andrew J. Majda and John Harlim 2 Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

6.435, System Identification

6.435, System Identification SET 6 System Identification 6.435 Parametrized model structures One-step predictor Identifiability Munther A. Dahleh 1 Models of LTI Systems A complete model u = input y = output e = noise (with PDF).

More information

A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks

A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks Manuscript prepared for Nonlin. Processes Geophys. with version 5. of the L A TEX class copernicus.cls. Date: 5 August 23 A mechanism for catastrophic filter divergence in data assimilation for sparse

More information

Introduction to Turbulent Dynamical Systems in Complex Systems

Introduction to Turbulent Dynamical Systems in Complex Systems Introduction to Turbulent Dynamical Systems in Complex Systems Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 216 Advanced Topics in Applied Math Di Qi, and Andrew J. Majda

More information

Introduction to asymptotic techniques for stochastic systems with multiple time-scales

Introduction to asymptotic techniques for stochastic systems with multiple time-scales Introduction to asymptotic techniques for stochastic systems with multiple time-scales Eric Vanden-Eijnden Courant Institute Motivating examples Consider the ODE {Ẋ = Y 3 + sin(πt) + cos( 2πt) X() = x

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction Chapter 6: Ensemble Forecasting and Atmospheric Predictability Introduction Deterministic Chaos (what!?) In 1951 Charney indicated that forecast skill would break down, but he attributed it to model errors

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

Ensemble Data Assimilation and Uncertainty Quantification

Ensemble Data Assimilation and Uncertainty Quantification Ensemble Data Assimilation and Uncertainty Quantification Jeff Anderson National Center for Atmospheric Research pg 1 What is Data Assimilation? Observations combined with a Model forecast + to produce

More information

The role of additive and multiplicative noise in filtering complex dynamical systems

The role of additive and multiplicative noise in filtering complex dynamical systems The role of additive and multiplicative noise in filtering complex dynamical systems By Georg A. Gottwald 1 and John Harlim 2 1 School of Mathematics and Statistics, University of Sydney, NSW 26, Australia,

More information

Mathematical test models for superparametrization in anisotropic turbulence

Mathematical test models for superparametrization in anisotropic turbulence Mathematical test models for superparametrization in anisotropic turbulence Andrew J. Majda a,1 and Marcus J. Grote b a Department of Mathematics and Climate, Atmosphere, Ocean Science, Courant Institute

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tyrus Berry George Mason University NJIT Feb. 28, 2017 Postdoc supported by NSF This work is in collaboration with: Tim Sauer, GMU Franz Hamilton, Postdoc, NCSU

More information

Controlling Overestimation of Error Covariance in Ensemble Kalman Filters with Sparse Observations: A Variance-Limiting Kalman Filter

Controlling Overestimation of Error Covariance in Ensemble Kalman Filters with Sparse Observations: A Variance-Limiting Kalman Filter 2650 M O N T H L Y W E A T H E R R E V I E W VOLUME 139 Controlling Overestimation of Error Covariance in Ensemble Kalman Filters with Sparse Observations: A Variance-Limiting Kalman Filter GEORG A. GOTTWALD

More information

Systematic stochastic modeling. of atmospheric variability. Christian Franzke

Systematic stochastic modeling. of atmospheric variability. Christian Franzke Systematic stochastic modeling of atmospheric variability Christian Franzke Meteorological Institute Center for Earth System Research and Sustainability University of Hamburg Daniel Peavoy and Gareth Roberts

More information

Robust Ensemble Filtering With Improved Storm Surge Forecasting

Robust Ensemble Filtering With Improved Storm Surge Forecasting Robust Ensemble Filtering With Improved Storm Surge Forecasting U. Altaf, T. Buttler, X. Luo, C. Dawson, T. Mao, I.Hoteit Meteo France, Toulouse, Nov 13, 2012 Project Ensemble data assimilation for storm

More information

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Laura Slivinski June, 3 Laura Slivinski (Brown University) Lagrangian Data Assimilation June, 3 / 3 Data Assimilation Setup:

More information

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 ca. 1974 Central theorem of chaos (Lorenz, 1960s): a) Unstable systems have finite predictability

More information

Ensembles and Particle Filters for Ocean Data Assimilation

Ensembles and Particle Filters for Ocean Data Assimilation DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ensembles and Particle Filters for Ocean Data Assimilation Robert N. Miller College of Oceanic and Atmospheric Sciences

More information

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation.

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. UCAR 2014 The National Center for Atmospheric Research is sponsored by the National

More information

Data Assimilation in Slow Fast Systems Using Homogenized Climate Models

Data Assimilation in Slow Fast Systems Using Homogenized Climate Models APRIL 2012 M I T C H E L L A N D G O T T W A L D 1359 Data Assimilation in Slow Fast Systems Using Homogenized Climate Models LEWIS MITCHELL AND GEORG A. GOTTWALD School of Mathematics and Statistics,

More information

Model Uncertainty Quantification for Data Assimilation in partially observed Lorenz 96

Model Uncertainty Quantification for Data Assimilation in partially observed Lorenz 96 Model Uncertainty Quantification for Data Assimilation in partially observed Lorenz 96 Sahani Pathiraja, Peter Jan Van Leeuwen Institut für Mathematik Universität Potsdam With thanks: Sebastian Reich,

More information

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation Chapter 3. Finite Difference Methods for Hyperbolic Equations 3.1. Introduction Most hyperbolic problems involve the transport of fluid properties. In the equations of motion, the term describing the transport

More information

Low-dimensional chaotic dynamics versus intrinsic stochastic noise: a paradigm model

Low-dimensional chaotic dynamics versus intrinsic stochastic noise: a paradigm model Physica D 199 (2004) 339 368 Low-dimensional chaotic dynamics versus intrinsic stochastic noise: a paradigm model A. Majda a,b, I. Timofeyev c, a Courant Institute of Mathematical Sciences, New York University,

More information

Lecture 17: Initial value problems

Lecture 17: Initial value problems Lecture 17: Initial value problems Let s start with initial value problems, and consider numerical solution to the simplest PDE we can think of u/ t + c u/ x = 0 (with u a scalar) for which the solution

More information

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Javier Amezcua, Dr. Kayo Ide, Dr. Eugenia Kalnay 1 Outline

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

Chapter 4. Nonlinear Hyperbolic Problems

Chapter 4. Nonlinear Hyperbolic Problems Chapter 4. Nonlinear Hyperbolic Problems 4.1. Introduction Reading: Durran sections 3.5-3.6. Mesinger and Arakawa (1976) Chapter 3 sections 6-7. Supplementary reading: Tannehill et al sections 4.4 and

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

Low-Dimensional Reduced-Order Models for Statistical Response and Uncertainty Quantification

Low-Dimensional Reduced-Order Models for Statistical Response and Uncertainty Quantification Low-Dimensional Reduced-Order Models for Statistical Response and Uncertainty Quantification Andrew J Majda joint work with Di Qi Morse Professor of Arts and Science Department of Mathematics Founder of

More information

On the (multi)scale nature of fluid turbulence

On the (multi)scale nature of fluid turbulence On the (multi)scale nature of fluid turbulence Kolmogorov axiomatics Laurent Chevillard Laboratoire de Physique, ENS Lyon, CNRS, France Laurent Chevillard, Laboratoire de Physique, ENS Lyon, CNRS, France

More information

Correcting biased observation model error in data assimilation

Correcting biased observation model error in data assimilation Correcting biased observation model error in data assimilation Tyrus Berry Dept. of Mathematical Sciences, GMU PSU-UMD DA Workshop June 27, 217 Joint work with John Harlim, PSU BIAS IN OBSERVATION MODELS

More information

EnKF-based particle filters

EnKF-based particle filters EnKF-based particle filters Jana de Wiljes, Sebastian Reich, Wilhelm Stannat, Walter Acevedo June 20, 2017 Filtering Problem Signal dx t = f (X t )dt + 2CdW t Observations dy t = h(x t )dt + R 1/2 dv t.

More information

At A Glance. UQ16 Mobile App.

At A Glance. UQ16 Mobile App. At A Glance UQ16 Mobile App Scan the QR code with any QR reader and download the TripBuilder EventMobile app to your iphone, ipad, itouch or Android mobile device. To access the app or the HTML 5 version,

More information

A review of stability and dynamical behaviors of differential equations:

A review of stability and dynamical behaviors of differential equations: A review of stability and dynamical behaviors of differential equations: scalar ODE: u t = f(u), system of ODEs: u t = f(u, v), v t = g(u, v), reaction-diffusion equation: u t = D u + f(u), x Ω, with boundary

More information

Zentrum für Technomathematik

Zentrum für Technomathematik Zentrum für Technomathematik Fachbereich 3 Mathematik und Informatik On the influence of model nonlinearity and localization on ensemble Kalman smoothing Lars Nerger Svenja Schulte Angelika Bunse-Gerstner

More information

Performance of ensemble Kalman filters with small ensembles

Performance of ensemble Kalman filters with small ensembles Performance of ensemble Kalman filters with small ensembles Xin T Tong Joint work with Andrew J. Majda National University of Singapore Sunday 28 th May, 2017 X.Tong EnKF performance 1 / 31 Content Ensemble

More information

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES Xuguang Wang*, Thomas M. Hamill, Jeffrey S. Whitaker NOAA/CIRES

More information

1. Introduction Systems evolving on widely separated time-scales represent a challenge for numerical simulations. A generic example is

1. Introduction Systems evolving on widely separated time-scales represent a challenge for numerical simulations. A generic example is COMM. MATH. SCI. Vol. 1, No. 2, pp. 385 391 c 23 International Press FAST COMMUNICATIONS NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ERIC VANDEN-EIJNDEN Abstract. Numerical

More information

Mathematical Theories of Turbulent Dynamical Systems

Mathematical Theories of Turbulent Dynamical Systems Mathematical Theories of Turbulent Dynamical Systems Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 2016 Advanced Topics in Applied Math Di Qi, and Andrew J. Majda (CIMS) Mathematical

More information

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Jon Poterjoy, Ryan Sobash, and Jeffrey Anderson National Center for Atmospheric Research

More information

III Subjective probabilities. III.4. Adaptive Kalman filtering. Probability Course III:4 Bologna 9-13 February 2015

III Subjective probabilities. III.4. Adaptive Kalman filtering. Probability Course III:4 Bologna 9-13 February 2015 III Subjective probabilities III.4. Adaptive Kalman filtering III.4.1 A 2-dimensional Kalman filter system Obs-Tfc= correction Bias? Corr = A(t) Tfc It appears as if the old bias has abruptly changed into

More information

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions Joshua Hacker National Center for Atmospheric Research hacker@ucar.edu Topics The closure problem and physical parameterizations

More information

Reducing the Impact of Sampling Errors in Ensemble Filters

Reducing the Impact of Sampling Errors in Ensemble Filters Reducing the Impact of Sampling Errors in Ensemble Filters Jeffrey Anderson NCAR Data Assimilation Research Section The National Center for Atmospheric Research is sponsored by the National Science Foundation.

More information

Introduction to ensemble forecasting. Eric J. Kostelich

Introduction to ensemble forecasting. Eric J. Kostelich Introduction to ensemble forecasting Eric J. Kostelich SCHOOL OF MATHEMATICS AND STATISTICS MSRI Climate Change Summer School July 21, 2008 Co-workers: Istvan Szunyogh, Brian Hunt, Edward Ott, Eugenia

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

A scaling limit from Euler to Navier-Stokes equations with random perturbation

A scaling limit from Euler to Navier-Stokes equations with random perturbation A scaling limit from Euler to Navier-Stokes equations with random perturbation Franco Flandoli, Scuola Normale Superiore of Pisa Newton Institute, October 208 Newton Institute, October 208 / Subject of

More information

MOX EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS. Innsbruck Workshop October

MOX EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS. Innsbruck Workshop October Innsbruck Workshop October 29 21 EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS Luca Bonaventura - Modellistica e Calcolo Scientifico Dipartimento di Matematica

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Model error in coupled atmosphereocean data assimilation. Alison Fowler and Amos Lawless (and Keith Haines)

Model error in coupled atmosphereocean data assimilation. Alison Fowler and Amos Lawless (and Keith Haines) Model error in coupled atmosphereocean data assimilation Alison Fowler and Amos Lawless (and Keith Haines) Informal DARC seminar 11 th February 2015 Introduction Coupled atmosphere-ocean DA schemes have

More information

Nonparametric Uncertainty Quantification for Stochastic Gradient Flows

Nonparametric Uncertainty Quantification for Stochastic Gradient Flows Nonparametric Uncertainty Quantification for Stochastic Gradient Flows Tyrus Berry and John Harlim Abstract. This paper presents a nonparametric statistical modeling method for quantifying uncertainty

More information

Observability, a Problem in Data Assimilation

Observability, a Problem in Data Assimilation Observability, Data Assimilation with the Extended Kalman Filter 1 Observability, a Problem in Data Assimilation Chris Danforth Department of Applied Mathematics and Scientific Computation, UMD March 10,

More information

We honor Ed Lorenz ( ) who started the whole new science of predictability

We honor Ed Lorenz ( ) who started the whole new science of predictability Atmospheric Predictability: From Basic Theory to Forecasting Practice. Eugenia Kalnay Alghero, May 2008, Lecture 1 We honor Ed Lorenz (1917-2008) who started the whole new science of predictability Ed

More information

A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix)

A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix) A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix) Nan Chen and Andrew J. Majda Department of Mathematics, and Center for Atmosphere Ocean

More information

Some Basic Statistical Modeling Issues in Molecular and Ocean Dynamics

Some Basic Statistical Modeling Issues in Molecular and Ocean Dynamics Some Basic Statistical Modeling Issues in Molecular and Ocean Dynamics p. 1/2 Some Basic Statistical Modeling Issues in Molecular and Ocean Dynamics Peter R. Kramer Department of Mathematical Sciences

More information

On the influence of model nonlinearity and localization on ensemble Kalman smoothing

On the influence of model nonlinearity and localization on ensemble Kalman smoothing QuarterlyJournalof theroyalmeteorologicalsociety Q. J. R. Meteorol. Soc. 140: 2249 2259, October 2014 A DOI:10.1002/qj.2293 On the influence of model nonlinearity and localization on ensemble Kalman smoothing

More information

A State Space Model for Wind Forecast Correction

A State Space Model for Wind Forecast Correction A State Space Model for Wind Forecast Correction Valrie Monbe, Pierre Ailliot 2, and Anne Cuzol 1 1 Lab-STICC, Université Européenne de Bretagne, France (e-mail: valerie.monbet@univ-ubs.fr, anne.cuzol@univ-ubs.fr)

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Ensemble square-root filters

Ensemble square-root filters Ensemble square-root filters MICHAEL K. TIPPETT International Research Institute for climate prediction, Palisades, New Yor JEFFREY L. ANDERSON GFDL, Princeton, New Jersy CRAIG H. BISHOP Naval Research

More information

Stochastic Analogues to Deterministic Optimizers

Stochastic Analogues to Deterministic Optimizers Stochastic Analogues to Deterministic Optimizers ISMP 2018 Bordeaux, France Vivak Patel Presented by: Mihai Anitescu July 6, 2018 1 Apology I apologize for not being here to give this talk myself. I injured

More information

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Stochastic Integration and Stochastic Differential Equations: a gentle introduction Stochastic Integration and Stochastic Differential Equations: a gentle introduction Oleg Makhnin New Mexico Tech Dept. of Mathematics October 26, 27 Intro: why Stochastic? Brownian Motion/ Wiener process

More information

DATA-DRIVEN TECHNIQUES FOR ESTIMATION AND STOCHASTIC REDUCTION OF MULTI-SCALE SYSTEMS

DATA-DRIVEN TECHNIQUES FOR ESTIMATION AND STOCHASTIC REDUCTION OF MULTI-SCALE SYSTEMS DATA-DRIVEN TECHNIQUES FOR ESTIMATION AND STOCHASTIC REDUCTION OF MULTI-SCALE SYSTEMS A Dissertation Presented to the Faculty of the Department of Mathematics University of Houston In Partial Fulfillment

More information

Earth System Modeling Domain decomposition

Earth System Modeling Domain decomposition Earth System Modeling Domain decomposition Graziano Giuliani International Centre for Theorethical Physics Earth System Physics Section Advanced School on Regional Climate Modeling over South America February

More information

Adaptive Inflation for Ensemble Assimilation

Adaptive Inflation for Ensemble Assimilation Adaptive Inflation for Ensemble Assimilation Jeffrey Anderson IMAGe Data Assimilation Research Section (DAReS) Thanks to Ryan Torn, Nancy Collins, Tim Hoar, Hui Liu, Kevin Raeder, Xuguang Wang Anderson:

More information