A few Murray connections: Extended Bradley-Terry models. Bradley-Terry model. Pair-comparison studies. Some data. Some data

Size: px
Start display at page:

Download "A few Murray connections: Extended Bradley-Terry models. Bradley-Terry model. Pair-comparison studies. Some data. Some data"

Transcription

1 Introduction A few Murray connections: Extended Bradley-Terry models David Firth (with Heather Turner) Department of Statistics University of Warwick psychometrics sport Lancaster missing data structured sources of variation interactive modelling software Murray s 70th celebration, London, Pair-comparison studies Bradley-Terry model The basic model: Sport: player i beats player j Psychometrics: object i is preferred to object j pr(i beats j) = with α i the relative ability of object i. α i α i + α j, Sport (etc.): interest in players and their attributes Psychometrics (etc.): interest in judges (subjects) and their attributes Work with log abilities: logit[pr(i beats j)] = log(α i ) log(α j ) = λ i λ j. Simple interpretation; Luce s axiom. Some data From (A. Agresti, Categorical Data Analysis): Loser Winner Seles Graf Sabatini Navratilova Sanchez Seles Graf Sabatini Navratilova Sanchez Bradley-Terry model scores the players in terms of their (assumed constant) relative abilities α i. Some data From 1983: Loser Winner Aitkin Firth Aitkin 1 Firth 0 MLE for the ability parameters here: ˆα Firth = 100 (by convention!) ˆα Aitkin = (!)

2 Extensions? Structured Bradley-Terry model We focus on three possible directions from the basic model: 1. (Log-)abilities λ i determined/predicted by object covariate vector x i. 2. λ i λ ik : the ability of object i varies between different comparisons k. 3. i versus j, no preference? ( tied comparisons) λ i = f i (β) + U i = r β r x ir + U i attributes of objects/players predict ability (for example) U i is random error, with variance σ 2, say needed in order to allow for imperfect prediction complex random effects model, with linear predictor (x ir x jr )β r + (U i U j ) r Ability varying between comparisons Ability varying between comparisons (continued) e.g., time-varying covariates, e.g., subject-specific abilities, λ i λ ik λ ik = r β r x ikr + U i λ ik = λ is, where s = s(k) identifies the subject who makes comparison k. e.g., abilities predicted by subject covariates, λ is = t γ it z st + E is e.g., still with abilities λ is varying between subjects, a particular form likely to be useful is multiplicative interaction, ( ) λ is = λ i exp γ t z st + E is a generalized nonlinear mixed model (with non-nested random effects, as always with structured Bradley-Terry models). R packages BradleyTerry2 and gnm t An example: Reptile social science Male Augrabies flat lizards:

3 A lizard tournament 189 male lizards were captured and various measurements made. Then released, and contests (fights) observed. Every contest has a winner and a loser (judged by the observer apparently not difficult to judge!) In all, 100 contests were observed, involving 77 of the lizards. Explanatory variables PC1throat, PC2throat, PC3throat: first 3 PCs of throat spectrum PC1FL, PC2FL, PC3FL: first 3 PCs of forelimb spectrum PC1BA, PC2BA, PC3BA: first 3 PCs of badge spectrum Bsize: badge size AdjT: blood testosterone concentration SVL: snout-vent length HL.res, HW.res, HH.res: residuals of head length, width, height on SVL condition: residuals of body mass on SVL A two-stage analysis? 1. Obtain estimates ˆα 1,..., ˆα 77 from a standard maximum-likelihood analysis of the Bradley-Terry model for the contest results. 2. Fit linear models E(log ˆα i ) = p β rx ir, using the ML estimates as response variable (and reciprocals of squared standard errors as weights). This is fine in principle. Indeed, it may be shown theoretically to be fully efficient, asymptotically as the number of fights per lizard increases. But: information on unconnected lizards is lost completely lizard 62 is massively influential many of the ML estimates ˆα i are infinite-valued.

4 A more direct approach With λ i = log α i = β r x ir + U i, estimate the coefficients of the implied logistic regression logit[p (i beats j)] = β r (x ir x jr ) + (U i U j ) directly. (But note difficulties with ML estimation here!) Advantages: Uses all the available information. The influence of a contest is now related in the usual way to its position in predictor space. logit[p (i beats j)] = Some problems: β r (x ir x jr ) + (U i U j ) model specification/search in standard software is painful. missing data. In practice some values of x ir are missing because the measurements were corrupted or could not be taken for reasons entirely unconnected with the values to be measured, or with contest outcomes. likelihood intractible, so approximate methods are needed. we need lizard-specific residuals (not contest-specific residuals) in order to criticise the linear predictor. Missing data logit[p (i beats j)] = β r (x ir x jr ) + (U i U j ) A standard approach: if a value of x ir x jr is missing (at random), omit the corresponding contest when fitting the model. But this is very wasteful potentially, and actually in the case of the lizard data. Consider an extreme example: Solution: the model really should be player 1 player 5 log α i = { p β rx ir + U i if case i has no missing values λ i if case i has missing values player 2 player 3 player 4 player 6 player 7 If player 4 has a covariate value missing, all data is lost! Omitting a case (here a contest) is equivalent to including a nuisance parameter for that case. But really a case should be a player (here, a lizard), not a contest. so that the linear predictor for contest outcomes is p β r(x ir x jr ) + U i U j normally λ i p β rx jr U j if i has missing data p β rx ir + U i λ j if j has missing data λ i λ j if both i and j have missing data In the extreme example above, this would result in the estimation of a single extra parameter λ 4 for player 4, rather than complete non-estimability of all the β parameters.

5 Some results Use of standard model-search methods (forwards, backwards, stepwise, based on either significance tests or AIC) points to the following model, as specified in the BradleyTerry2 package for R : > library(bradleyterry2) > BTm(result, winner, loser, ~ throat.pc1[..] + throat.pc3[..] + head.length[..] + SVL[..] + (1..), data = list(contests, predictors)) The random term U i U j turns out to have substantial variance: ˆσ U = 1.1 (st. error 0.3) Main interest is in the coefficients for covariates: Fixed Effects: Estimate Std. Error z value Pr(> z )..lizard e e e lizard e e throat.pc1[..] e e throat.pc3[..] 3.735e e head.length[..] e e SVL[..] 1.722e e same story (thankfully!) as in the published 2006 paper, which ignored the error terms. (The standard errors are a bit larger here, more realistic.) Main substantive conclusions: Normal Q Q plot of contest residuals Clear evidence for throat colour as a predictor of fight-winning ability. Overall brightness (PC1) and UV intensity (PC3) of the throat are clearly significant predictors. PC3 has by far the largest effect: the standard deviation of PC3throat is 2.34, so in a contest between lizards at ±2 standard deviations the odds are estimated as exp( ) 30 in favour of the lizard with greater UV reflectance on the throat. Diagnostics? Based on lizard residuals. Sample Quantiles Theoretical Quantiles Normal Q Q plot of lizard residuals Sample Quantiles 3 Theoretical Quantiles

Fitting GLMMs with glmmsr Helen Ogden

Fitting GLMMs with glmmsr Helen Ogden Fitting GLMMs with glmmsr Helen Ogden Introduction Generalized linear mixed models (GLMMs) are an important and widely-used model class. In R, it is possible to fit these models with the lme4 package (Bates

More information

22s:152 Applied Linear Regression. Example: Study on lead levels in children. Ch. 14 (sec. 1) and Ch. 15 (sec. 1 & 4): Logistic Regression

22s:152 Applied Linear Regression. Example: Study on lead levels in children. Ch. 14 (sec. 1) and Ch. 15 (sec. 1 & 4): Logistic Regression 22s:52 Applied Linear Regression Ch. 4 (sec. and Ch. 5 (sec. & 4: Logistic Regression Logistic Regression When the response variable is a binary variable, such as 0 or live or die fail or succeed then

More information

A Model for Correlated Paired Comparison Data

A Model for Correlated Paired Comparison Data Working Paper Series, N. 15, December 2010 A Model for Correlated Paired Comparison Data Manuela Cattelan Department of Statistical Sciences University of Padua Italy Cristiano Varin Department of Statistics

More information

Custom Functions for Specifying Nonlinear Terms to gnm

Custom Functions for Specifying Nonlinear Terms to gnm Custom Functions for Specifying Nonlinear Terms to gnm Heather Turner, David Firth and Andy Batchelor Department of Statistics University of Warwick, UK H. Turner, D. Firth and A. Batchelor () Custom nonlin

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

Multinomial Logistic Regression Models

Multinomial Logistic Regression Models Stat 544, Lecture 19 1 Multinomial Logistic Regression Models Polytomous responses. Logistic regression can be extended to handle responses that are polytomous, i.e. taking r>2 categories. (Note: The word

More information

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010 1 Linear models Y = Xβ + ɛ with ɛ N (0, σ 2 e) or Y N (Xβ, σ 2 e) where the model matrix X contains the information on predictors and β includes all coefficients (intercept, slope(s) etc.). 1. Number of

More information

Lecture 14: Introduction to Poisson Regression

Lecture 14: Introduction to Poisson Regression Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu 8 May 2007 1 / 52 Overview Modelling counts Contingency tables Poisson regression models 2 / 52 Modelling counts I Why

More information

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview Modelling counts I Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu Why count data? Number of traffic accidents per day Mortality counts in a given neighborhood, per week

More information

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont.

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont. TCELL 9/4/205 36-309/749 Experimental Design for Behavioral and Social Sciences Simple Regression Example Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted

More information

9 Generalized Linear Models

9 Generalized Linear Models 9 Generalized Linear Models The Generalized Linear Model (GLM) is a model which has been built to include a wide range of different models you already know, e.g. ANOVA and multiple linear regression models

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression 36-309/749 Experimental Design for Behavioral and Social Sciences Sep. 22, 2015 Lecture 4: Linear Regression TCELL Simple Regression Example Male black wheatear birds carry stones to the nest as a form

More information

Analysing categorical data using logit models

Analysing categorical data using logit models Analysing categorical data using logit models Graeme Hutcheson, University of Manchester The lecture notes, exercises and data sets associated with this course are available for download from: www.research-training.net/manchester

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 Introduction to Generalized Univariate Models: Models for Binary Outcomes EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 EPSY 905: Intro to Generalized In This Lecture A short review

More information

Multiple Linear Regression. Chapter 12

Multiple Linear Regression. Chapter 12 13 Multiple Linear Regression Chapter 12 Multiple Regression Analysis Definition The multiple regression model equation is Y = b 0 + b 1 x 1 + b 2 x 2 +... + b p x p + ε where E(ε) = 0 and Var(ε) = s 2.

More information

Swarthmore Honors Exam 2012: Statistics

Swarthmore Honors Exam 2012: Statistics Swarthmore Honors Exam 2012: Statistics 1 Swarthmore Honors Exam 2012: Statistics John W. Emerson, Yale University NAME: Instructions: This is a closed-book three-hour exam having six questions. You may

More information

Introducing Generalized Linear Models: Logistic Regression

Introducing Generalized Linear Models: Logistic Regression Ron Heck, Summer 2012 Seminars 1 Multilevel Regression Models and Their Applications Seminar Introducing Generalized Linear Models: Logistic Regression The generalized linear model (GLM) represents and

More information

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Overview In observational and experimental studies, the goal may be to estimate the effect

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression September 24, 2008 Reading HH 8, GIll 4 Simple Linear Regression p.1/20 Problem Data: Observe pairs (Y i,x i ),i = 1,...n Response or dependent variable Y Predictor or independent

More information

Lecture 12: Effect modification, and confounding in logistic regression

Lecture 12: Effect modification, and confounding in logistic regression Lecture 12: Effect modification, and confounding in logistic regression Ani Manichaikul amanicha@jhsph.edu 4 May 2007 Today Categorical predictor create dummy variables just like for linear regression

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Human vs mouse Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman www.daviddeen.com

More information

Ron Heck, Fall Week 8: Introducing Generalized Linear Models: Logistic Regression 1 (Replaces prior revision dated October 20, 2011)

Ron Heck, Fall Week 8: Introducing Generalized Linear Models: Logistic Regression 1 (Replaces prior revision dated October 20, 2011) Ron Heck, Fall 2011 1 EDEP 768E: Seminar in Multilevel Modeling rev. January 3, 2012 (see footnote) Week 8: Introducing Generalized Linear Models: Logistic Regression 1 (Replaces prior revision dated October

More information

Mixture models for heterogeneity in ranked data

Mixture models for heterogeneity in ranked data Mixture models for heterogeneity in ranked data Brian Francis Lancaster University, UK Regina Dittrich, Reinhold Hatzinger Vienna University of Economics CSDA 2005 Limassol 1 Introduction Social surveys

More information

QTL Model Search. Brian S. Yandell, UW-Madison January 2017

QTL Model Search. Brian S. Yandell, UW-Madison January 2017 QTL Model Search Brian S. Yandell, UW-Madison January 2017 evolution of QTL models original ideas focused on rare & costly markers models & methods refined as technology advanced single marker regression

More information

General Regression Model

General Regression Model Scott S. Emerson, M.D., Ph.D. Department of Biostatistics, University of Washington, Seattle, WA 98195, USA January 5, 2015 Abstract Regression analysis can be viewed as an extension of two sample statistical

More information

On a connection between the Bradley-Terry model and the Cox proportional hazards model

On a connection between the Bradley-Terry model and the Cox proportional hazards model On a connection between the Bradley-Terry model and the Cox proportional hazards model Yuhua Su and Mai Zhou Department of Statistics University of Kentucky Lexington, KY 40506-0027, U.S.A. SUMMARY This

More information

ˆπ(x) = exp(ˆα + ˆβ T x) 1 + exp(ˆα + ˆβ T.

ˆπ(x) = exp(ˆα + ˆβ T x) 1 + exp(ˆα + ˆβ T. Exam 3 Review Suppose that X i = x =(x 1,, x k ) T is observed and that Y i X i = x i independent Binomial(n i,π(x i )) for i =1,, N where ˆπ(x) = exp(ˆα + ˆβ T x) 1 + exp(ˆα + ˆβ T x) This is called the

More information

Model checking overview. Checking & Selecting GAMs. Residual checking. Distribution checking

Model checking overview. Checking & Selecting GAMs. Residual checking. Distribution checking Model checking overview Checking & Selecting GAMs Simon Wood Mathematical Sciences, University of Bath, U.K. Since a GAM is just a penalized GLM, residual plots should be checked exactly as for a GLM.

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Reading: Hoff Chapter 9 November 4, 2009 Problem Data: Observe pairs (Y i,x i ),i = 1,... n Response or dependent variable Y Predictor or independent variable X GOALS: Exploring

More information

Logistic regression. 11 Nov Logistic regression (EPFL) Applied Statistics 11 Nov / 20

Logistic regression. 11 Nov Logistic regression (EPFL) Applied Statistics 11 Nov / 20 Logistic regression 11 Nov 2010 Logistic regression (EPFL) Applied Statistics 11 Nov 2010 1 / 20 Modeling overview Want to capture important features of the relationship between a (set of) variable(s)

More information

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam ECLT 5810 Linear Regression and Logistic Regression for Classification Prof. Wai Lam Linear Regression Models Least Squares Input vectors is an attribute / feature / predictor (independent variable) The

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Regression Model Building

Regression Model Building Regression Model Building Setting: Possibly a large set of predictor variables (including interactions). Goal: Fit a parsimonious model that explains variation in Y with a small set of predictors Automated

More information

Semiparametric Generalized Linear Models

Semiparametric Generalized Linear Models Semiparametric Generalized Linear Models North American Stata Users Group Meeting Chicago, Illinois Paul Rathouz Department of Health Studies University of Chicago prathouz@uchicago.edu Liping Gao MS Student

More information

Random Intercept Models

Random Intercept Models Random Intercept Models Edps/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2019 Outline A very simple case of a random intercept

More information

Analysing data: regression and correlation S6 and S7

Analysing data: regression and correlation S6 and S7 Basic medical statistics for clinical and experimental research Analysing data: regression and correlation S6 and S7 K. Jozwiak k.jozwiak@nki.nl 2 / 49 Correlation So far we have looked at the association

More information

Classification 1: Linear regression of indicators, linear discriminant analysis

Classification 1: Linear regression of indicators, linear discriminant analysis Classification 1: Linear regression of indicators, linear discriminant analysis Ryan Tibshirani Data Mining: 36-462/36-662 April 2 2013 Optional reading: ISL 4.1, 4.2, 4.4, ESL 4.1 4.3 1 Classification

More information

Class Notes: Week 8. Probit versus Logit Link Functions and Count Data

Class Notes: Week 8. Probit versus Logit Link Functions and Count Data Ronald Heck Class Notes: Week 8 1 Class Notes: Week 8 Probit versus Logit Link Functions and Count Data This week we ll take up a couple of issues. The first is working with a probit link function. While

More information

NELS 88. Latent Response Variable Formulation Versus Probability Curve Formulation

NELS 88. Latent Response Variable Formulation Versus Probability Curve Formulation NELS 88 Table 2.3 Adjusted odds ratios of eighth-grade students in 988 performing below basic levels of reading and mathematics in 988 and dropping out of school, 988 to 990, by basic demographics Variable

More information

Chapter 1. Modeling Basics

Chapter 1. Modeling Basics Chapter 1. Modeling Basics What is a model? Model equation and probability distribution Types of model effects Writing models in matrix form Summary 1 What is a statistical model? A model is a mathematical

More information

Generalized linear models

Generalized linear models Generalized linear models Douglas Bates November 01, 2010 Contents 1 Definition 1 2 Links 2 3 Estimating parameters 5 4 Example 6 5 Model building 8 6 Conclusions 8 7 Summary 9 1 Generalized Linear Models

More information

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples ST3241 Categorical Data Analysis I Generalized Linear Models Introduction and Some Examples 1 Introduction We have discussed methods for analyzing associations in two-way and three-way tables. Now we will

More information

Binary Regression. GH Chapter 5, ISL Chapter 4. January 31, 2017

Binary Regression. GH Chapter 5, ISL Chapter 4. January 31, 2017 Binary Regression GH Chapter 5, ISL Chapter 4 January 31, 2017 Seedling Survival Tropical rain forests have up to 300 species of trees per hectare, which leads to difficulties when studying processes which

More information

Binomial Model. Lecture 10: Introduction to Logistic Regression. Logistic Regression. Binomial Distribution. n independent trials

Binomial Model. Lecture 10: Introduction to Logistic Regression. Logistic Regression. Binomial Distribution. n independent trials Lecture : Introduction to Logistic Regression Ani Manichaikul amanicha@jhsph.edu 2 May 27 Binomial Model n independent trials (e.g., coin tosses) p = probability of success on each trial (e.g., p =! =

More information

,..., θ(2),..., θ(n)

,..., θ(2),..., θ(n) Likelihoods for Multivariate Binary Data Log-Linear Model We have 2 n 1 distinct probabilities, but we wish to consider formulations that allow more parsimonious descriptions as a function of covariates.

More information

A NOTE ON ROBUST ESTIMATION IN LOGISTIC REGRESSION MODEL

A NOTE ON ROBUST ESTIMATION IN LOGISTIC REGRESSION MODEL Discussiones Mathematicae Probability and Statistics 36 206 43 5 doi:0.75/dmps.80 A NOTE ON ROBUST ESTIMATION IN LOGISTIC REGRESSION MODEL Tadeusz Bednarski Wroclaw University e-mail: t.bednarski@prawo.uni.wroc.pl

More information

Logistic Regression. Some slides from Craig Burkett. STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy

Logistic Regression. Some slides from Craig Burkett. STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy Logistic Regression Some slides from Craig Burkett STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy Titanic Survival Case Study The RMS Titanic A British passenger liner Collided

More information

Statistics 262: Intermediate Biostatistics Model selection

Statistics 262: Intermediate Biostatistics Model selection Statistics 262: Intermediate Biostatistics Model selection Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Today s class Model selection. Strategies for model selection.

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

Lecture 10: Introduction to Logistic Regression

Lecture 10: Introduction to Logistic Regression Lecture 10: Introduction to Logistic Regression Ani Manichaikul amanicha@jhsph.edu 2 May 2007 Logistic Regression Regression for a response variable that follows a binomial distribution Recall the binomial

More information

gnm: an R Package for Generalized Nonlinear Models

gnm: an R Package for Generalized Nonlinear Models gnm: an R Package for Generalized Nonlinear Models Heather Turner Department of Statistics University of Warwick, UK Heather Turner (University of Warwick) gnm Package WU April 2008 1 / 47 Overview What

More information

Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see

Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see Title stata.com logistic postestimation Postestimation tools for logistic Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see

More information

Pseudo-score confidence intervals for parameters in discrete statistical models

Pseudo-score confidence intervals for parameters in discrete statistical models Biometrika Advance Access published January 14, 2010 Biometrika (2009), pp. 1 8 C 2009 Biometrika Trust Printed in Great Britain doi: 10.1093/biomet/asp074 Pseudo-score confidence intervals for parameters

More information

Modelling heterogeneous variance-covariance components in two-level multilevel models with application to school effects educational research

Modelling heterogeneous variance-covariance components in two-level multilevel models with application to school effects educational research Modelling heterogeneous variance-covariance components in two-level multilevel models with application to school effects educational research Research Methods Festival Oxford 9 th July 014 George Leckie

More information

Logistic regression: Miscellaneous topics

Logistic regression: Miscellaneous topics Logistic regression: Miscellaneous topics April 11 Introduction We have covered two approaches to inference for GLMs: the Wald approach and the likelihood ratio approach I claimed that the likelihood ratio

More information

Regression diagnostics

Regression diagnostics Regression diagnostics Kerby Shedden Department of Statistics, University of Michigan November 5, 018 1 / 6 Motivation When working with a linear model with design matrix X, the conventional linear model

More information

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches Sta 216, Lecture 4 Last Time: Logistic regression example, existence/uniqueness of MLEs Today s Class: 1. Hypothesis testing through analysis of deviance 2. Standard errors & confidence intervals 3. Model

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Time-Invariant Predictors in Longitudinal Models

Time-Invariant Predictors in Longitudinal Models Time-Invariant Predictors in Longitudinal Models Topics: What happens to missing predictors Effects of time-invariant predictors Fixed vs. systematically varying vs. random effects Model building strategies

More information

Biostatistics. Correlation and linear regression. Burkhardt Seifert & Alois Tschopp. Biostatistics Unit University of Zurich

Biostatistics. Correlation and linear regression. Burkhardt Seifert & Alois Tschopp. Biostatistics Unit University of Zurich Biostatistics Correlation and linear regression Burkhardt Seifert & Alois Tschopp Biostatistics Unit University of Zurich Master of Science in Medical Biology 1 Correlation and linear regression Analysis

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Tied survival times; estimation of survival probabilities

Tied survival times; estimation of survival probabilities Tied survival times; estimation of survival probabilities Patrick Breheny November 5 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Tied survival times Introduction Breslow approximation

More information

LOGISTIC REGRESSION Joseph M. Hilbe

LOGISTIC REGRESSION Joseph M. Hilbe LOGISTIC REGRESSION Joseph M. Hilbe Arizona State University Logistic regression is the most common method used to model binary response data. When the response is binary, it typically takes the form of

More information

Quantitative Methods I: Regression diagnostics

Quantitative Methods I: Regression diagnostics Quantitative Methods I: Regression University College Dublin 10 December 2014 1 Assumptions and errors 2 3 4 Outline Assumptions and errors 1 Assumptions and errors 2 3 4 Assumptions: specification Linear

More information

Markov models of dependence in longitudinal paired comparisons - An application to course design

Markov models of dependence in longitudinal paired comparisons - An application to course design manuscript No. (will be inserted by the editor) Markov models of dependence in longitudinal paired comparisons - An application to course design Alexandra Grand Regina Dittrich Brian Francis Received:

More information

Exam Applied Statistical Regression. Good Luck!

Exam Applied Statistical Regression. Good Luck! Dr. M. Dettling Summer 2011 Exam Applied Statistical Regression Approved: Tables: Note: Any written material, calculator (without communication facility). Attached. All tests have to be done at the 5%-level.

More information

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3 STA 303 H1S / 1002 HS Winter 2011 Test March 7, 2011 LAST NAME: FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 303 STA 1002 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator. Some formulae

More information

Chapter 20: Logistic regression for binary response variables

Chapter 20: Logistic regression for binary response variables Chapter 20: Logistic regression for binary response variables In 1846, the Donner and Reed families left Illinois for California by covered wagon (87 people, 20 wagons). They attempted a new and untried

More information

Logistic Regression. Continued Psy 524 Ainsworth

Logistic Regression. Continued Psy 524 Ainsworth Logistic Regression Continued Psy 524 Ainsworth Equations Regression Equation Y e = 1 + A+ B X + B X + B X 1 1 2 2 3 3 i A+ B X + B X + B X e 1 1 2 2 3 3 Equations The linear part of the logistic regression

More information

Solutions for Examination Categorical Data Analysis, March 21, 2013

Solutions for Examination Categorical Data Analysis, March 21, 2013 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, Frank Miller MT 5006 LÖSNINGAR 21 mars 2013 Solutions for Examination Categorical Data Analysis, March 21, 2013 Problem 1 a.

More information

Generalized Linear Models (GLZ)

Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) are an extension of the linear modeling process that allows models to be fit to data that follow probability distributions other than the

More information

MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40:... with Data Gathering, 9 hp

MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40:... with Data Gathering, 9 hp Selection criteria Example Methods MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40:... with Data Gathering, 9 hp Lecture 5, spring 2018 Model selection tools Mathematical Statistics / Centre

More information

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Investigating Models with Two or Three Categories

Investigating Models with Two or Three Categories Ronald H. Heck and Lynn N. Tabata 1 Investigating Models with Two or Three Categories For the past few weeks we have been working with discriminant analysis. Let s now see what the same sort of model might

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

How to deal with non-linear count data? Macro-invertebrates in wetlands

How to deal with non-linear count data? Macro-invertebrates in wetlands How to deal with non-linear count data? Macro-invertebrates in wetlands In this session we l recognize the advantages of making an effort to better identify the proper error distribution of data and choose

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours Instructions: STATS216v Introduction to Statistical Learning Stanford University, Summer 2017 Remember the university honor code. Midterm Exam (Solutions) Duration: 1 hours Write your name and SUNet ID

More information

holding all other predictors constant

holding all other predictors constant Multiple Regression Numeric Response variable (y) p Numeric predictor variables (p < n) Model: Y = b 0 + b 1 x 1 + + b p x p + e Partial Regression Coefficients: b i effect (on the mean response) of increasing

More information

Regression and Models with Multiple Factors. Ch. 17, 18

Regression and Models with Multiple Factors. Ch. 17, 18 Regression and Models with Multiple Factors Ch. 17, 18 Mass 15 20 25 Scatter Plot 70 75 80 Snout-Vent Length Mass 15 20 25 Linear Regression 70 75 80 Snout-Vent Length Least-squares The method of least

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation.

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation. Statistical Computation Math 475 Jimin Ding Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html October 10, 2013 Ridge Part IV October 10, 2013 1

More information

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 Time allowed: 3 HOURS. STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 This is an open book exam: all course notes and the text are allowed, and you are expected to use your own calculator.

More information

TECHNICAL REPORT # 59 MAY Interim sample size recalculation for linear and logistic regression models: a comprehensive Monte-Carlo study

TECHNICAL REPORT # 59 MAY Interim sample size recalculation for linear and logistic regression models: a comprehensive Monte-Carlo study TECHNICAL REPORT # 59 MAY 2013 Interim sample size recalculation for linear and logistic regression models: a comprehensive Monte-Carlo study Sergey Tarima, Peng He, Tao Wang, Aniko Szabo Division of Biostatistics,

More information

Logistic regression: Why we often can do what we think we can do. Maarten Buis 19 th UK Stata Users Group meeting, 10 Sept. 2015

Logistic regression: Why we often can do what we think we can do. Maarten Buis 19 th UK Stata Users Group meeting, 10 Sept. 2015 Logistic regression: Why we often can do what we think we can do Maarten Buis 19 th UK Stata Users Group meeting, 10 Sept. 2015 1 Introduction Introduction - In 2010 Carina Mood published an overview article

More information

Review: Second Half of Course Stat 704: Data Analysis I, Fall 2014

Review: Second Half of Course Stat 704: Data Analysis I, Fall 2014 Review: Second Half of Course Stat 704: Data Analysis I, Fall 2014 Tim Hanson, Ph.D. University of South Carolina T. Hanson (USC) Stat 704: Data Analysis I, Fall 2014 1 / 13 Chapter 8: Polynomials & Interactions

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Day 4: Shrinkage Estimators

Day 4: Shrinkage Estimators Day 4: Shrinkage Estimators Kenneth Benoit Data Mining and Statistical Learning March 9, 2015 n versus p (aka k) Classical regression framework: n > p. Without this inequality, the OLS coefficients have

More information

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti Good Confidence Intervals for Categorical Data Analyses Alan Agresti Department of Statistics, University of Florida visiting Statistics Department, Harvard University LSHTM, July 22, 2011 p. 1/36 Outline

More information

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j Standard Errors & Confidence Intervals β β asy N(0, I( β) 1 ), where I( β) = [ 2 l(β, φ; y) ] β i β β= β j We can obtain asymptotic 100(1 α)% confidence intervals for β j using: β j ± Z 1 α/2 se( β j )

More information

Introduction to Statistical modeling: handout for Math 489/583

Introduction to Statistical modeling: handout for Math 489/583 Introduction to Statistical modeling: handout for Math 489/583 Statistical modeling occurs when we are trying to model some data using statistical tools. From the start, we recognize that no model is perfect

More information

Logistic Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Logistic Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University Logistic Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Logistic Regression 1 / 38 Logistic Regression 1 Introduction

More information

The propensity score with continuous treatments

The propensity score with continuous treatments 7 The propensity score with continuous treatments Keisuke Hirano and Guido W. Imbens 1 7.1 Introduction Much of the work on propensity score analysis has focused on the case in which the treatment is binary.

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Generalized Linear Models Introduction

Generalized Linear Models Introduction Generalized Linear Models Introduction Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Generalized Linear Models For many problems, standard linear regression approaches don t work. Sometimes,

More information

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences Biostatistics-Lecture 16 Model Selection Ruibin Xi Peking University School of Mathematical Sciences Motivating example1 Interested in factors related to the life expectancy (50 US states,1969-71 ) Per

More information