Partitions, permutations and posets Péter Csikvári

Size: px
Start display at page:

Download "Partitions, permutations and posets Péter Csikvári"

Transcription

1 Partitions, permutations and posets Péter Csivári In this note I only collect those things which are not discussed in R Stanley s Algebraic Combinatorics boo Partitions For the definition of (number) partition, Ferrers diagram and Young tableaux, conugate partition see Chapter of R Stanley s Algebraic Combinatorics boo This section is based (more or less) on the treatment of the boo A Course in Combinatorics by Van Lint and Wilson (Chapter 5) Proposition Let p (n) be the number of partitions of n into at most parts Let p (n) be the number of partitions of n with at most parts Then p (n) p (n) Proof There is a natural biection between the two sets: associate the conugate partition to a partition Next let us understand the generating function of the seuence (p (n)) Theorem We have where p (0) Proof Note that p (n)x n x i, x ( + x i + x i + x 3 i + ) If we expand this product, the coefficient of x n will come from the products of the form x m x m x m, where m,, m 0 and m + +m n Note that this naturally correspond to the partition in which we have m s, m s,,m s and vice versa each partition naturally corresponds to such a term in the expansion The same idea helps us to understand the generating function of all partitions Theorem 3 We have p(n)x n x i,

2 where p(0) Proof As before x ( + x i + x i + x 3 i + ) i It might be scary to consider an infinite product, but observe that if you want to compute the coefficient of x n then you always have to choose the term from the terms + x i + x i + x 3 i + when i n + Let us introduce the notation [x n ]f(x) for a n if f(x) n a nx n Then n [x n ] (+x i +x i +x 3 i + ) [x n ] (+x i +x i +x 3 i + ) p n (n) p(n) by the previous theorem and the fact that the largest part in a partition of n is at most n Hence p(n)x n x i One can thin to generating functions a n x n in two different ways: (i) they are algebraic obects which form a ring, you can manipulate them algebraically, but you cannot plug any number (different form 0) into them, (ii) they are analytic functions with some convergence radius The function n!x n is a good example for the difference between (i) and (ii) Since the convergence radius is 0 for this function, you will hardly be able to do anything with it analytically, but this is a completely eligible algebraic expression, a "prominent" element of a ring Theorem 4 Let p o (n) be the number of partitions of n into odd parts Let p u (n) be the number of partitions of n into uneual parts Then (a) p o (n)x n x i (b) p u (n)x n ( + x i )

3 (c) p o (n) p u (n) Proof The proof of part (a) and (b) goes as before We only concentrate to part (c) Note that hence ( + x i ) + x i xi x i, x i x i x i since the terms x will cancel from the denominator and the enumerator Hence p o (n) p u (n) Second proof for part (c) We will give a biection between the set of partitions of n into odd parts and the set of partitions of n into uneual parts The ey ingredient of this biection will be the observation that any number can be uniuely written into the form (t + ), where, t 0 So let (λ,, λ m ) be a partition of n such that λ > > λ m Let λ i i (t i + ) and replace λ i by i pieces of t i + Then clearly we obtained a partition of n into odd parts Now we show that we can decode the original partition Let s count the number of parts t i + in a partition of n into odd parts Assume that there r i pieces of t i + Then r i can be uniuely written in base, ie, there are uniue s > s > > s such that r i s + + s Now replace the r i pieces of t i + with elements s n (t i + ), where n Hence we gave a biection between the set of partitions of n into odd parts and the set of partitions of n into uneual parts and so p o (n) p u (n) An example for this proof is the following Consider the partition , then 8 3, 3, 4, 3 3 and Hence the corresponding partition into odd parts will contain pieces of s + 3 pieces of 3 s And if you get the partition of 3 s and 3 pieces of 3 s then we now that we have to decompose 3 into -powers which can be uniuely done as , and similarly 3 + so we get bac the original partition Now let us consider the generating function as an analytic function Theorem 5 For n > we have π p(n) < e π 3 n (n ) 3

4 4 Remar Hardy and Ramanuan proved that p(n) 4 3n eπ 3 n, so, where f(n) 4 eπ 3 n As we can see our upper bound 3n agree with this function in the main term (and we won t need to wor very hard for this bound) lim n p(n) f(n) Proof (Van Lint) Recall that P (t) t p()t We will see that P (t) is convergent if t < Actually, we will choose t to be 0 < t < later The idea is the following, we will give an upper bound for P (t) and we will choose a t such that p(n)t n dominates the terms in P (t) Note that Then log P (t) log log log P (t) Now let 0 < t <, then and so Then log P (t) ( t ) log t t log( t ) t t t t t + t + t + + t > t, t t < t ( t)t t t t t < t t t t t t π t t Now we give a lower bound to P (t) Note that p(n) is a monoton increasing seuence (why?), so P (t) p()t p()t p(n) t p(n) tn t n n

5 Hence In other words, log p(n) + log log p(n) π tn t Now let u t t, then t +u Then log p(n) π < log P (t) < π t t t n log t + log( t) t u n log + u + log u + u π + (n ) log( + u) + log u u Note that log( + u) < u as + u < e u + u + u + Hence log p(n) < π Now let us choose u such a way that π optimal choice, then u + (n )u + log u u u π (n ) (n )u as it will be the (almost) Then we have log p(n) < (n )u + log u π 3 (n ) + log π (n ) In other words, p(n) < π (n ) e π 3 (n ) Euler s "pentagonal numbers" theorem Let us consider the partitions of n into uneual parts, and let p e (n) be the number of partitions of n into even number of uneual parts, and let p o (n) be the number of partitions of n into even number of uneual parts The following theorem is due to Euler Theorem We have p e (n) p o (n) { ( ) if n 3 ±, 0 otherwise 5

6 Proof We define two transformations on partitions with uneual parts They will be almost biection between partitions of n into even and odd number of uneual parts Let λ > > λ m be a partition of n into uneual parts The dots in the last row of the Ferrers diagram is called the base Its size is denoted by b, clearly b λ m Let s be the largest integer for which it is true that λ + λ + λ + The number s is the size of the slope of the partition: on the Ferrers diagram, the slope can be seen as follows: draw a 45 line in the direction NE-SW through the upper-right dot of the Ferrers diagram, then the dots on this line is the slope Its size is clearly s Now we give the two transformations: Transformation I: if b s then delete the base from the Ferrers diagram and add dots to the first b rows, this way we created a new slope This transformation results a new partition into uneual parts except in one case: if the original slope and base had a common dot and b s, then this transformation cannot be applied In this exceptional case n b + (b + ) + + (b ) 3b b, note that the number of parts in this case is b too Transformation II: if b > s then delete the slope from the Ferrers diagram and add a new base of size s to the Ferrers diagram This transformation results a new partition into uneual parts except in one case: if the original slope and base had a common dot and b s +, then this transformation cannot be applied In this exceptional case: n b + (b + ) + + (b 3) + (b ) 3(b ) +(b ), note that the number of parts in this case is b Figure Transformation II Both Transformation I and II change the parity of the number of parts and we can apply exactly one of them to a non-exceptional partition, and for the resulting partition we can only apply the other transformation which gives bac the original partition This shows that if n 3 ± then we get a biection between partitions of n into even and odd number of uneual parts, and if n 3 ± we will have

7 7 Figure Exceptional Ferrers-diagrams exactly one exceptional partition without pair and it has parts Hence we proved the theorem Note that we can easily give the generating function of p e (n) p o (n) as follows: (p e (n) p o (n))x n ( x i ) Indeed, if we expand the right hand side then a partition of n into uneual parts will contribute ( ) to the coefficient of n Combining this obseervation with Euler s theorem we get the following corollary Corollary We have ( x n ) + n ( ) ( ) x (3 )/ + x (3 +)/ The corollary of this corollary is a very fast way to compute the seuence (p(n)) Corollary 3 For n we have ( ) p(n) ( ) (p + n 3 Proof Recall that p(n)x n Now if we multiply it with ( x n ) + n ( )) + p n 3 + x i ( ) ( ) x (3 )/ + x (3 +)/, and compare the coefficient of n we get that for n we have ( ) ( )) p(n) + ( ) (p n 3 + p n which is euivalent with the statement of the corollary

8 8 3 Partitions fitting into a rectangle and -binomial numbers Let (n) n, and (n)! (n) (n ) () Finally, let ( ) n (n)! ()!(n )! Note that and so ( ) n It turns out that ( ) n following recursion formula Theorem 3 We have ( ) n (n) n, (n ) ( n + ) ( ) ( ) is actually a polynomial in This follows from the ( ) n ( ) n + n Proof See Lemma 5 in R Stanley s Algebraic Combinatorics Let p i (m, n) be the number of partitions of i with largest part at most n and at most m parts So this is the number of partitions of i such that the Young diagram of the partition fits into the m n rectangle Theorem 3 We have (n ) + m m mn i0 p i (m, n) i Proof See Theorem in R Stanley s Algebraic Combinatorics It is easy to see that (n ) + m m ( ) n + m mn m / from the definition It means that the coefficients are symmetric: p i (m, n) p mn i (m, n) Actually, this can be seen uite easily by deleting a Youngdiagram from an m n rectangle and then rotating the obtained diagram by 80, thus obtaining a Young diagram of mn i Theorem 33 Let be a prime power and F be the field with elements Then the number N (n, ) of -dimensional subspaces of the n-dimensional vectorspace F n is ( ) n

9 Proof Let us compute the number of elements of the following sets in two different ways: S {(v,, v ) v,, v F n are linearly independent vectors} We can choose v in n different ways, because we can choose any vector different from 0 Then we can choose v in n ( n ) different ways as we can choose everything except cv Having chosen v,, v t we can choose v t from F n v,, v t so we can choose v t in n t t ( n t+ ) ways Hence S ( )/ ( n )( n ) ( n + ) On the other hand, we can first choose the -dimensional subspace V induced by v,, v in N (n, ) ways and then inside V we can choose v,, v in ways Hence Hence we get that ( )/ ( )( ) ( ) S N (n, ) ( )/ ( )( ) ( ) N (n, ) ( ) n 9

ON PARTITION FUNCTIONS OF ANDREWS AND STANLEY

ON PARTITION FUNCTIONS OF ANDREWS AND STANLEY ON PARTITION FUNCTIONS OF ANDREWS AND STANLEY AE JA YEE Abstract. G. E. Andrews has established a refinement of the generating function for partitions π according to the numbers O(π) and O(π ) of odd parts

More information

Character Polynomials

Character Polynomials Character Polynomials Problem From Stanley s Positivity Problems in Algebraic Combinatorics Problem : Give a combinatorial interpretation of the row sums of the character table for S n (combinatorial proof

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

More about partitions

More about partitions Partitions 2.4, 3.4, 4.4 02 More about partitions 3 + +, + 3 +, and + + 3 are all the same partition, so we will write the numbers in non-increasing order. We use greek letters to denote partitions, often

More information

Chapter Generating Functions

Chapter Generating Functions Chapter 8.1.1-8.1.2. Generating Functions Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 8. Generating Functions Math 184A / Fall 2017 1 / 63 Ordinary Generating Functions (OGF) Let a n (n = 0, 1,...)

More information

Generating Functions of Partitions

Generating Functions of Partitions CHAPTER B Generating Functions of Partitions For a complex sequence {α n n 0,, 2, }, its generating function with a complex variable q is defined by A(q) : α n q n α n [q n ] A(q). When the sequence has

More information

Finding local extrema and intervals of increase/decrease

Finding local extrema and intervals of increase/decrease Finding local extrema and intervals of increase/decrease Example 1 Find the relative extrema of f(x) = increasing and decreasing. ln x x. Also, find where f(x) is STEP 1: Find the domain of the function

More information

AN ALGEBRAIC INTERPRETATION OF THE q-binomial COEFFICIENTS. Michael Braun

AN ALGEBRAIC INTERPRETATION OF THE q-binomial COEFFICIENTS. Michael Braun International Electronic Journal of Algebra Volume 6 (2009) 23-30 AN ALGEBRAIC INTERPRETATION OF THE -BINOMIAL COEFFICIENTS Michael Braun Received: 28 February 2008; Revised: 2 March 2009 Communicated

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

The Gaussian coefficient revisited

The Gaussian coefficient revisited The Gaussian coefficient revisited Richard EHRENBORG and Margaret A. READDY Abstract We give new -(1+)-analogue of the Gaussian coefficient, also now as the -binomial which, lie the original -binomial

More information

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1).

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1). Lecture A jacques@ucsd.edu Notation: N, R, Z, F, C naturals, reals, integers, a field, complex numbers. p(n), S n,, b(n), s n, partition numbers, Stirling of the second ind, Bell numbers, Stirling of the

More information

A Combinatorial Approach to Finding Dirichlet Generating Function Identities

A Combinatorial Approach to Finding Dirichlet Generating Function Identities The Waterloo Mathematics Review 3 A Combinatorial Approach to Finding Dirichlet Generating Function Identities Alesandar Vlasev Simon Fraser University azv@sfu.ca Abstract: This paper explores an integer

More information

Eigenvalues of Random Matrices over Finite Fields

Eigenvalues of Random Matrices over Finite Fields Eigenvalues of Random Matrices over Finite Fields Kent Morrison Department of Mathematics California Polytechnic State University San Luis Obispo, CA 93407 kmorriso@calpoly.edu September 5, 999 Abstract

More information

Sums and Products. a i = a 1. i=1. a i = a i a n. n 1

Sums and Products. a i = a 1. i=1. a i = a i a n. n 1 Sums and Products -27-209 In this section, I ll review the notation for sums and products Addition and multiplication are binary operations: They operate on two numbers at a time If you want to add or

More information

The Kth M-ary Partition Function

The Kth M-ary Partition Function Indiana University of Pennsylvania Knowledge Repository @ IUP Theses and Dissertations (All) Fall 12-2016 The Kth M-ary Partition Function Laura E. Rucci Follow this and additional works at: http://knowledge.library.iup.edu/etd

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Involutions by Descents/Ascents and Symmetric Integral Matrices. Alan Hoffman Fest - my hero Rutgers University September 2014

Involutions by Descents/Ascents and Symmetric Integral Matrices. Alan Hoffman Fest - my hero Rutgers University September 2014 by Descents/Ascents and Symmetric Integral Matrices Richard A. Brualdi University of Wisconsin-Madison Joint work with Shi-Mei Ma: European J. Combins. (to appear) Alan Hoffman Fest - my hero Rutgers University

More information

Generating Functions

Generating Functions Semester 1, 2004 Generating functions Another means of organising enumeration. Two examples we have seen already. Example 1. Binomial coefficients. Let X = {1, 2,..., n} c k = # k-element subsets of X

More information

= = = = = =

= = = = = = PARTITION THEORY (notes by M. Hlynka, University of Windsor) Definition: A partition of a positive integer n is an expression of n as a sum of positive integers. Partitions are considered the same if the

More information

Counting Matrices Over a Finite Field With All Eigenvalues in the Field

Counting Matrices Over a Finite Field With All Eigenvalues in the Field Counting Matrices Over a Finite Field With All Eigenvalues in the Field Lisa Kaylor David Offner Department of Mathematics and Computer Science Westminster College, Pennsylvania, USA kaylorlm@wclive.westminster.edu

More information

COMPOSITIONS, PARTITIONS, AND FIBONACCI NUMBERS

COMPOSITIONS, PARTITIONS, AND FIBONACCI NUMBERS COMPOSITIONS PARTITIONS AND FIBONACCI NUMBERS ANDREW V. SILLS Abstract. A bijective proof is given for the following theorem: the number of compositions of n into odd parts equals the number of compositions

More information

PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS

PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS GEORGE E. ANDREWS, MATTHIAS BECK, AND NEVILLE ROBBINS Abstract. We study the number p(n, t) of partitions of n with difference t between

More information

Determinants: Introduction and existence

Determinants: Introduction and existence Math 5327 Spring 2018 Determinants: Introduction and existence In this set of notes I try to give the general theory of determinants in a fairly abstract setting. I will start with the statement of the

More information

The Catalan matroid.

The Catalan matroid. The Catalan matroid. arxiv:math.co/0209354v1 25 Sep 2002 Federico Ardila fardila@math.mit.edu September 4, 2002 Abstract We show how the set of Dyck paths of length 2n naturally gives rise to a matroid,

More information

Finite Fields. [Parts from Chapter 16. Also applications of FTGT]

Finite Fields. [Parts from Chapter 16. Also applications of FTGT] Finite Fields [Parts from Chapter 16. Also applications of FTGT] Lemma [Ch 16, 4.6] Assume F is a finite field. Then the multiplicative group F := F \ {0} is cyclic. Proof Recall from basic group theory

More information

56 CHAPTER 3. POLYNOMIAL FUNCTIONS

56 CHAPTER 3. POLYNOMIAL FUNCTIONS 56 CHAPTER 3. POLYNOMIAL FUNCTIONS Chapter 4 Rational functions and inequalities 4.1 Rational functions Textbook section 4.7 4.1.1 Basic rational functions and asymptotes As a first step towards understanding

More information

Discrete Mathematics. Kishore Kothapalli

Discrete Mathematics. Kishore Kothapalli Discrete Mathematics Kishore Kothapalli 2 Chapter 4 Advanced Counting Techniques In the previous chapter we studied various techniques for counting and enumeration. However, there are several interesting

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007 Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 007 Questions will be set on the following and related topics. Algebra: Sets, operations on sets. Prime numbers, factorisation of integers

More information

Patterns in Standard Young Tableaux

Patterns in Standard Young Tableaux Patterns in Standard Young Tableaux Sara Billey University of Washington Slides: math.washington.edu/ billey/talks Based on joint work with: Matjaž Konvalinka and Joshua Swanson 6th Encuentro Colombiano

More information

Generating Function Notes , Fall 2005, Prof. Peter Shor

Generating Function Notes , Fall 2005, Prof. Peter Shor Counting Change Generating Function Notes 80, Fall 00, Prof Peter Shor In this lecture, I m going to talk about generating functions We ve already seen an example of generating functions Recall when we

More information

Partition Identities

Partition Identities Partition Identities Alexander D. Healy ahealy@fas.harvard.edu May 00 Introduction A partition of a positive integer n (or a partition of weight n) is a non-decreasing sequence λ = (λ, λ,..., λ k ) of

More information

MATH 205 HOMEWORK #3 OFFICIAL SOLUTION. Problem 1: Find all eigenvalues and eigenvectors of the following linear transformations. (a) F = R, V = R 3,

MATH 205 HOMEWORK #3 OFFICIAL SOLUTION. Problem 1: Find all eigenvalues and eigenvectors of the following linear transformations. (a) F = R, V = R 3, MATH 205 HOMEWORK #3 OFFICIAL SOLUTION Problem 1: Find all eigenvalues and eigenvectors of the following linear transformations. a F = R, V = R 3, b F = R or C, V = F 2, T = T = 9 4 4 8 3 4 16 8 7 0 1

More information

Course : Algebraic Combinatorics

Course : Algebraic Combinatorics Course 18.31: Algebraic Combinatorics Lecture Notes # 10 Addendum by Gregg Musiker (Based on Lauren Williams Notes for Math 19 at Harvard) February 5th - 7th, 009 1 Introduction to Partitions A partition

More information

Generating Functions (Revised Edition)

Generating Functions (Revised Edition) Math 700 Fall 06 Notes Generating Functions (Revised Edition What is a generating function? An ordinary generating function for a sequence (a n n 0 is the power series A(x = a nx n. The exponential generating

More information

Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian , China (Submitted June 2002)

Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian , China (Submitted June 2002) SELF-INVERSE SEQUENCES RELATED TO A BINOMIAL INVERSE PAIR Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China (Submitted June 2002) 1 INTRODUCTION Pairs of

More information

Generating Functions

Generating Functions 8.30 lecture notes March, 0 Generating Functions Lecturer: Michel Goemans We are going to discuss enumeration problems, and how to solve them using a powerful tool: generating functions. What is an enumeration

More information

WAITING FOR A BAT TO FLY BY (IN POLYNOMIAL TIME)

WAITING FOR A BAT TO FLY BY (IN POLYNOMIAL TIME) WAITING FOR A BAT TO FLY BY (IN POLYNOMIAL TIME ITAI BENJAMINI, GADY KOZMA, LÁSZLÓ LOVÁSZ, DAN ROMIK, AND GÁBOR TARDOS Abstract. We observe returns of a simple random wal on a finite graph to a fixed node,

More information

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence.

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. f n (0)x n Recall from

More information

= i 0. a i q i. (1 aq i ).

= i 0. a i q i. (1 aq i ). SIEVED PARTITIO FUCTIOS AD Q-BIOMIAL COEFFICIETS Fran Garvan* and Dennis Stanton** Abstract. The q-binomial coefficient is a polynomial in q. Given an integer t and a residue class r modulo t, a sieved

More information

Chapter 5: Integer Compositions and Partitions and Set Partitions

Chapter 5: Integer Compositions and Partitions and Set Partitions Chapter 5: Integer Compositions and Partitions and Set Partitions Prof. Tesler Math 184A Winter 2017 Prof. Tesler Ch. 5: Compositions and Partitions Math 184A / Winter 2017 1 / 32 5.1. Compositions A strict

More information

Asymptotics for minimal overlapping patterns for generalized Euler permutations, standard tableaux of rectangular shapes, and column strict arrays

Asymptotics for minimal overlapping patterns for generalized Euler permutations, standard tableaux of rectangular shapes, and column strict arrays Discrete Mathematics and Theoretical Computer Science DMTCS vol. 8:, 06, #6 arxiv:50.0890v4 [math.co] 6 May 06 Asymptotics for minimal overlapping patterns for generalized Euler permutations, standard

More information

Some Catalan Musings p. 1. Some Catalan Musings. Richard P. Stanley

Some Catalan Musings p. 1. Some Catalan Musings. Richard P. Stanley Some Catalan Musings p. 1 Some Catalan Musings Richard P. Stanley Some Catalan Musings p. 2 An OEIS entry A000108: 1,1,2,5,14,42,132,429,... Some Catalan Musings p. 2 An OEIS entry A000108: 1,1,2,5,14,42,132,429,...

More information

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra MTH6140 Linear Algebra II Notes 2 21st October 2010 2 Matrices You have certainly seen matrices before; indeed, we met some in the first chapter of the notes Here we revise matrix algebra, consider row

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

= (q) M+N (q) M (q) N

= (q) M+N (q) M (q) N A OVERPARTITIO AALOGUE OF THE -BIOMIAL COEFFICIETS JEHAE DOUSSE AD BYUGCHA KIM Abstract We define an overpartition analogue of Gaussian polynomials (also known as -binomial coefficients) as a generating

More information

PLANE PARTITIONS AMY BECKER, LILLY BETKE-BRUNSWICK, ANNA ZINK

PLANE PARTITIONS AMY BECKER, LILLY BETKE-BRUNSWICK, ANNA ZINK PLANE PARTITIONS AMY BECKER, LILLY BETKE-BRUNSWICK, ANNA ZINK Abstract. Throughout our study of the enumeration of plane partitions we make use of bijective proofs to find generating functions. In particular,

More information

Partition Numbers. Kevin Y.X. Wang. September 5, School of Mathematics and Statistics The University of Sydney

Partition Numbers. Kevin Y.X. Wang. September 5, School of Mathematics and Statistics The University of Sydney Partition Numbers Kevin Y.X. Wang School of Mathematics and Statistics The University of Sydney September 5, 2017 Outline 1 Introduction 2 Generating function of partition numbers 3 Jacobi s Triple Product

More information

BMT 2018 Team Test Solutions March 18, 2018

BMT 2018 Team Test Solutions March 18, 2018 . A circle with radius is inscribed in a right triangle with hypotenuse 4 as shown below. What is the area of the triangle? Note that the diagram is not to scale. 4 Answer: 9 Solution : We wish to use

More information

Number Theory, Algebra and Analysis. William Yslas Vélez Department of Mathematics University of Arizona

Number Theory, Algebra and Analysis. William Yslas Vélez Department of Mathematics University of Arizona Number Theory, Algebra and Analysis William Yslas Vélez Department of Mathematics University of Arizona O F denotes the ring of integers in the field F, it mimics Z in Q How do primes factor as you consider

More information

Chapter 5: Integer Compositions and Partitions and Set Partitions

Chapter 5: Integer Compositions and Partitions and Set Partitions Chapter 5: Integer Compositions and Partitions and Set Partitions Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 5: Compositions and Partitions Math 184A / Fall 2017 1 / 46 5.1. Compositions A strict

More information

Topic 7 Notes Jeremy Orloff

Topic 7 Notes Jeremy Orloff Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7. Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove

More information

x = x y and y = x + y.

x = x y and y = x + y. 8. Conic sections We can use Legendre s theorem, (7.1), to characterise all rational solutions of the general quadratic equation in two variables ax 2 + bxy + cy 2 + dx + ey + ef 0, where a, b, c, d, e

More information

Combinatorial Structures

Combinatorial Structures Combinatorial Structures Contents 1 Permutations 1 Partitions.1 Ferrers diagrams....................................... Skew diagrams........................................ Dominance order......................................

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

The Jacobi Symbol. q q 1 q 2 q n

The Jacobi Symbol. q q 1 q 2 q n The Jacobi Symbol It s a little inconvenient that the Legendre symbol a is only defined when the bottom is an odd p prime You can extend the definition to allow an odd positive number on the bottom using

More information

Review Unit Multiple Choice Identify the choice that best completes the statement or answers the question.

Review Unit Multiple Choice Identify the choice that best completes the statement or answers the question. Review Unit 3 1201 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following numbers is not both a perfect square and a perfect cube? a. 531

More information

Trinity Christian School Curriculum Guide

Trinity Christian School Curriculum Guide Course Title: Calculus Grade Taught: Twelfth Grade Credits: 1 credit Trinity Christian School Curriculum Guide A. Course Goals: 1. To provide students with a familiarity with the properties of linear,

More information

Congruence Properties of Partition Function

Congruence Properties of Partition Function CHAPTER H Congruence Properties of Partition Function Congruence properties of p(n), the number of partitions of n, were first discovered by Ramanujan on examining the table of the first 200 values of

More information

1.1.1 Algebraic Operations

1.1.1 Algebraic Operations 1.1.1 Algebraic Operations We need to learn how our basic algebraic operations interact. When confronted with many operations, we follow the order of operations: Parentheses Exponentials Multiplication

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

Notes on the Matrix-Tree theorem and Cayley s tree enumerator

Notes on the Matrix-Tree theorem and Cayley s tree enumerator Notes on the Matrix-Tree theorem and Cayley s tree enumerator 1 Cayley s tree enumerator Recall that the degree of a vertex in a tree (or in any graph) is the number of edges emanating from it We will

More information

Determinants - Uniqueness and Properties

Determinants - Uniqueness and Properties Determinants - Uniqueness and Properties 2-2-2008 In order to show that there s only one determinant function on M(n, R), I m going to derive another formula for the determinant It involves permutations

More information

2 Generating Functions

2 Generating Functions 2 Generating Functions In this part of the course, we re going to introduce algebraic methods for counting and proving combinatorial identities. This is often greatly advantageous over the method of finding

More information

arxiv:math/ v1 [math.co] 7 Jul 2004

arxiv:math/ v1 [math.co] 7 Jul 2004 Newton s Method as a Formal Recurrence arxiv:math/0407115v1 [math.co] 7 Jul 2004 Hal Canary, Carl Eduist, Samuel Lachterman, Brendan Younger February 1, 2008 Abstract Iterating Newton s method symbolically

More information

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula Syllabus for Math 308, Paul Smith Book: Kolman-Hill Chapter 1. Linear Equations and Matrices 1.1 Systems of Linear Equations Definition of a linear equation and a solution to a linear equations. Meaning

More information

CHAPTER 1 POLYNOMIALS

CHAPTER 1 POLYNOMIALS 1 CHAPTER 1 POLYNOMIALS 1.1 Removing Nested Symbols of Grouping Simplify. 1. 4x + 3( x ) + 4( x + 1). ( ) 3x + 4 5 x 3 + x 3. 3 5( y 4) + 6 y ( y + 3) 4. 3 n ( n + 5) 4 ( n + 8) 5. ( x + 5) x + 3( x 6)

More information

Notes on Continued Fractions for Math 4400

Notes on Continued Fractions for Math 4400 . Continued fractions. Notes on Continued Fractions for Math 4400 The continued fraction expansion converts a positive real number α into a sequence of natural numbers. Conversely, a sequence of natural

More information

Citation Osaka Journal of Mathematics. 43(2)

Citation Osaka Journal of Mathematics. 43(2) TitleIrreducible representations of the Author(s) Kosuda, Masashi Citation Osaka Journal of Mathematics. 43(2) Issue 2006-06 Date Text Version publisher URL http://hdl.handle.net/094/0396 DOI Rights Osaka

More information

Combinatorics of inverse semigroups. 1 Inverse semigroups and orders

Combinatorics of inverse semigroups. 1 Inverse semigroups and orders Combinatorics of inverse semigroups This is an exposition of some results explained to me by Abdullahi Umar, together with some further speculations of my own and some with Ni Rusuc. 1 Inverse semigroups

More information

Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming

Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming Yuval Filmus April 4, 2017 Abstract The seminal complete intersection theorem of Ahlswede and Khachatrian gives the maximum cardinality of

More information

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS JEREMY BOOHER Continued fractions usually get short-changed at PROMYS, but they are interesting in their own right and useful in other areas

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

7. Prime Numbers Part VI of PJE

7. Prime Numbers Part VI of PJE 7. Prime Numbers Part VI of PJE 7.1 Definition (p.277) A positive integer n is prime when n > 1 and the only divisors are ±1 and +n. That is D (n) = { n 1 1 n}. Otherwise n > 1 is said to be composite.

More information

What you learned in Math 28. Rosa C. Orellana

What you learned in Math 28. Rosa C. Orellana What you learned in Math 28 Rosa C. Orellana Chapter 1 - Basic Counting Techniques Sum Principle If we have a partition of a finite set S, then the size of S is the sum of the sizes of the blocks of the

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls):

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): Lecture 5 Series solutions to DEs Relevant sections from AMATH 35 Course Notes (Wainwright):.4. Relevant sections from AMATH 35 Course Notes (Poulin and Ingalls): 2.-2.3 As mentioned earlier in this course,

More information

Instructional Unit Conic Sections Pre Calculus #312 Unit Content Objective Performance Performance Task State Standards

Instructional Unit Conic Sections Pre Calculus #312 Unit Content Objective Performance Performance Task State Standards Instructional Unit Conic Sections Conic Sections The student will be -Define conic sections -Homework 2.8.11E -Ellipses able to create conic as conic slices and -Classwork -Hyperbolas sections based on

More information

PRIME NUMBERS YANKI LEKILI

PRIME NUMBERS YANKI LEKILI PRIME NUMBERS YANKI LEKILI We denote by N the set of natural numbers: 1,2,..., These are constructed using Peano axioms. We will not get into the philosophical questions related to this and simply assume

More information

8. Dirichlet s Theorem and Farey Fractions

8. Dirichlet s Theorem and Farey Fractions 8 Dirichlet s Theorem and Farey Fractions We are concerned here with the approximation of real numbers by rational numbers, generalizations of this concept and various applications to problems in number

More information

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n.

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n. Vector Spaces Definition: The usual addition and scalar multiplication of n-tuples x = (x 1,..., x n ) R n (also called vectors) are the addition and scalar multiplication operations defined component-wise:

More information

DIFFERENTIAL POSETS SIMON RUBINSTEIN-SALZEDO

DIFFERENTIAL POSETS SIMON RUBINSTEIN-SALZEDO DIFFERENTIAL POSETS SIMON RUBINSTEIN-SALZEDO Abstract. In this paper, we give a sampling of the theory of differential posets, including various topics that excited me. Most of the material is taken from

More information

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Karlsruhe October 14, 2011 November 1, 2011 A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Wolfdieter L a n g 1 The sum of the k th power of the first n positive

More information

A Prelude to Euler's Pentagonal Number Theorem

A Prelude to Euler's Pentagonal Number Theorem A Prelude to Euler's Pentagonal Number Theorem August 15, 2007 Preliminaries: Partitions In this paper we intend to explore the elementaries of partition theory, taken from a mostly graphic perspective,

More information

PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS

PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS GEORGE E. ANDREWS, MATTHIAS BECK, AND NEVILLE ROBBINS Abstract. We study the number p(n, t) of partitions of n with difference t between

More information

Applications of modular forms to partitions and multipartitions

Applications of modular forms to partitions and multipartitions Applications of modular forms to partitions and multipartitions Holly Swisher Oregon State University October 22, 2009 Goal The goal of this talk is to highlight some applications of the theory of modular

More information

A Conjectured Combinatorial Interpretation of the Normalized Irreducible Character Values of the Symmetric Group

A Conjectured Combinatorial Interpretation of the Normalized Irreducible Character Values of the Symmetric Group A Conjectured Combinatorial Interpretation of the Normalized Irreducible Character Values of the Symmetric Group Richard P. Stanley Department of Mathematics, Massachusetts Institute of Technology Cambridge,

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z.

x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z. ALGEBRAIC NUMBER THEORY LECTURE 7 NOTES Material covered: Local fields, Hensel s lemma. Remark. The non-archimedean topology: Recall that if K is a field with a valuation, then it also is a metric space

More information

, when k is fixed. We give a number of results in. k q. this direction, some of which involve Eulerian polynomials and their generalizations.

, when k is fixed. We give a number of results in. k q. this direction, some of which involve Eulerian polynomials and their generalizations. SOME ASYMPTOTIC RESULTS ON -BINOMIAL COEFFICIENTS RICHARD P STANLEY AND FABRIZIO ZANELLO Abstract We loo at the asymptotic behavior of the coefficients of the -binomial coefficients or Gaussian polynomials,

More information

arxiv: v1 [math.co] 21 Sep 2015

arxiv: v1 [math.co] 21 Sep 2015 Chocolate Numbers arxiv:1509.06093v1 [math.co] 21 Sep 2015 Caleb Ji, Tanya Khovanova, Robin Park, Angela Song September 22, 2015 Abstract In this paper, we consider a game played on a rectangular m n gridded

More information

SAMPLE TEX FILE ZAJJ DAUGHERTY

SAMPLE TEX FILE ZAJJ DAUGHERTY SAMPLE TEX FILE ZAJJ DAUGHERTY Contents. What is the partition algebra?.. Graphs and equivalence relations.. Diagrams and their compositions.. The partition algebra. Combinatorial representation theory:

More information

Elementary 2-Group Character Codes. Abstract. In this correspondence we describe a class of codes over GF (q),

Elementary 2-Group Character Codes. Abstract. In this correspondence we describe a class of codes over GF (q), Elementary 2-Group Character Codes Cunsheng Ding 1, David Kohel 2, and San Ling Abstract In this correspondence we describe a class of codes over GF (q), where q is a power of an odd prime. These codes

More information

QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS III

QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS III #A39 INTEGERS 5 (05) QUADRANT MARKED MESH PATTERNS IN 3-AVOIDING PERMUTATIONS III Sergey Kitaev Department of Computer and Information Sciences, University of Strathclyde, Glasgow, United Kingdom sergey.kitaev@cis.strath.ac.uk

More information

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions:

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Dirichlet s Theorem Martin Orr August 1, 009 1 Introduction The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Theorem 1.1. If m, a N are coprime, then there

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Throughout these notes, F denotes a field (often called the scalars in this context). 1 Definition of a vector space Definition 1.1. A F -vector space or simply a vector space

More information

MULTI-ORDERED POSETS. Lisa Bishop Department of Mathematics, Occidental College, Los Angeles, CA 90041, United States.

MULTI-ORDERED POSETS. Lisa Bishop Department of Mathematics, Occidental College, Los Angeles, CA 90041, United States. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A06 MULTI-ORDERED POSETS Lisa Bishop Department of Mathematics, Occidental College, Los Angeles, CA 90041, United States lbishop@oxy.edu

More information

arxiv: v1 [math.gr] 18 May 2015

arxiv: v1 [math.gr] 18 May 2015 Peak Sets of Classical Coxeter Groups Alexander Diaz-Lopez 1, Pamela E. Harris 2, Erik Insko 3 and Darleen Perez-Lavin 3 arxiv:1505.04479v1 [math.gr] 18 May 2015 1 Department of Mathematics, University

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

More information