LNS. Tagging the EMC effect in d(e, e N) reactions using the BAND and LAD detectors at JLab12. Axel Schmidt MIT. July 5, 2017

Size: px
Start display at page:

Download "LNS. Tagging the EMC effect in d(e, e N) reactions using the BAND and LAD detectors at JLab12. Axel Schmidt MIT. July 5, 2017"

Transcription

1 Tagging the EMC effect in d(e, e N) reactions using the BAND and LAD detectors at JLab12 Axel Schmidt MIT July 5, 2017 LNS Laboratory for Nuclear Science 1

2 The EMC effect still puzzles σ C 12σ d SLAC data (1994) x J. Gomez et al., PRD (1994) Miller + Smith, PRC (2001) 2

3 The EMC effect still puzzles σ C 12σ d SLAC data (1994) EMC slope: x J. Gomez et al., PRD (1994) Miller + Smith, PRC (2001) 3

4 The EMC effect still puzzles. 1.2 Fermi-motion 2σ C 12σ d SLAC data (1994) EMC slope: x J. Gomez et al., PRD (1994) Miller + Smith, PRC (2001) 4

5 Classifying EMC Models EMC Models Nucleon Motion Medium Modification Insufficient All nucleons modified slightly A few nucleons modified a lot 5

6 Theories identify virtuality as the key to producing EMC-like modification. Free Binding Rescaling Point-like Configuration Suppression Bound 6

7 Theories identify virtuality as the key to producing EMC-like modification. Binding Rescaling Point-like Configuration Suppression Free Free Bound Bound 7

8 Theories identify virtuality as the key to producing EMC-like modification. Binding Rescaling Point-like Configuration Suppression Free Free Free + ε Bound Bound Bound + ε A - 1 8

9 The EMC effect correlates with the density SRC pairs Fe EMC Slope ( dr/dxb) H 3 He 4 He 9 Be 12 C 197 Au SRC-pair density (a 2 ) 9

10 Two upcoming experiments will test the EMC-SRC connection. Deep inelastic scattering with a recoiling nucleon: LAD CLAS12 scattered electron 11 GeV e spectator proton GEMs SHMS scattered electron BAND 11 GeV e Spectator neutron Deuterium Deuterium HMS JLab Hall C jet from struck quark JLab Hall B jet from struck quark 10

11 The Correlations group MIT (Or Hen): Barak Schmookler Reynier Torres Efrain Segarra Afro Papadopoulou Axel Schmidt TAU (Eli Piasetzky): Erez Cohen Meytal Duer Igor Korover ODU (Larry Weinstein): Mariana Khachatryan George Laskaris Maria Patsyuk Adi Ashkenazy Florian Hauenstein UT Santa Maria (Chile) Iñaki Vega

12 I will cover: 1 Recoil-Tagged DIS Testing the SRC-EMC connection 2 The LAD Experiment Large Acceptance Detector 3 The BAND Experiment Backward Angle Neutron Detector 12

13 I will cover: 1 Recoil-Tagged DIS Testing the SRC-EMC connection 2 The LAD Experiment Large Acceptance Detector 3 The BAND Experiment Backward Angle Neutron Detector 13

14 Recoil-Tagging: using a high-momentum recoil to determine the virtuality of the struck nucleon. e e' 14

15 Recoil-Tagging: using a high-momentum recoil to determine the virtuality of the struck nucleon. e e' recoiling spectator 15

16 Short-range correlations are universal. Parallel cos Leading 5.9 GeV/c, GeV/c, GeV/c, GeV/c, GeV/c, 94 Recoil High-momentum tail 20% of nucleons correlated pairs high-relative momentum low CoM momentum Antiparallel p n (GeV/c) Recoil neutron momentum [GeV] J.L.S. Aclander et al., Phys. Lett. B 453, 211 (1999) A. Tang et al., Phys. Rev. Lett. 90, (2003) E. Piasetzky et al., PRL (2006) 16

17 There are some interpretation challenges. e e' recoiling spectator 1 relating the recoil momentum to the stuck nucleon momentum 2 rescattering in the nuclear medium 3 accounting for the nuclear remnant 17

18 There are some interpretation challenges. e e' recoiling spectator 1 relating the recoil momentum to the stuck nucleon momentum 2 rescattering in the nuclear medium 3 accounting for the nuclear remnant Use a deuterium target. Look at backward recoils. 18

19 Advantages of deuterium Struck nucleon had EXACTLY opposite momentum to recoil. No residual system Minimal final state interactions. e e' recoiling spectator 19

20 DEEPS showed little FSI at back angles. Anti-Parallel θ qs > 107 Transverse 73 < θ qs < counts PWIA data P s (G ev/c) P s (G ev/c) Klimenko et al., PRC (2006) 20

21 What we want to measure: F 2 (x, Q 2, α s ) bound F 2 (x, Q 2 σ DIS(x, Q 2, α s ) bound ) free σ DIS (low x, Q0 2, α σ DIS(low x, Q0 2) free s) bound σ DIS (x, Q 2 ) free R FSI 21

22 What we want to measure: F 2 (x, Q 2, α s ) bound F 2 (x, Q 2 σ DIS(x, Q 2, α s ) bound ) free σ DIS (low x, Q0 2, α σ DIS(low x, Q0 2) free s) bound σ DIS (x, Q 2 ) free R FSI. Tagged DIS measurement Input 1 22

23 What we want to measure: F 2 (x, Q 2, α s ) bound F 2 (x, Q 2 σ DIS(x, Q 2, α s ) bound ) free σ DIS (low x, Q0 2, α σ DIS(low x, Q0 2) free s) bound σ DIS (x, Q 2 ) free R FSI. Tagged DIS measurement Input 1 At low x, the EMC effect should be small: σ DIS (low x, Q 2 0, α s ) bound σ DIS (low x, Q 2 0) free 23

24 Different models predict different F 2 ratios. Bound F2 / Free F Binding Rescaling PLC suppression α s Melnitchouk, Sargsian, Strikman, Z. Phys A 359 p.99 (1997) 24

25 Experimental Requirements 1 DIS kinematics W > 2 GeV Q 2 > 2 GeV 2 10 GeV beam energy 2 Backward recoil detector Large acceptance for θ qs > < p r < 0.7 GeV Low x and High x coverage 25

26 I will cover: 1 Recoil-Tagged DIS Testing the SRC-EMC connection 2 The LAD Experiment Large Acceptance Detector 3 The BAND Experiment Backward Angle Neutron Detector 26

27

28 LAD will detect recoiling spectator protons. LAD spectator proton SHMS scattered electron 11 GeV e Deuterium HMS JLab Hall C jet from struck quark 28

29 LAD is three panels of scintillator bars, originally from the CLAS-6 ToFs. Large Single Panel #3 Large Double Panels #2 Large Double Panels #1 29

30

31 LAD Experiment Details Experiment Experiment E Approved for 820 hours Extended LD 2 target 11 GeV e beam cm 2 s 1 Low x and high x settings Large Acceptance Detector 5 panels of 11 bars 1.5 sr at back angles ±20 out-of-plane 31

32 The limit will be random coincidence background. Can be subracted using off-time events Statistical variation can drown signal δn S + B N = S Signal Reconstructued ToF Any reduction in background buys us statistics! 32

33 Energy deposition in LAD must match velocity. Figure 25: Energy loss versus TOF. To reduce the large singles rates we will set the detector threshold in the first layer of 33

34 Energy deposition in LAD must match velocity. Rate [arb. units] Randoms Signal Momentum (Edep) - Momentum (ToF) [MeV] 34

35 We plan to add GEMs to assist in vertexing. LAD spectator proton SHMS scattered electron 11 GeV e Deuterium HMS JLab Hall C jet from struck quark 35

36 We plan to add GEMs to assist in vertexing. LAD spectator proton GEMs SHMS scattered electron 11 GeV e Deuterium HMS JLab Hall C jet from struck quark 36

37 Multiple scattering in GEM material can reduce effectiveness σ = 1.3 cm σ = 1.7 cm Thin Regular Thick Randoms Counts σ = 2.5 cm z rec. z e [cm] 37

38 Expected Impact Bound F2 / Free F Binding Rescaling PLC suppression LAD α s 38

39 I will cover: 1 Recoil-Tagged DIS Testing the SRC-EMC connection 2 The LAD Experiment Large Acceptance Detector 3 The BAND Experiment Backward Angle Neutron Detector 39

40 JLab Hall B DC FTOF Solenoid CTOF Beamline SVT HTCC CLAS12 Torus PCal/ECal LTCC

41 BAND will detect recoiling spectator neutrons. BAND 11 GeV e CLAS12 Spectator neutron Deuterium scattered electron JLab Hall B jet from struck quark 41

42 BAND will surround the upstream beamline. 42

43 BAND will surround the upstream beamline. 43

44 BAND Experiment Details Experiment Experiment E A Approved for 90 days parallel with DVCS Run group I Extended LD 2 target 11 GeV e beam cm 2 s 1 Backward Angle Neutron Detector Currently being developed 5 rows of panels of 21 bars % azimuthal coverage 44

45 BAND must respect several constraints. Material in the n flight path Only is clear Narrow Keep-In Zone Must be thick to have high-efficiency (> 30%) Segmentation aids in path length resolution... at the cost of light yield Scintillator length 3 groups for long bars 1 group for short bars (500 mm) A B C D C BAND design June 7th, 2017 (evening update) Scintillator section: 74x74mm 2 18 rows & 5 layers (256 PMTs) 232 PMTs main detector 24 PMTs veto layer Lengths inside keep in zone ~28 mm from sides ~72 mm from beampipe Keep in zone 45

46 We are studying PMT performance at MIT. AND Trigger OR AND Reference Bar Test Bar 60 Co Source Efrain Segarra Adin Hrnjic help from Igor Korover 46

47 We are studying PMT performance at MIT. Time resolution [ps] m bar, 5 5 cm 2 cross section R R R13435 R Energy deposit [MeV] Each ps of resolution costs $

48 We have developed a detailed simulation of the experiment α s x 48

49 Analytic model for momentum resolution δp/p (pecσ t ) 2 /2 + E 4 w 2 /12/(m n z) Momentum resolution 2.5% 2% 1.5% 1% 500 ps PMTs 150 ps PMTs 300 ps PMTs 0.5% 7 cm bars 10 cm bars 0% Neutron momentum [MeV] 49

50 Analytic model for momentum resolution δp/p (pecσ t ) 2 /2 + E 4 w 2 /12/(m n z) 2.5% 500 ps Momentum resolution 2% 1.5% 1% 150 ps 300 ps 0.5% 7 cm bars 10 cm bars 0% Neutron momentum [MeV] 50

51 Background will be higher at large x Signal Q 2 > 2 GeV 2 W > 1.8 GeV Counts Random Bkg x 51

52 Even with background, we expect good statistical precision < x < % Counts % % % 4.2% α s 52

53 Even with background, we expect good statistical precision. x > % 2500 Counts % % 8.2% % α s 53

54 Expected Impact Bound F2 / Free F Binding Rescaling PLC suppression 0.5 BAND 0.4 LAD α s 54

55 As the mechanical design is getting fixed we are moving to a full Geant4 sim. Efrain Segarra Erez Cohen 55

56 The important points 1 Recoil tagging can test the EMC-SRC connection. 2 LAD will detect recoil protons in Hall C 3 BAND will detect recoil neutrons in Hall B e recoiling spectator e' 56

57 The important points 1 Recoil tagging can test the EMC-SRC connection. 2 LAD will detect recoil protons in Hall C 3 BAND will detect recoil neutrons in Hall B LAD 11 GeV e spectator proton Deuterium JLab Hall C GEMs SHMS scattered electron HMS jet from struck quark 57

58 The important points 1 Recoil tagging can test the EMC-SRC connection. 2 LAD will detect recoil protons in Hall C 3 BAND will detect recoil neutrons in Hall B BAND 11 GeV e Spectator neutron Deuterium JLab Hall B CLAS12 scattered electron jet from struck quark 58

59 The important points We will make a definitive statement about the role of virtuality in the EMC effect. Bound F2 / Free F Binding Rescaling PLC suppression BAND LAD α s 59

60 The EMC effect is still a puzzle. BAND and LAD will tell us if we are putting the pieces in the right spot. 56 Fe Be 12 C 197 Au 0.4 EMC Slope ( dr/ dxb ) He 3 He 2 H SRC-pair density (a2) 60

Upgrade for SRC/EMC Studies. Stephen Wood

Upgrade for SRC/EMC Studies. Stephen Wood Upgrade for SRC/EMC Studies Stephen Wood Outline Hall C 12 Hardware overview Standard Spectrometers Additional detectors Hall C SRC/EMC/Nuclear-effects physics program Deuteron EMC with LAD Standard Hall

More information

Short Range Correlations and the EMC Effect

Short Range Correlations and the EMC Effect Short Range Correlations and the EMC Effect Or Hen, Tel-Aviv University Short Range Correlations The EMC Effect and nucleon modification The EMC SRC correlation Implications of the EMC-SRC correlation

More information

Electrons for Neutrinos

Electrons for Neutrinos Electrons for Neutrinos 08/03/2018 INT Workshop INT-18-1a - Nuclear ab initio Theories and Neutrino Physics Or Hen, Larry Weinstein, Afroditi Papadopoulou,Mariana Khachatryan, Luke Pickering, Adrian Silva,

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

Using A(e,e p Recoil ) in Tagged EMC and SRC Studies

Using A(e,e p Recoil ) in Tagged EMC and SRC Studies Using A(e,e p Recoil ) in Tagged EMC and SRC Studies Shalev Gilad, Barak Schmookler, MIT Motivation: Study the observed correlation between the measured slopes f(a/d) of the EMC effect and the measured

More information

Study of SRC with recoil neutron detection in CLAS6 Data Mining

Study of SRC with recoil neutron detection in CLAS6 Data Mining By: Igor Korover March 8, 2018 Tel Aviv University Study of SRC with recoil neutron detection in CLAS6 Data Mining On going analysis Hall B, NPWG Jefferson Lab, Newport News 1 Short Range Correlation High

More information

CLAS12 at Jefferson Lab

CLAS12 at Jefferson Lab CLAS12 at Jefferson Lab Daria Sokhan University of Glasgow, UK IPPP/NuSTEC Topical Meeting on Neutrino-Nucleus Scattering IPPP, Durham, UK 19 April 2017 Jefferson Lab 6 GeV era Jefferson Lab CEBAF: Continuous

More information

Tagged EMC Effect. Nathan Baltzel Raphaël Dupré Kawtar Hafidi Stepan Stepanyan. Unité mixte de recherche. CNRS-IN2P3 Université Paris-Sud

Tagged EMC Effect. Nathan Baltzel Raphaël Dupré Kawtar Hafidi Stepan Stepanyan. Unité mixte de recherche. CNRS-IN2P3 Université Paris-Sud Tagged EMC Effect Nathan Baltzel Raphaël Dupré Kawtar Hafidi Stepan Stepanyan Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70

More information

Nuclear Short Range Correlations

Nuclear Short Range Correlations Nuclear Short Range Correlations Larry Weinstein Old Dominion University What are Correlations? Neutron stars EMC effect Hit the correlated pair Spectator correlated pairs np vs pp pairs Summary Elba Workshop,

More information

High Momentum Nucleons: where have we been and where are we going

High Momentum Nucleons: where have we been and where are we going High Momentum Nucleons: where have we been and where are we going Nadia Fomin High Energy Nuclear Physics with Spectator Tagging March 10 th, 015 High momentum nucleons where do they come from? Independent

More information

In Medium Nucleon Structure Functions, SRC, and the EMC effect

In Medium Nucleon Structure Functions, SRC, and the EMC effect In Medium Nucleon Structure Functions, SRC, and the EMC effect Study the role played by high-momentum nucleons in nuclei A proposal to Jefferson Lab PAC 38, Aug. 2011 O. Hen (contact person), E. Piasetzky,

More information

The Neutron Structure Function from BoNuS

The Neutron Structure Function from BoNuS The Neutron Structure Function from BoNuS Stephen Bültmann 1 Physics Department, Old Dominion University, Norfolk, VA 359, USA Abstract. The BoNuS experiment at Jefferson Lab s Hall B measured the structure

More information

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei High-energy nuclear physics with spectator tagging A. Deshpande, D. Higinbotham, Ch. Hyde, S. Kuhn, M. Sargsian, C. Weiss Topical Workshop, Old Dominion U., 9 11 March 015 High-energy ea scattering e e

More information

Nucleons in the Nuclear Environment

Nucleons in the Nuclear Environment Nucleons in the Nuclear Environment "The next seven years..." John Arrington Argonne National Lab Topic: Study of nucleons (hadrons, quarks) in nuclei 1 - The EMC effect and related measurements 2 - Color

More information

ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others)

ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others) ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others) Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr

More information

The Neutron Structure Functions from BoNuS using CLAS

The Neutron Structure Functions from BoNuS using CLAS The Neutron Structure Functions from BoNuS using CLAS Keith Griffioen College of William & Mary Helmholtz-Institut Mainz (for the CLAS Collaboration) griff@physics.wm.edu Elba XII Workshop Electron-Nucleus

More information

Neutron Structure Functions and a Radial Time Projection Chamber

Neutron Structure Functions and a Radial Time Projection Chamber Neutron Structure Functions and a Radial Time Projection Chamber Stephen Bültmann Old Dominion University for the BoNuS Collaboration The Structure of the Neutron The BoNuS Experiment at CLAS A New Proton

More information

Neutrons in a Spin: Nucleon Structure at Jefferson Lab

Neutrons in a Spin: Nucleon Structure at Jefferson Lab Neutrons in a Spin: Nucleon Structure at Jefferson Lab Daria Sokhan University of Glasgow, UK on behalf of the CLAS Collaboration IoP Nuclear Physics Group Conference, York 8 th April 2013 Nucleon structure

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) Next generation nuclear physics with JLab12 and EIC 10-13 February 2016,

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Short-range NN interactions: Experimental Past and Future

Short-range NN interactions: Experimental Past and Future Short-range NN interactions: Experimental Past and Future 7th Workshop of the APS Topical Group on Hadronic Physics Nadia Fomin University of Tennessee February 1 st, 017 Independent Particle Shell Model

More information

Hadron Propagation and Color Transparency at 12 GeV

Hadron Propagation and Color Transparency at 12 GeV Hadron Propagation and Color Transparency at 12 GeV Dipangkar Dutta Mississippi State University Hall C Users Meeting Jan 21-22, 2016 Hall C meeting Jan 2016 D. Dutta Hadron propagation in nuclear medium

More information

EMC effect and short-ranged correlations

EMC effect and short-ranged correlations EMC effect and short-ranged correlations Gerald A. Miller University of Washington RMP with Or Hen, Eli Piasetzky, Larry Weinstein arxiv: 1611.09748 Will focus on 0.3

More information

CLAS12 Run Group B Electroproduction on deuterium with CLAS12

CLAS12 Run Group B Electroproduction on deuterium with CLAS12 CLAS12 Run Group B Electroproduction on deuterium with CLAS12 Physics goals Presentation of the RG-B experiments Experimental setup Running conditions Run plan and task sharing Silvia Niccolai, IPN Orsay,

More information

The EMC Effect Gerald A. Miller, Univ. of Washington

The EMC Effect Gerald A. Miller, Univ. of Washington I NTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERNCOURIER The EMC Effect Gerald A. Miller, Univ. of Washington V OLUME 53 NUMBER 4 M AY 2013 Deep in the nucleus: a puzzle revisited HEAVY IONS The key to

More information

Study of the Neutron Detection Efficiency of the CLAS12 Detector. Keegan Sherman

Study of the Neutron Detection Efficiency of the CLAS12 Detector. Keegan Sherman Study of the Neutron Detection Efficiency of the CLAS12 Detector Keegan Sherman March 23, 2016 Contents 1 Abstract 2 2 Introduction 2 2.1 Jefferson Lab and CLAS12................................ 2 2.1.1

More information

SRC Studies using Triple Coincidence A(e,e'pp) & A(e,e'np) reactions

SRC Studies using Triple Coincidence A(e,e'pp) & A(e,e'np) reactions SRC Studies using Triple Coincidence A(e,e'pp) & A(e,e'np) reactions A data-mining project using CLAS EG2 data Meytal Duer Tel-Aviv University July 12, 2018 NPWG meeting, JLab 1 SRC Pair Fraction [%] np-dominance

More information

The Electric Form Factor of the Neutron for SBS

The Electric Form Factor of the Neutron for SBS The Electric Form Factor of the Neutron for SBS Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu July 1, 16 Seamus Riordan SBS 16 G n E 1/1 G E /G M at high Q - Spin Observables, Pol.

More information

Investigation of Proton-Proton Short-Range Correlations via the Triple-Coincidence 12. C(e,e pp) Measurement at Jlab / Hall A

Investigation of Proton-Proton Short-Range Correlations via the Triple-Coincidence 12. C(e,e pp) Measurement at Jlab / Hall A 1935-2006 Investigation of Proton-Proton Short-Range Correlations via the Trile-Coincidence 12 C(e,e ) Measurement at Jlab / Hall A E01-105 20 October 2006 (Jefferson National Accelerator Facility ) e

More information

Inclusive Electron Scattering from Nuclei and Scaling

Inclusive Electron Scattering from Nuclei and Scaling Inclusive Electron Scattering from Nuclei and Scaling Donal Day University of Virginia NUINT12 October 22 - October 27, 2012 Rio de Janeiro, Brazil Outline Inclusive Electron Scattering from Nuclei General

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

Tagged Deep Inelastic Scattering:

Tagged Deep Inelastic Scattering: Tagged Deep Inelastic Scattering: Exploring the Meson Cloud of the Nucleon Dipangkar Dutta Mississippi State University Next generation nuclear physics with JLab12 and EIC FIU, Feb 10-13, 2016 Outline

More information

The Electromagnetic Form Factors of the Nucleon

The Electromagnetic Form Factors of the Nucleon The Electromagnetic Form Factors of the Nucleon Introduction Proton Form Factors Neutron Form Factors Summary September 28, 2006 R. Alarcon @ MIT Symposium e i k r Form factor in quantum mechanics Elastic

More information

Deep Exclusive π " Production with transversely polarized He3 using SoLID

Deep Exclusive π  Production with transversely polarized He3 using SoLID Deep Exclusive π " Production with transversely polarized He3 using SoLID A run-group proposal with E12-10-006 Zhihong Ye, ANL On behalf of Co-Spokespeople: Garth Huber (contact), Zafar Ahmed, from Univ.

More information

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider Workshop on Precision Radiative Corrections for Next Generation Experiments 6 9 May 6, Jefferson Lab, Newport News VA 3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

More information

MEIC polarized deuteron R&D

MEIC polarized deuteron R&D MEIC polarized deuteron R&D C. Weiss, JLab Theory! FY14/15 LDRD Project Physics potential of polarized light ions with EIC@JLab 1 Overview Physics potential of polarized light ions with EIC@JLab! FY14/15

More information

Tagged Neutron Structure Function in Deuterium. A CLAS collaboration Letter of Intent

Tagged Neutron Structure Function in Deuterium. A CLAS collaboration Letter of Intent Tagged Neutron Structure Function in Deuterium A new Letter of Intent to Jefferson Lab (PAC 32) Moskov Amarian, Stephen Bültmann (co-spokesperson), Gail Dodge, Sebastian Kuhn (co-spokesperson), Svyatoslav

More information

Preparations for BONuS12 experiment

Preparations for BONuS12 experiment Preparations for BONuS12 experiment Aruni Nadeeshani Hampton University On behalf of BONuS12 Detector design group CLAS collaboration- Deep processing working group 8 March 2018 1 Outline Overview of BONuS12

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Beyond the Born Approximation

Beyond the Born Approximation Beyond the Born Approximation Measuring the Two Photon Exchange Correction in Hall D Robert Paul Bennett Old Dominion University D. Adikaram, D. Rimal, P. Khetharpal, B. Raue, L. Weinstein Hall D PWG Newport

More information

Tagged EMC Measurements on Light Nuclei

Tagged EMC Measurements on Light Nuclei Tagged EMC Measurements on Light Nuclei Spokespeople: R. Dupré, G. Charles, K. Hafidi, G. Dodge, N. Baltzell An ALERT Run Group Proposal for JLab PAC 44 N. Baltzell on behalf of the ALERT Collaboration

More information

Hall C Summer Workshop

Hall C Summer Workshop Classic Result from (e,e p) Measurements L. Lapikas, Nucl. Phys. A553 (1993) 297. Independent- Par+cle Shell- Model is based upon the assump+on that each nucleon moves independently in an average poten+al

More information

Nuclear Transparency in A(e,e π/k)x Status and Prospects

Nuclear Transparency in A(e,e π/k)x Status and Prospects Nuclear Transparency in A(e,e π/k)x Status and Prospects Tanja Horn Small size configurations at high-t workshop 26 March 2011 1 Nuclear Transparency Color transparency (CT) is a phenomenon predicted by

More information

BoNuS Program at CLAS and CLAS12:

BoNuS Program at CLAS and CLAS12: BoNuS Program at CLAS and CLAS12: BoNuS=Barely off-shell Nuclear Structure measurement of the free neutron structure function at large x in deuterium via spectator tagging Jixie Zhang ( 张机械 ) Jefferson

More information

The Physics Program of CLAS12

The Physics Program of CLAS12 1 The Physics Program of CLAS1 S. Niccolai a, for the CLAS collaboration a Institut de Physique Nucléaire d Orsay, Orsay (France) The experimental program to study nucleon structure at the 1-GeV upgraded

More information

The short-range structure of Nuclei

The short-range structure of Nuclei The short-range structure of Nuclei 1. Beyond the nuclear mean-field the role of Nucleon-Nucleon correlations 2. Review of recent 2-N knockout experiments a) (γ,nn) and (e,e'nn) experiments at Mainz and

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

E up to Q 2 =13.5

E up to Q 2 =13.5 G n M E12-09-019 up to Q 2 =13.5 (GeV/c) 2 by Ratio Method Form factors Combining n & p form factors GMn by ratio method Hall A GMn 1 In one-photon exchange approx. 2 j ien( p f ){ F1 ( Q ) 2 i q F2 (

More information

Partonic Structure of Light Nuclei

Partonic Structure of Light Nuclei Partonic Structure of Light Nuclei M. Hattawy - Physics motivations - Recent results from CLAS - Proposed measurements with CLAS12 INT 17-3, Thursday, August 31st 2017 EMC Effect EMC effect: the modification

More information

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan presented by Volker Burkert and Sebastian Kuhn Outline: Introduction Deeply Virtual Exclusive Processes and GPDs Structure Functions & Semi-Inclusive Processes Equipment

More information

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production Garth Huber SoLID Collaboration, Jefferson Lab, May 15, 2015. Complementarity of Different Reactions Deep

More information

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17 Neutrino Energy Reconstruction Methods Using Electron Scattering Data Afroditi Papadopoulou Pre-conference, EINN 2017 10/29/17 Outline Nuclear Physics and Neutrino Oscillations. Outstanding Challenges

More information

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration LCS2014 International Workshop LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration Outline Overview of the LEPS&LEPS2 beamlines Recent results from LEPS Search

More information

Neutron structure with spectator tagging at MEIC

Neutron structure with spectator tagging at MEIC Neutron structure with spectator tagging at MEIC C. Weiss (JLab), Users Group Workshop 2014, JLab, 03 Jun 14 Light ion physics with EIC e D pol. e p, n High energy process Forward spectators detected Physics

More information

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Katarzyna Kowalik for the STAR Collaboration Lawrence Berkeley National Laboratory, Berkeley, California 94720 Abstract. This contribution

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS University of Glasgow, UK on behalf of the CLAS Collaboration MENU2013, Rome, Italy 1st October 2013 Meson Photoproduction Meson

More information

Simulation Results for CLAS12 From gemc

Simulation Results for CLAS12 From gemc CLAS12 Software Workshop - May 25, 20 p. 1/2 Simulation Results for CLAS12 From gemc G.P.Gilfoyle, M.Ungaro et al. CLAS12 Software Group Outline: 1. gemc Overview 2. Neutron efficiency in first TOF panel.

More information

Meson spectroscopy at CLAS and CLAS12: the present and the future. Raffaella De Vita INFN Genova for the CLAS Collaboration

Meson spectroscopy at CLAS and CLAS12: the present and the future. Raffaella De Vita INFN Genova for the CLAS Collaboration Meson spectroscopy at CLAS and CLAS12: the present and the future Raffaella De Vita INFN Genova for the CLAS Collaboration Why hadron spectroscopy? QCD is responsible for most of the visible mass in the

More information

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond Hunting for Quarks Jerry Gilfoyle for the CLAS Collaboration University of Richmond JLab Mission What we know and don t know. The Neutron Magnetic Form Factor Experiments with CLAS More JLab Highlights

More information

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration Threshold photoproduction of J/y with the GlueX experiment Lubomir Pentchev Jefferson Lab for the GlueX collaboration 7 th Workshop of the APS Topical Group on Hadron Physics, Washington, DC February 1-3

More information

Tritium Runplan 2017/18. Florian Hauenstein Old Dominion University Hall A collaboration meeting

Tritium Runplan 2017/18. Florian Hauenstein Old Dominion University Hall A collaboration meeting Tritium Runplan 2017/18 Florian Hauenstein Old Dominion University Hall A collaboration meeting 18.01.17 Tritium Experiments E12-010-103 (MARATHON) Deep Inelastic Scattering to measure F 2n to F 2p ratio,

More information

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009 Cross Section of Exclusive π Electro-production from Neutron Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009 Exclusive π electro-production Detect e`, π and at least ONE of the two final

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

Deuteron Electro-Disintegration at Very High Missing Momenta

Deuteron Electro-Disintegration at Very High Missing Momenta Deuteron Electro-Disintegration at Very High Missing Momenta K. Aniol California State University L.A. F. Benmokhtar Carnegie Mellon University W.U. Boeglin (spokesperson), P.E. Markowitz, B.A. Raue, J.

More information

Motivation. Experimental Details. Three-body forces & other nuclear dynamics studied in 3. He(e,e pp)n reactions

Motivation. Experimental Details. Three-body forces & other nuclear dynamics studied in 3. He(e,e pp)n reactions Scottish Universities Physics Alliance Motivation Three-body forces & other nuclear dynamics studied in 3 He(e,e pp)n reactions Analyse e2b data taken at low electron beam energy get significant yield

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Tensor Polarized Deuteron at and EIC

Tensor Polarized Deuteron at and EIC Tensor Polarized Deuteron at and EIC Tensor Polarized Observables Workshop March 10-12, 2014 Narbe Kalantarians Hampton University Outline Background/Motivation Spin-1/Tensor-Polarization Concept Starting

More information

Hadronization with JLab 6/12 GeV

Hadronization with JLab 6/12 GeV Hadronization with JLab 6/12 GeV Next generation nuclear physics with JLab12 and EIC Florida International University February 10-13th, 2016 Lamiaa El Fassi (On behalf of EG2 and CLAS Collaborations) Outline

More information

(High-x) physics at an Electron-Ion Collider (EIC)

(High-x) physics at an Electron-Ion Collider (EIC) (High-x) physics at an Electron-Ion Collider (EIC) Pawel Nadel-Turonski Jefferson Lab 4 th International Workshop on Nucleon Structure at Large Bjorken x Rome, Italy, November 17-21, 2014 EIC physics program

More information

L-T Separation in Pseudoscalar Meson Production

L-T Separation in Pseudoscalar Meson Production L-T Separation in Pseudoscalar Meson Production Dave Gaskell Jefferson Lab Exclusive Meson Production and Short Range Hadron Structure January 23, 2014 1 Motivation for L-T separations Inclusive Deep Inelastic

More information

Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment

Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment Dipak Rimal Florida International University April 15, 2014 University of Virginia Nuclear Physics Seminar, 2014 TPE in CLAS D. Rimal

More information

Plans to measure J/ψ photoproduction on the proton with CLAS12

Plans to measure J/ψ photoproduction on the proton with CLAS12 Plans to measure J/ψ photoproduction on the proton with CLAS12 Pawel Nadel-Turonski Jefferson Lab Nuclear Photoproduction with GlueX, April 28-29, 2016, JLab Outline Introduction J/ψ on the proton in CLAS12

More information

Next-generation nuclear physics with JLab12 and EIC

Next-generation nuclear physics with JLab12 and EIC Next-generation nuclear physics with JLab12 and EIC Topical Workshop, Florida International University, 10 13 Feb 2016 W. Brooks, R. Dupre, Ch. Hyde, M. Sargsian, C. Weiss (Organizers) Welcome! Physics

More information

The CaFe Experiment: Isospin Dependence of Short-Range Nucleon Pairing in Nuclei Proposal to Jefferson Lab PAC 45

The CaFe Experiment: Isospin Dependence of Short-Range Nucleon Pairing in Nuclei Proposal to Jefferson Lab PAC 45 PR12-17-005 The CaFe Experiment: Isospin Dependence of Short-Range Nucleon Pairing in Nuclei Proposal to Jefferson Lab PAC 45 F. Hauenstein, C.E. Hyde, M. Khachatryan, H. Szumila-Vance, L.B. Weinstein

More information

Kinetic energy of protons and neutrons in asymmetric nuclei

Kinetic energy of protons and neutrons in asymmetric nuclei 16 8 08 Pb neutron p n proton Kinetic energy of protons and neutrons in asymmetric nuclei A data-mining project using JLab CLAS data Meytal Duer Tel-Aviv University July 3, 017 International Workshop on

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12 A Forward Photon Tagging Facility for CLAS12 M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy 1) From CEBAF at 6 GeV 2) From CEBAF at 6 GeV to CEBAF at 12 GeV add Hall D (and beam line)

More information

Overview of the SRC/EMC experiments

Overview of the SRC/EMC experiments Overview of the SRC/EMC experiments Donal Day Hall C Winter Meeting 2016 E12-06-105 E12-10-008 PAC Report E12-06-105 (x > 1): Inclusive Scattering from Nuclei at x > 1 in the Quasi-elastic and Deep-inelastic

More information

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan Volker D. Burkert Jefferson Lab Introduction The Equipment Plan The 12 GeV Physics Program Conclusions PAC23 Meeting on the 12 GeV Upgrade, January 20, 2003 Physics

More information

Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14

Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14 Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14 1 e e x, 0000000 1111111 D pol. Q 2 X p, n Electron-Ion Collider overview Design specifications

More information

F2 and R in Deuterium and Nuclei Phase II (E06 009/E04 001) M. Eric Christy. Hall C Users Meeting Jan 26, 2007

F2 and R in Deuterium and Nuclei Phase II (E06 009/E04 001) M. Eric Christy. Hall C Users Meeting Jan 26, 2007 F2 and R in Deuterium and Nuclei Phase II (E06 009/E04 001) M. Eric Christy Hampton University Hall C Users Meeting Jan 26, 2007 E06-009 & E04-001 Physics FL, F1, F2 Fundamental Structure Function Measurements

More information

The CaFe Experiment: Short-Range Pairing Mechanisms in Heavy Nuclei Proposal to Je erson Lab PAC 44

The CaFe Experiment: Short-Range Pairing Mechanisms in Heavy Nuclei Proposal to Je erson Lab PAC 44 The CaFe Experiment: Short-Range Pairing Mechanisms in Heavy Nuclei Proposal to Je erson Lab PAC 44 C.E. Hyde, M. Khachatryan, H. Szumila-Vance, L.B. Weinstein (co-spokesperson) Old Dominion University,

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

HERMES status and future running

HERMES status and future running HERMES status and future running Benedikt Zihlmann University of Gent on behalf of the collaboration DESY PRC Mai 24 p.1/18 Access to Transversity Single spin azimuthal asymmetries on a transverse polarized

More information

Charged Current Quasielastic Analysis from MINERνA

Charged Current Quasielastic Analysis from MINERνA Charged Current Quasielastic Analysis from MINERνA Anushree Ghosh CBPF - Centro Brasileiro de Pesquisas F sicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Rio de Janeiro, 22290-180, Brazil on behalf

More information

ALERT Run Group. N. Baltzell, on behalf of the ALERT Collaboration CLAS Collaboration Meeting October 4, 2017

ALERT Run Group. N. Baltzell, on behalf of the ALERT Collaboration CLAS Collaboration Meeting October 4, 2017 ALERT Run Group N. Baltzell, on behalf of the ALERT Collaboration CLAS Collaboration Meeting October 4, 2017 ALERT Run Group Nuclear Exclusive and Semi-inclusive Measurements with A New CLAS12 Low Energy

More information

2N and 3N Correlations in Few Body Systems at x > 1

2N and 3N Correlations in Few Body Systems at x > 1 2N and 3N Correlations in Few Body Systems at x > 1 Searching for 3N Correlations at x > 1 Donal Day University of Virginia Next generation nuclear physics with JLab12 and EIC 1 Outline Accepted Notions

More information

Many-Body Theory of the Electroweak Nuclear Response

Many-Body Theory of the Electroweak Nuclear Response Many-Body Theory of the Electroweak Nuclear Response Omar Benhar INFN and Department of Physics Università La Sapienza, I-00185 Roma Collaborators N. Farina, D. Meloni, H. Nakamura, M. Sakuda, R. Seki

More information

What about the pentaquark?

What about the pentaquark? The Pentaquark On July 01, 2003 nuclear physics captured the science news by announcing the existence of a new class of subatomic particle the pentaquark. At LEPS and JLAB an exotic baryon (S=+1) was observed.

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation Arthur Mkrtchyan CUA Outline Physics case and motivation Experimental setup Simulation results

More information

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting MEIC Physics Tanja Horn for the MEIC group Jlab Users Meeting The Structure of the Proton Naïve Quark Model: proton = uud (valence quarks) QCD: proton = uud + uu + dd + ss + The proton sea has a non-trivial

More information

Coherent and Incoherent Nuclear Exclusive Processes

Coherent and Incoherent Nuclear Exclusive Processes Coherent and Incoherent Nuclear Exclusive Processes Vadim Guzey Electron-Ion Collider Workshop: Electron-Nucleon Exclusive Reactions Rutgers University, March 14-15, 2010 Outline Coherent and incoherent

More information

Probing Nuclear Color States with J/Ψ and φ

Probing Nuclear Color States with J/Ψ and φ Probing Nuclear Color States with J/Ψ and φ Michael Paolone Temple University Next Generation Nuclear Physics with JLab12 and the EIC FIU - Miami, Florida February 12th 2016 J/Ψ and φ experiments at a

More information

a medium energy collider taking nucleon structure beyond the valence region

a medium energy collider taking nucleon structure beyond the valence region EIC@JLAB a medium energy collider taking nucleon structure beyond the valence region Tanja Horn INT09-43W, Seattle, WA 19 October 2009 Tanja Horn, CUA Colloquium 1 A high-luminosity EIC at JLab Use CEBAF

More information

Models of the Nucleon & Parton Distribution Functions

Models of the Nucleon & Parton Distribution Functions 11th CTEQ Summer School on QCD Analysis and Phenomenology Madison, Wisconsin, June 22-30, 2004 Models of the Nucleon & Parton Distribution Functions Wally Melnitchouk Jefferson Lab Outline Introduction

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Experimental Signatures for Medium Modifications

Experimental Signatures for Medium Modifications Experimental Signatures for Medium Modifications Steffen Strauch The George Washington University The Physics of Nuclei with 12 GeV Electrons Workshop Jefferson Lab, November 1 5, 2004 Outline Introduction

More information

Jefferson Lab 12 GeV Science Program

Jefferson Lab 12 GeV Science Program QCD Evolution Workshop 2014 International Journal of Modern Physics: Conference Series Vol. 37 (2015) 1560019 (8 pages) c The Author DOI: 10.1142/S2010194515600198 Jefferson Lab 12 GeV Science Program

More information

Beam Dump Experiments at JLab and SLAC

Beam Dump Experiments at JLab and SLAC Beam Dump Experiments at JLab and SLAC Brief History (E137 at SLAC) BDX at Jefferson Lab Detector and signal Backgrounds Expected Sensitivity Elton S. Smith, Jefferson Lab On behalf of the BDX Collaboration

More information