Hamiltonian Monte Carlo

Size: px
Start display at page:

Download "Hamiltonian Monte Carlo"

Transcription

1 Chapter 7 Hamiltonian Monte Carlo As with the Metropolis Hastings algorithm, Hamiltonian (or hybrid) Monte Carlo (HMC) is an idea that has been knocking around in the physics literature since the 1980s (see the excellent review article cum tutorial by Neal, 2011, from which I adapted the material in this chapter), and has been used albeit infrequently for statistical inference since the 1990s. In essence, HMC is a clever way to propose values within an MCMC routine. Over one single iteration, the parameter vector follows a deterministic trajectory that determines its precise next value. This is made random by drawing a value for an augmented momentum vector, which controls how the parameter evolves over that trajectory for that iteration. The beauty of this approach is that, for suitably tuned conditions governing the implementation of the trajectory, the proposed value can be far from the original value. In particular, HMC has been shown (see Neal, 2011) to get good mixing for high dimensional problems in which it is hard to devise an effective proposal distribution in a vanilla MCMC routine. 7.1 Fundamentals Two terms are introduced in HMC. One is the potential energy of a particular value of the parameters. This is just a constant minus the log posterior. The other is the momentum, an auxilliary vector of the same length as parameter vector. The momentum will be changed from iteration to iteration, and within iterations it will change as the parameter configuration explores the parameter space. In vanilla MCMC, the proposed values are created by adding a random displacement from the current location (usually centred on the current location), whereas in HMC, a random initial momentum is generated, given which the proposed value is deterministic 1. The momentum vector changes over the course of an iteration, according to the gradient of the potential energy (or, equivalently, the log posterior). This means that to implement an HMC sampler, you need to be able to evaluate the vector of partial derivatives of the log posterior. Below we will use P () for the 1 There is a small modification that introduces an additional random term: see later. 127

2 128 CHAPTER 7. HAMILTONIAN MONTE CARLO potential energy at, and G d () = dp () d d (7.1) for the gradient for the dth parameter, and G() for the entire vector of gradients. Since in each step within each iteration you will have to evaluate the gradient, you really need to have a closed form for the gradient for this to be computationally effective. An entire iteration proceeds as in the following pseudo-code: 1. Set 0 =, the current value, and let i = 0 be the current step. 2. Generate a momentum m from a (multivariate) standard normal N(0, I), where I is a matrix with 1s on the leading diagonal and 0s elsewhere, with the same number of rows as the dimension of D = dim(). Set m 0 = m. 3. Repeat the following steps N times: a) Set m i+1/2 = m i ɛg( i )/2. b) Set i+1 = i + ɛm i+1/2. c) Set m i+1 = m i+1/2 ɛg( i )/2. d) Increment i by Set = N and m = m N to be the proposed parameters and momenta. 5. Evaluate the potential energy at both old and proposed values of the parameters, P E () and P E ( ) (recall the potential energy is the negative of the log posterior). 6. Evaluate the kinetic energy at the old and proposed momenta, K E (m) = D d=1 2 d /2 and K E(m ) = D d=1 ( d )2 /2. 7. Accept the proposal with probability 7.2 Refinements exp P E () P E ( ) + K E (m) K E (m ) Choosing the number of steps and the step size As with vanilla MCMC, there are various run-time parameters of the algorithm that need to be selected. In MCMC, these are (i) the distribution family for the proposal, (ii) the mean or location of the proposal distribution and (iii) the variance of the distribution. Typically, a normal distribution centred on the current value is used, and so only (iii) need be selected. In HMC, two decisions must be made: (i) the number of steps (N in the above algorithm) and (ii) the step-size (ɛ). In my (limited) experience, N = 100 (or 1000) steps seems to have reasonable performance. The more steps, the slower the routine will be, but too few steps and the routine will lead to either nearby proposals (not desirable) or to a poor approximation of the trajectory resulting from the initial momentum.

3 7.3. EXAMPLE: EXPONENTIAL MODEL 129 The best choice of step-size may depend on the application. I would suggest starting with ɛ = 0.01 and then increasing or decreasing the size following trial runs. It has been suggested that using a constant step-size may, in some unlucky situations, lead to poor mixing, such as in light-tailed distributions (see references in Neal, 2011). Neal s suggestion is to randomise the choice of ɛ at each iteration not each step to overcome this. Dealing with boundaries to the parameter space If the parameter space is bounded and if partway through a trajectory the parameter configuration leaves the legal parameter space, something needs to be done to prevent errors. The solution is to bounce the trajectory backwards on collision with the boundary, by setting to and m to m immediately after updating at step 3b. The physical analogue is a ball bouncing off a wall: the momentum in the dimension perpendicular to the wall (only) is inverted. 7.3 Example: exponential model To allow visualisation of HMC, we will consider a one-dimensional (but real) example, with a boundary on the single parameter. The example is the leukæmia trial once more, and we shall fit an exponential model to the placebo arm data (which were uncensored event times; also recall: there was no real difference between the exponential and various two parameter models as measured by the DIC). The single parameter, the rate parameter, must be positive. From the data, the average relapse time is around 10d, so the rate should be somewhere around 0.1/d. We will use an improper flat prior on the support of. The potential energy (i.e. minus the log posterior) is evaluated using the following function: potential_energy=function(theta,data) if(theta<0)return(999999) return(-length(data)*log(theta)+sum(data*theta)) If the parameter value is illegal, a large value is returned. The gradient of the potential energy is evaluated thus: gradient=function(theta,data) if(theta<0)return(0) return(-length(data)/la+sum(data)) Each step within an iteration is performed using the following function (note that the preceding two functions are arguments to this):

4 130 CHAPTER 7. HAMILTONIAN MONTE CARLO onestep=function(gradient,data,theta,momentum,epsilon) momentum_p = momentum - epsilon*0.5*gradient(theta,data) theta_p = theta + epsilon*momentum_p if(theta_p<0)theta_p=-theta_p;momentum_p=-momentum_p momentum_p = momentum_p - epsilon*0.5*gradient(theta_p,data) return(list(theta=theta_p,momentum=momentum_p)) Note the line that checks whether the configuration is illegal would differ for multi-parameter models: each dimension would be checked and, for each that is illegal, that specific parameter and momentum would flip like a ball bouncing off a wall. The following function takes an existing parameter value and performs a series of steps using the function above. hmc = function(potential_energy, gradient, data, epsilon0, steps, old_theta) old_momentum = rnorm(length(old_theta),0,1) new_theta = old_theta new_momentum = old_momentum epsilon=abs(rnorm(1,epsilon0,0.2*epsilon0)) for(step in 1:steps) os=onestep(gradient,data,new_theta,new_momentum,epsilon) new_theta=os$theta new_momentum=os$momentum old_potential_energy = potential_energy(old_theta,data) new_potential_energy = potential_energy(new_theta,data) old_kinetic_energy = sum(old_momentum^2)/2 new_kinetic_energy = sum(new_momentum^2)/2 la=old_potential_energy-new_potential_energy+ old_kinetic_energy-new_kinetic_energy lu=-rexp(1) reject=false if(lu>la)reject=true if(reject)return(old_theta) if(!reject)return(new_theta) Note the jittering of ɛ. Note also that the potential energy at the previous location is not stored in memory instead it is recalculated from scratch, which is inefficient (though conceptually cleaner). The following code runs the routine: data=c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23)

5 7.3. EXAMPLE: EXPONENTIAL MODEL 131 theta=0.1 HMCits=1000 storetheta=array(0,c(hmcits,length(theta))) for(iteration in 1:HMCits) if(iteration%%100==0)print(iteration) theta=hmc(potential_energy,gradient,data,0.01,100,theta) storetheta[iteration,]=theta posterior posterior posterior posterior Figure 7.1: Proposal densities at four starting points. Starting points are indicated by points, and a kernel density estimate from 1000 simulations is presented by the coloured line. In grey is the actual posterior density. Figure 7.1 shows the proposal distributions that result from this routine for four different starting values in the middle and tails of the posterior distribution. Note how even very extreme starting values have a high probability of allowing proposals back to the main body of the distribution, or directly to the other

6 132 CHAPTER 7. HAMILTONIAN MONTE CARLO tail of the distribution, and that for a starting value near the middle of the distribution, the proposal distribution almost exactly matches the posterior iteration iteration iteration iteration Figure 7.2: Trace plots for several tuning parameter configurations. Top left: ɛ = 0.01, N = 100. Top right: ɛ = 0.001, N = 100. Bottom left: ɛ = 0.05, N = 100. Bottom right: ɛ = 0.01, N = Figure 7.2 shows trace plots for four different configurations of the number of steps (N) and the average stepsize ɛ (for each iteration, the value of ɛ is drawn from a normal distribution with standard deviation 20% of this average). The mixing appears good for all except the routine with an overly large ɛ. The density plots are presented in figure 7.3. As can be seen, all except the poorly mixing chain perform extremely well and the runs with a small ɛ are virtually indistinguishable from the actual posterior.

7 7.4. IN MULTIPLE DIMENSIONS 133 density Figure 7.3: Density estimates of posterior for several tuning parameter configurations. Orange: ɛ = 0.01, N = 100. Blue: ɛ = 0.001, N = 100. Gold: ɛ = 0.05, N = 100. Green: ɛ = 0.01, N = In multiple dimensions The attraction of HMC is that it promises to perform efficiently in multiple dimensions, especially when the posterior for several parameters are closely correlated to each other. Neal (2011) shows an application to a one-hundred dimensional posterior in which HMC gives extremely good mixing (in contrast to vanilla MCMC) and very accurate estimates of the true parameters (ditto): see high figures 5.6 and 5.7. In figure 7.4, I present the proposal distributions for a two dimensional problem with correlated parameters, illustrating how the HMC routine adapts to the correlated shape as each proposal is formed, thereby allowing efficient movement around the posterior distribution. Activities The best way to understand HMC (as with all the methods in the course) is to apply it. You might start with a simple problem like estimating a probability (see applications in chapter 1) to ensure you can visualise and understand what is going on in HMC. You should also attempt a two (or more) dimensional problem, so you are comfortable with extending the code presented above to vectors of parameters (the gradient function must change to output a vector (one gradient per parameter), and onestep needs to check each entry in the parameter vector for illegality).

8 134 CHAPTER 7. HAMILTONIAN MONTE CARLO Figure 7.4: Proposal distribution for four starting values in twodimensional problem. The target distribution is indicated in grey in the background (it is a bivariate normal). For four starting values, a set of random momentum variables is drawn and the resulting trajectories plotted as lines. References Neal RM (2011) MCMC using Hamiltonian dynamics. In Brooks S, Gelman A, Jones G and Meng X-L, eds, Handbook of Markov chain Monte Carlo Chapman and Hall/CRC.

Introduction to Hamiltonian Monte Carlo Method

Introduction to Hamiltonian Monte Carlo Method Introduction to Hamiltonian Monte Carlo Method Mingwei Tang Department of Statistics University of Washington mingwt@uw.edu November 14, 2017 1 Hamiltonian System Notation: q R d : position vector, p R

More information

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Adriana Ibrahim Institute

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

1 Geometry of high dimensional probability distributions

1 Geometry of high dimensional probability distributions Hamiltonian Monte Carlo October 20, 2018 Debdeep Pati References: Neal, Radford M. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo 2.11 (2011): 2. Betancourt, Michael. A conceptual

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

MIT /30 Gelman, Carpenter, Hoffman, Guo, Goodrich, Lee,... Stan for Bayesian data analysis

MIT /30 Gelman, Carpenter, Hoffman, Guo, Goodrich, Lee,... Stan for Bayesian data analysis MIT 1985 1/30 Stan: a program for Bayesian data analysis with complex models Andrew Gelman, Bob Carpenter, and Matt Hoffman, Jiqiang Guo, Ben Goodrich, and Daniel Lee Department of Statistics, Columbia

More information

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo Hamiltonian Monte Carlo within Stan Daniel Lee Columbia University, Statistics Department bearlee@alum.mit.edu BayesComp mc-stan.org Why MCMC? Have data. Have a rich statistical model. No analytic solution.

More information

Hamiltonian Monte Carlo with Fewer Momentum Reversals

Hamiltonian Monte Carlo with Fewer Momentum Reversals Hamiltonian Monte Carlo with ewer Momentum Reversals Jascha Sohl-Dickstein December 6, 2 Hamiltonian dynamics with partial momentum refreshment, in the style of Horowitz, Phys. ett. B, 99, explore the

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

17 : Optimization and Monte Carlo Methods

17 : Optimization and Monte Carlo Methods 10-708: Probabilistic Graphical Models Spring 2017 17 : Optimization and Monte Carlo Methods Lecturer: Avinava Dubey Scribes: Neil Spencer, YJ Choe 1 Recap 1.1 Monte Carlo Monte Carlo methods such as rejection

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

Gradient-based Monte Carlo sampling methods

Gradient-based Monte Carlo sampling methods Gradient-based Monte Carlo sampling methods Johannes von Lindheim 31. May 016 Abstract Notes for a 90-minute presentation on gradient-based Monte Carlo sampling methods for the Uncertainty Quantification

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Paul Karapanagiotidis ECO4060

Paul Karapanagiotidis ECO4060 Paul Karapanagiotidis ECO4060 The way forward 1) Motivate why Markov-Chain Monte Carlo (MCMC) is useful for econometric modeling 2) Introduce Markov-Chain Monte Carlo (MCMC) - Metropolis-Hastings (MH)

More information

Monte Carlo Inference Methods

Monte Carlo Inference Methods Monte Carlo Inference Methods Iain Murray University of Edinburgh http://iainmurray.net Monte Carlo and Insomnia Enrico Fermi (1901 1954) took great delight in astonishing his colleagues with his remarkably

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Computer Practical: Metropolis-Hastings-based MCMC

Computer Practical: Metropolis-Hastings-based MCMC Computer Practical: Metropolis-Hastings-based MCMC Andrea Arnold and Franz Hamilton North Carolina State University July 30, 2016 A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, 2016 1 / 19 Markov

More information

Riemann Manifold Methods in Bayesian Statistics

Riemann Manifold Methods in Bayesian Statistics Ricardo Ehlers ehlers@icmc.usp.br Applied Maths and Stats University of São Paulo, Brazil Working Group in Statistical Learning University College Dublin September 2015 Bayesian inference is based on Bayes

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 2) Fall 2017 1 / 19 Part 2: Markov chain Monte

More information

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method Madeleine B. Thompson Radford M. Neal Abstract The shrinking rank method is a variation of slice sampling that is efficient at

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) School of Computer Science 10-708 Probabilistic Graphical Models Markov Chain Monte Carlo (MCMC) Readings: MacKay Ch. 29 Jordan Ch. 21 Matt Gormley Lecture 16 March 14, 2016 1 Homework 2 Housekeeping Due

More information

Package elhmc. R topics documented: July 4, Type Package

Package elhmc. R topics documented: July 4, Type Package Package elhmc July 4, 2017 Type Package Title Sampling from a Empirical Likelihood Bayesian Posterior of Parameters Using Hamiltonian Monte Carlo Version 1.1.0 Date 2017-07-03 Author Dang Trung Kien ,

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

The Polya-Gamma Gibbs Sampler for Bayesian. Logistic Regression is Uniformly Ergodic

The Polya-Gamma Gibbs Sampler for Bayesian. Logistic Regression is Uniformly Ergodic he Polya-Gamma Gibbs Sampler for Bayesian Logistic Regression is Uniformly Ergodic Hee Min Choi and James P. Hobert Department of Statistics University of Florida August 013 Abstract One of the most widely

More information

A Level-Set Hit-And-Run Sampler for Quasi- Concave Distributions

A Level-Set Hit-And-Run Sampler for Quasi- Concave Distributions University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 2014 A Level-Set Hit-And-Run Sampler for Quasi- Concave Distributions Shane T. Jensen University of Pennsylvania Dean

More information

Roll-back Hamiltonian Monte Carlo

Roll-back Hamiltonian Monte Carlo Roll-back Hamiltonian Monte Carlo Kexin Yi Department of Physics Harvard University Cambridge, MA, 02138 kyi@g.harvard.edu Finale Doshi-Velez School of Engineering and Applied Sciences Harvard University

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS 1. THE CLASS OF MODELS y t {y s, s < t} p(y t θ t, {y s, s < t}) θ t = θ(s t ) P[S t = i S t 1 = j] = h ij. 2. WHAT S HANDY ABOUT IT Evaluating the

More information

Use of probability gradients in hybrid MCMC and a new convergence test

Use of probability gradients in hybrid MCMC and a new convergence test Use of probability gradients in hybrid MCMC and a new convergence test Ken Hanson Methods for Advanced Scientific Simulations Group This presentation available under http://www.lanl.gov/home/kmh/ June

More information

Analysis of Polya-Gamma Gibbs sampler for Bayesian logistic analysis of variance

Analysis of Polya-Gamma Gibbs sampler for Bayesian logistic analysis of variance Electronic Journal of Statistics Vol. (207) 326 337 ISSN: 935-7524 DOI: 0.24/7-EJS227 Analysis of Polya-Gamma Gibbs sampler for Bayesian logistic analysis of variance Hee Min Choi Department of Statistics

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

0.1 factor.ord: Ordinal Data Factor Analysis

0.1 factor.ord: Ordinal Data Factor Analysis 0.1 factor.ord: Ordinal Data Factor Analysis Given some unobserved explanatory variables and observed ordinal dependent variables, this model estimates latent factors using a Gibbs sampler with data augmentation.

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 13-28 February 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Limitations of Gibbs sampling. Metropolis-Hastings algorithm. Proof

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Bayes: All uncertainty is described using probability.

Bayes: All uncertainty is described using probability. Bayes: All uncertainty is described using probability. Let w be the data and θ be any unknown quantities. Likelihood. The probability model π(w θ) has θ fixed and w varying. The likelihood L(θ; w) is π(w

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

Approximate inference in Energy-Based Models

Approximate inference in Energy-Based Models CSC 2535: 2013 Lecture 3b Approximate inference in Energy-Based Models Geoffrey Hinton Two types of density model Stochastic generative model using directed acyclic graph (e.g. Bayes Net) Energy-based

More information

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9 Metropolis Hastings Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 9 1 The Metropolis-Hastings algorithm is a general term for a family of Markov chain simulation methods

More information

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods Markov Chain Monte Carlo Methods John Geweke University of Iowa, USA 2005 Institute on Computational Economics University of Chicago - Argonne National Laboaratories July 22, 2005 The problem p (θ, ω I)

More information

Manifold Monte Carlo Methods

Manifold Monte Carlo Methods Manifold Monte Carlo Methods Mark Girolami Department of Statistical Science University College London Joint work with Ben Calderhead Research Section Ordinary Meeting The Royal Statistical Society October

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Karl Oskar Ekvall Galin L. Jones University of Minnesota March 12, 2019 Abstract Practically relevant statistical models often give rise to probability distributions that are analytically

More information

Monte Carlo (MC) Simulation Methods. Elisa Fadda

Monte Carlo (MC) Simulation Methods. Elisa Fadda Monte Carlo (MC) Simulation Methods Elisa Fadda 1011-CH328, Molecular Modelling & Drug Design 2011 Experimental Observables A system observable is a property of the system state. The system state i is

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Doing Bayesian Integrals

Doing Bayesian Integrals ASTR509-13 Doing Bayesian Integrals The Reverend Thomas Bayes (c.1702 1761) Philosopher, theologian, mathematician Presbyterian (non-conformist) minister Tunbridge Wells, UK Elected FRS, perhaps due to

More information

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model UNIVERSITY OF TEXAS AT SAN ANTONIO Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model Liang Jing April 2010 1 1 ABSTRACT In this paper, common MCMC algorithms are introduced

More information

Generating the Sample

Generating the Sample STAT 80: Mathematical Statistics Monte Carlo Suppose you are given random variables X,..., X n whose joint density f (or distribution) is specified and a statistic T (X,..., X n ) whose distribution you

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

An introduction to adaptive MCMC

An introduction to adaptive MCMC An introduction to adaptive MCMC Gareth Roberts MIRAW Day on Monte Carlo methods March 2011 Mainly joint work with Jeff Rosenthal. http://www2.warwick.ac.uk/fac/sci/statistics/crism/ Conferences and workshops

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Revised on April 24, 2017 Today we are going to learn... 1 Markov Chains

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Hamiltonian Monte Carlo for Scalable Deep Learning

Hamiltonian Monte Carlo for Scalable Deep Learning Hamiltonian Monte Carlo for Scalable Deep Learning Isaac Robson Department of Statistics and Operations Research, University of North Carolina at Chapel Hill isrobson@email.unc.edu BIOS 740 May 4, 2018

More information

Quasi-Newton Methods for Markov Chain Monte Carlo

Quasi-Newton Methods for Markov Chain Monte Carlo Quasi-Newton Methods for Markov Chain Monte Carlo Yichuan Zhang and Charles Sutton School of Informatics University of Edinburgh Y.Zhang-60@sms.ed.ac.uk, csutton@inf.ed.ac.uk Abstract The performance of

More information

Tutorial on Probabilistic Programming with PyMC3

Tutorial on Probabilistic Programming with PyMC3 185.A83 Machine Learning for Health Informatics 2017S, VU, 2.0 h, 3.0 ECTS Tutorial 02-04.04.2017 Tutorial on Probabilistic Programming with PyMC3 florian.endel@tuwien.ac.at http://hci-kdd.org/machine-learning-for-health-informatics-course

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

Supplementary Note on Bayesian analysis

Supplementary Note on Bayesian analysis Supplementary Note on Bayesian analysis Structured variability of muscle activations supports the minimal intervention principle of motor control Francisco J. Valero-Cuevas 1,2,3, Madhusudhan Venkadesan

More information

arxiv: v1 [stat.co] 2 Nov 2017

arxiv: v1 [stat.co] 2 Nov 2017 Binary Bouncy Particle Sampler arxiv:1711.922v1 [stat.co] 2 Nov 217 Ari Pakman Department of Statistics Center for Theoretical Neuroscience Grossman Center for the Statistics of Mind Columbia University

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

FastGP: an R package for Gaussian processes

FastGP: an R package for Gaussian processes FastGP: an R package for Gaussian processes Giri Gopalan Harvard University Luke Bornn Harvard University Many methodologies involving a Gaussian process rely heavily on computationally expensive functions

More information

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel The Bias-Variance dilemma of the Monte Carlo method Zlochin Mark 1 and Yoram Baram 1 Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel fzmark,baramg@cs.technion.ac.il Abstract.

More information

Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo

Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo Michael Betancourt arxiv:1604.00695v1 [stat.me] 3 Apr 2016 Abstract. When properly tuned, Hamiltonian Monte Carlo scales to some

More information

Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation. Luke Tierney Department of Statistics & Actuarial Science University of Iowa

Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation. Luke Tierney Department of Statistics & Actuarial Science University of Iowa Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation Luke Tierney Department of Statistics & Actuarial Science University of Iowa Basic Ratio of Uniforms Method Introduced by Kinderman and

More information

MCMC for Cut Models or Chasing a Moving Target with MCMC

MCMC for Cut Models or Chasing a Moving Target with MCMC MCMC for Cut Models or Chasing a Moving Target with MCMC Martyn Plummer International Agency for Research on Cancer MCMSki Chamonix, 6 Jan 2014 Cut models What do we want to do? 1. Generate some random

More information

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013 Eco517 Fall 2013 C. Sims MCMC October 8, 2013 c 2013 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget Anoop Korattikara, Yutian Chen and Max Welling,2 Department of Computer Science, University of California, Irvine 2 Informatics Institute,

More information

A Bayesian Approach to Phylogenetics

A Bayesian Approach to Phylogenetics A Bayesian Approach to Phylogenetics Niklas Wahlberg Based largely on slides by Paul Lewis (www.eeb.uconn.edu) An Introduction to Bayesian Phylogenetics Bayesian inference in general Markov chain Monte

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

Accounting for Calibration Uncertainty

Accounting for Calibration Uncertainty : High Energy Astrophysics and the PCG Sampler 1 Vinay Kashyap 2 Taeyoung Park 3 Jin Xu 4 Imperial-California-Harvard AstroStatistics Collaboration 1 Statistics Section, Imperial College London 2 Smithsonian

More information

Statistical Methods in Particle Physics Lecture 1: Bayesian methods

Statistical Methods in Particle Physics Lecture 1: Bayesian methods Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

arxiv: v1 [stat.co] 18 Feb 2012

arxiv: v1 [stat.co] 18 Feb 2012 A LEVEL-SET HIT-AND-RUN SAMPLER FOR QUASI-CONCAVE DISTRIBUTIONS Dean Foster and Shane T. Jensen arxiv:1202.4094v1 [stat.co] 18 Feb 2012 Department of Statistics The Wharton School University of Pennsylvania

More information

Bayesian GLMs and Metropolis-Hastings Algorithm

Bayesian GLMs and Metropolis-Hastings Algorithm Bayesian GLMs and Metropolis-Hastings Algorithm We have seen that with conjugate or semi-conjugate prior distributions the Gibbs sampler can be used to sample from the posterior distribution. In situations,

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

Multimodal Nested Sampling

Multimodal Nested Sampling Multimodal Nested Sampling Farhan Feroz Astrophysics Group, Cavendish Lab, Cambridge Inverse Problems & Cosmology Most obvious example: standard CMB data analysis pipeline But many others: object detection,

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

General Construction of Irreversible Kernel in Markov Chain Monte Carlo

General Construction of Irreversible Kernel in Markov Chain Monte Carlo General Construction of Irreversible Kernel in Markov Chain Monte Carlo Metropolis heat bath Suwa Todo Department of Applied Physics, The University of Tokyo Department of Physics, Boston University (from

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Peter Beerli October 10, 2005 [this chapter is highly influenced by chapter 1 in Markov chain Monte Carlo in Practice, eds Gilks W. R. et al. Chapman and Hall/CRC, 1996] 1 Short

More information