Bounds on Cohomology and Castelnuovo Mumford Regularity

Size: px
Start display at page:

Download "Bounds on Cohomology and Castelnuovo Mumford Regularity"

Transcription

1 JOURAL OF ALGEBRA 185, ARTICLE O. 03 Bouds o Cohomology CasteluovoMumfod Regulaty Chkash Myazak agao atoal College of Techology, 716 Tokuma, agao 381, Japa Wolfgag Vogel Depatmet of Mathematcs, Massey Uesty, Palmesto oth, ew Zeal Commucated by D. A. Buchsbaum Receved Jauay 25, ITRODUCTIO Let X PK be a pojectve scheme ove a algebacally closed feld K. We deote by IX the deal sheaf of X. The X s sad to be m-egula f Ž H P,I Ž m.. 0 fo all 1 Žcf. 17. K X. The CasteluovoMumfod egulaty eg X of X P K, fst toduced by Mumfod by geealzg deas of Casteluovo, s the least such tege m. The teest ths cocept stems patly fom the well-kow fact that X s m-egula f oly f fo evey p 0 the mmal geeatos of the pth syzygy module of the defg deal I of X P occu degee m p Žsee, e.g.,. K 2. Thee ae good bouds some cases f X s assumed to be smooth Žsee 1 the efeeces thee.. Ou teest s to cosde the case whee X s locally CoheMacaulay equdmesoal. Ude ths assumpto thee s a o-egatve Ths autho would lke to thak Massey Uvesty fo facal suppot the Depatmet of Mathematcs fo ts fedly atmosphee whle wtg ths pape. E-mal: myazak@e.agao-ct.ac.jp. E-mal: W.Vogel@massey.ac.z $18.00 Copyght 1996 by Academc Pess, Ic. All ghts of epoducto ay fom eseved. 626

2 BOUDS O COHOMOLOGY 627 tege k such that k Ž 0. K X lz X,..., X H P, I l 0 fo 1 dm X, whee PK Poj K X 0,..., X. I ths case X PK s called a k-buchsbaum scheme. A efed veso s a Ž k,. -Buchsbaum scheme toduced 3, 10, 12 : Let k be teges wth k 0 1 dm X. The we call XP a Ž k,. K -Buchsbaum scheme f, fo all j 0,...,1, X V s a k-buchsbaum scheme fo evey Ž j. -dmesoal complete tesecto V P wth dm Ž X V. dmž X. j Žsee Ž 2.3. see also Ž 2.. K fo a equvalet defto case k 1.. I ecet yeas uppe bouds o the CasteluovoMumfod egulaty of such a vaety X PK have bee gve by seveal authos tems of dmž X., degž X., k,, Žsee, e.g., 1012, 19, 20.. These bouds ae stated as follows; degž X. 1 egž X. CŽ k,, d., codm Ž X. whee d dm X, Ck,,d s a costat depedg o k,, d, s the smallest tege l fo a atoal umbe. I case X s athmetcally CoheMacaulay, that s, k 0, t s well kow that Ck,,d1 Žsee, e.g., 22, 23.. We assume k 1. I case 1 t was Ž d 1 show that Ck,1,d. kd1 12. I 11 Ž 2 a slghtly weake fom. 19 t was mpoved to Ck,1,d Ž 2d1. kd1. Futhe, a bette boud Ck,1,d dk was obtaed 20. The geeal case 1 was fst studed 10, whch was mpoved 12 by showg Ž d 2 that Ck,,d 1k. 2 kd1. The pupose of ths pape s to gve bouds o egž X. tems of dmž X., degž X., k,, whch mpove some of the pevous esults. I the geeal case we show that CŽ k,, d. dk Moeove, case k 1, we show that CŽ 1,, d. Ž Ou method hee s to use a spectal sequece theoy fo gaded modules developed 116 ode to get bouds o the local cohomology the CasteluovoMumfod egulaty. d

3 628 MIYAZAKI AD VOGEL Let R be the coodate g of X PK wth the homogeeous maxmal deal. The we defe a Ž R. sup; H Ž R. 0 fo 0,...,d1, egž R. maxa Ž R. ; 0,...,d1. It s easy to see that egž X. egž R. 1. Amog a Ž R. s, a Ž R. d1, whch s called a a-vaat of R Žcf.. 7, plays a mpotat ole to chaacteze the gaded g R. The esults Ž 2.7. Ž 2.9. o bouds o the cohomology tems of a-vaats ae appled to Ž 3.2. Ž I Secto 2, we cosde bouds o the cohomology fo gaded modules. Fst we expla a spectal sequece theoy ode to get cohomologcal bouds. Theoem Ž 2.5. s the key techcal esult of ths pape. Ths theoem gves seveal mpotat esults stated Ž 2.7. Ž I Secto 3, we descbe bouds o the CasteluovoMumfod egula- ty fo locally CoheMacaulay vaetes X P. Theoem Ž 3.2. K Theoem Ž 3.3. ae ma esults of ths secto. I Secto, we costuct shap examples of Ž 2.8. Ž 2.11., coclude by descbg some ope poblems. 2. BOUDS O LOCAL COHOMOLOGY Thoughout ths pape let R KR 1 be a oethea gaded K-algeba, whee K s a fte feld. We deote by the maxmal homogeeous deal of R. Let M be a gaded R-module. We wte M fo the th gaded pece of M MŽ p. fo the gaded module wth MŽ p. M. We set: p supž M. sup; M 0. If M 0, we set sup M. ow we assume that M s a ftely geeated gaded R-module wth dm M d 0. The we set Ž. a Ž M. sup H Ž M., 0,...,d. also a Ž M. s called the a-vaat of M s wtte as am. d The CasteluovoMumfod egulaty of M s defed as follows: eg Ž M. max a Ž M. ; 0,...,d. I ode to state ou esults we use the otato eg Ž M. max a Ž M. ;,...,d, whee 0 d. The we see egž M. eg Ž M. eg Ž M. 0 depthžm.. Let X be a closed subscheme of PK. Let R be the coodate g of X. The the CasteluovoMumfod egulaty of X s defed as follows. eg Ž X. eg Ž R. 1.

4 BOUDS O COHOMOLOGY 629 Fom ow o we assume that the gaded module M s a geealzed CoheMacaulay module. I othe wods M s locally CoheMacaulay; that s, M s CoheMacaulay fo all o-maxmal homogeeous pme deals of R, M s equ-dmesoal, that s, dm Ž R. d fo all mmal assocated pme deals of M. DEFIITIO 2.1. Let k be a o-egatve tege. The gaded R-modk ule M s called a k-buchsbaum module f H Ž M. 0 fo all d. DEFIITIO , 10, 12. Let k be teges wth k 0 1d. M s called a Ž k,. -Buchsbaum module f fo evey s.o.p. x,..., x of M we have 1 d k H MŽ x,..., x. M 0, 1 j fo all o-egatve teges, j wth j 1 j d. Remak. Ž 0, d. -, Ž 1,d. -, Ž k, 1. -Buchsbaum modules ae the CoheMacaulay, Buchsbaum, k-buchsbuam modules, espectvely. The Ž 1,. -Buchsbaum module, toduced as -Buchsbaum module 1, was studed also 15, 16. Remak. Fo a fxed tege, 1d, evey geealzed Cohe Macaulay gaded module M has the Ž k,. -Buchsbaum popety fo k lage eough; see 12, Ž DEFIITIO Let be teges wth 1 d. Let x 1,..., x be a pat of s.o.p. fo M. We say x 1,..., x s -stad, f fo ay choce x,..., x Ž l1. fo j l d. 1 l Ž x,..., x. H j MŽ x,..., x. M l Remak. Stad s.o.p. was toduced seveal papes; see, e.g., 2. The -stadess s ts geealzato. A smla geealzato was toduced 19, Ž.2.. Fst we ote a chaactezato of Ž 1,. -Buchsbaum modules tems of s.o.p. of degee oe whch mpoves, e.g., 1; Ž 2.5. of. PROPOSITIO 2.. Let R KR 1 be a gaded g oe a fte feld K. Let be the homogeeous maxmal deal of R geeated by X 0,..., X. Let M be a geealzed CoheMacaulay gaded R-module wth dmž M. d. We assume that fo all teges 0, X,..., X s a 1 d 1 d

5 630 MIYAZAKI AD VOGEL s.o. p. fo M. Let be a tege wth 1 d. The followg ae equalet: Ž. 1 MsaŽ 1,. -Buchsbuam module. Ž. 2 Fo all teges 0 1 d, X,..., X s a -sta- 1 d dad s.o. p. fo M. Poof. It s clea that Ž. 1 mples Ž. 2. ow we wll show that Ž. 2 mples Ž. 1 by ducto o. It s clea case 1. We assume that 1. To pove that M s a Ž 1,. -Buchsbaum module we have oly to show that, fo ay pat of a s.o.p. y 1,..., y fo M, y 1,..., y s -stad, whch s q equvalet to sayg that Ž M. y y s a zeo map fo all 1 q 1 Ž. d1 by 16, 2.3. Also see the otato 16. We set yj Ý0 aj X fo some aj R. Sce X X s -stad fo all q, we see Ž M. s a zeo map by 16, Ž 2.3. X X. By vtue of 1 q 16, 3.. We have that Ž M. y y s a zeo map. Thus the asseto s 1 poved. The followg theoem s the key techcal esult of ths pape. The spectal sequece theoy as developed 116 plays a mpotat ole to pove t. THEOREM 2.5. Let M be a geealzed CoheMacaulay gaded R-module wth dmž M. d 0. Let be teges wth 0 d 1 1d. Let x,..., x be a pat of s.o. p. fo M wth degž x. 1 j ej 1, j 1,...,. We set c maxe e ;1 j 1 j fo j 1 j 1,...,. The we hae: Ž. 1 If d, the sup H Ž M. Ž x 1,..., x. H Ž M. max a Ž M. c, a MŽ x,..., x. M ; j1,...,1. j j1 1 Ž. 2 If d, the sup H Ž M. Ž x 1,..., x. H Ž M. max a Ž M. c ; j1,...,d. j Futhemoe let be a tege wth 1. Assume that the sequece x 1,..., x s -stad. The we hae: Ž. 3 If d, the a Ž M. max a Ž M. c, a MŽ x,..., x. M ; j,...,1. j1 j j1 1

6 BOUDS O COHOMOLOGY 631 Ž. If d, the a Ž M. max a Ž M. c, až M. c ; j,...,d1. j j1 d1 I ode to pove Ž 2.5. we eed to apply the followg spectal sequece coespodg to the gaded R-module M: Let I be the mmal jectve esoluto of M the categoy of the gaded R-modules. Let K be the Koszul complex KŽŽ x,..., x.;r. 1 fo a pat of a s.o.p. x 1,..., x fo M. The we cosde the double complex Ž. Ž. p, q B Hom R K, I. The fltato Ft B Ýpt B gves a spectal p,q sequece E Žsee, e.g.,. 5. The we have the somophsms u E p, q K p Ž x,..., x.; H q Ž M. 1 1 ½ H pq Ž Ž x 1,..., x. ;M., pq pq H Ž B. H pq Ž MŽ x,..., x. M. Ž e e., p q 1 1 p. fo all p, q; see, e.g., 16. ote that the spectal sequece E q u co- pq veges to H Ž B.. The we have the followg lemma by usg the above otato. LEMMA 2.6. Let be a tege wth 1. The the followg codtos ae equalet: Ž. 1 x,..., x s -stad. 1 Ž. p,q s p, q s ps, qs1 s 2 d :E E s a zeo map fo all p, q, s wth q d, 1s. Poof. The lemma follows by ducto o usg 3.3 of 16. ow let us beg to pove 2.5. p, Poof of 2.5. Let us cosde the spectal sequece E q coe- spodg to the gaded R-module M dscussed above fo a pat of s.o.p. x,..., x fo M. We see that 1 E2, H Ž M. Ž x 1,..., x. H Ž M.Ž c. H MŽ x 1,..., x. M Ž c., d H ½ 0, d.

7 632 MIYAZAKI AD VOGEL Sce E p, q 0 fo p, we see E p, q 0 fo p. Thus we see that 1 the gaded R-homomophsm E, H s jectve that E, s a quotet of the gaded R-module E2,. Fst let us pove Ž. 1. Take a tege l satsfyg l a Ž M. c fo all j 1,...,1 l a ŽMŽ x,..., x. M.. We wat to show 1 H M x 1,..., x H M 0. l Ž., Sce H H M x,..., x M 0, we have E lc 1 l lc 0. O the othe h we have somophsms Ž. j1, j j1 j E1 lc K x 1,..., x ; H M lc j H Ž M.Ž e e. 1 j1 11j1 lc j H Ž M. lž e e.. k1 kj1 1k1kj1 j1, j Thus we have E 1 lc 0 fo all j 1,...,1, because lž e e. l c a Ž M. k k j1 j. Ths leads to the equalty 1 j1,,, E E. Hece we have E 2 lc lc 2 lc 0. Thus the asseto s poved. ext let us pove Ž. 2. Take a tege l satsfyg l a Ž M. j cj1 fo all j 1,...,d. Sce we have j1, j j E1 lc H M l ek ek 1k1kj1 j 1 j1 Ž. j1, j as show the poof of 1, we get E 1 lc 0 fo all j 1,...,,, d. Thus we have E E 2 lc lc 0. Hece the asseto s poved. To pove Ž. 3 we take a tege l satsfyg l a Ž M. j cj1 fo all Ž. j,...,1 l a M x,..., x M. Sce H 1 lc Ž.,, H M x 1,..., x M l0, we have E lc 0. Also we see E2 H Ž M.Ž c., because the sequece x,..., x s 1-stad, Sce 1 j1, j j E1 lc H M l ek ek 1k1kj1 1 j1 Ž. j1, j as show the poof of 1, we have E 1 lc 0 fo all j,...,,, 1. By usg Lemma 2.6, we theefoe have E E 2 lc lc. Hece we have H Ž M. l 0. Thus the asseto s poved. Fally let us pove Ž.. Take a tege l satsfyg l a Ž M. j cj1 fo all j,...,d1 l am c. Smlaly we have d1 j1

8 BOUDS O COHOMOLOGY 633,, d1, E 0, E H M c, E d lc 2 1 lc 0 j1, j E 0 fo all j,...,d. By usg Ž lc we theefoe,, have E E. Hece we have H Ž M. 2 lc lc l 0. Thus the as seto s poved. Ths completes the poof of Ž The fst applcato of 2.5 s the followg theoem whch gves bouds o local cohomology. THEOREM 2.7. Let M be a geealzed CoheMacaulay gaded R-module wth dmž M. d 0. Let k 1,...,kd1 be o-egate teges satsfyg k that j H j Ž M. 0 fo j 1,...,d1. Let be a tege wth 1 d. Let x,..., x be a s.o.p. fo M wth degž x. 1 d j 1 fo j 1,...,d. Assume that the sequece x 1,..., x 1 s -stad fo some poste teges 1,...,. The we hae Ž. Ž. d1 1 a M ad M x 1,..., x M d Ý k Ý 1 fo 1,...,d1. Ž. Ž. d 2 a M a M x,..., x M Ý Ž d. 1 d 1 fo d,...,d1. Ž. Ž. d1 3 eg M ad M x 1,..., x M d Ý k Ý fo 1,...,d1. 1 Poof. Fst we wll pove Ž. 2. By vtue of Ž we have Ž. a M a M x 1,..., x d M 1 d 1 fo d,...,d1, because x,..., x d s Ž d. 1 d -stad. Hece we have poved Ž. 1. ote that a Ž M. sup H j Ž M. H j Ž M. k 1 j j Ž. fo j 1,...,d1. see, e.g., 20, 3.3. By vtue of we see a Ž M. sup H Ž M. Ž x,..., x. H Ž M. k 1 1 d max a M jk ; j1,...,d j fo 1,...,d1. ow we pove the followg clam. Let be a tege wth 1 d 1. The we hae CLAIM. t1 až M. max½ajž M. Ž j. Ý k ; jt,...,d5 fo t 1,...,d.

9 63 MIYAZAKI AD VOGEL We wll show ou clam by ducto o t. The case t 1 has aleady bee show. I case a Ž M. t, othe wods, kt 0. the clam follows mmedately fom the hypothess of ducto. I case a Ž M. t, othe wods, kt 0, we have by the hypothess of duc- to t1 ½ j Ý 5 a M max a M j k ; jt,...,d Thus the clam s poved. I patcula, we have ½ t1 max atsž M. sks Ž t. Ý k, t1 ajž M. Ž j. Ý k ; s1,...,dt j t 1,..., d5 t ½ j Ý 5 max a M j k ; jt1,...,d. d1 ½ j Ý 5 a M max a M j k ; jd,...,d Ž. fo 1,...,d1. By usg 2, we have ½ d1 Ý dj Ý Ž dj.; jd,...,d5 a Ž M. max a MŽ x,..., x. M Ž j. k j 1 dj 1 a MŽ x,..., x. M Ž d. d 1 d1 Ý k d Ý 1 fo 1,...,d1. Hece asseto Ž. 1 s poved. Asseto Ž. 3 follows mmedately fom Ž. 1 Ž. 2. Ths completes the poof of Ž 2.7..

10 BOUDS O COHOMOLOGY 635 Ou Theoem Ž 2.7. has a mpotat coollay whch s used ode to pove Ž COROLLARY 2.8. Let M be a geealzed CoheMacaulay gaded R- module wth dmž M. d 0. Let k be teges wth k 1 1d. Assume that M s a Ž k,. -Buchsbaum module. Fo 1,...,d, eg Ž M. a MŽ x,..., x. M Ž d. Ž d. k d 1 fo ay pat of s.o. p. x,..., x fo M wth deg x 1, j 1,...,. 1 j k k Poof. ote that x,..., x s -stad. By we have 1 d1 Ý Ý eg Ž M. a MŽ x,..., x. M Ž d. k k d 1 1 a MŽ x,..., x. M Ž d. Ž d. k. d 1 Remak. Example Ž.2. shows that the boud stated Ž 2.8. s shap case k 1. Aothe applcato of 2.5 s the followg esult. THEOREM 2.9. Let M be a geealzed CoheMacaulay gaded R-module wth dmž M. d 0. Let be a tege wth 1 d. Let x 1,..., xd be as.o.p. fo M wth degž x. j 1 fo j 1,...,d. Ž. 1 Assume that x,..., x s mž, d. 1 d -stad fo a fxed tege 0,...,d1. The we hae d až M. až MŽ x 1,..., xd. M. 1. Ž. 2 If x,..., x s -stad, the 1 d d eg Ž M. až MŽ x 1,..., xd. M. 1 fo 0,...,d1.

11 636 Poof. By Ž we have MIYAZAKI AD VOGEL a Ž M. max a Ž M. Ž j. 1, a MŽ x,..., x. M ; j 1 d j,...,d1 max a Ž M. Ž j. 2, a MŽ x,..., x. M, j 1 d a Ž MŽ x,..., x. M. 1; j 2,...,d1 1 d max a Ž M. Ž j. 2, a MŽ x,..., x. M 1; j 1 d By epeatg ths step we fally have ½ d až M. max ajž M. Ž j. 1, j2,...,d1. d až MŽ x 1,..., xd. M. 2; d j 1,...,d15 ž / d až MŽ x 1,..., xd. M. 1 fo 0,...,d1. Hece asseto Ž. 1 s poved. Asseto Ž. 2 s a easy cosequece of Ž. 1. COROLLARY Let M be a geealzed CoheMacaulay gaded R- module wth dmž M. d 0. Let be a tege wth 1 d. Assume that M s a Ž 1,. -Buchsbaum module. Fo 0,...,d1, d eg Ž M. adž MŽ x 1,..., x. M. Ž d. 1 fo ay pat of s.o. p. x,..., x wth deg x 1, j 1,...,. 1 j Poof. It follows mmedately fom 2.9. Remak. We have assumed that the degee of a s.o.p. x 1,..., xd s oe Ž 2.7. Ž We took that assumpto fo smplcty, although geealzed esults ae poved smlaly. Futhe, we have two moe esults of Theoem 2.5.

12 BOUDS O COHOMOLOGY 637 COROLLARY Let M be a k-buchsbaum gaded R-module wth dm M d 0. The we hae fo 1,...,d. eg Ž M. až M. dkž d. Poof. It follows mmedately fom the clam the poof of 2.7. Remak. Coollay Ž was fstly obtaed 20, Ž 3... We wll show the pape that the equalty of Ž s shap fo all d k, eve the case M R s a tegal doma; see Ž.1.. PROPOSITIO Let M be a Ž 1,. -Buchsbaum gaded R-module wth dmž M. d 0. The we hae fo 1,...,d. eg Ž M. až M. d d Poof. The poof s smla to that of 2.9 by usg Remak. Let us cosde 2.12 the specal case that M s Buchsbaum, that s, d. The we get fo 1 eg Ž M. až M. d1. Ths esult ca be obtaed also by the stuctue theoem of maxmal Buchsbaum modules. Let us expla ths appoach suggested to us by S. Goto: Fst we take a polyomal g T such that M s a maxmal T-module. By the stuctue theoem 6, we see that M as a gaded T-module s a dect sum of some twstgs of th syzygy modules E.O the othe h we kow that eg Ž E. ae 1 fo 1,..., d1. Hece we have fo all 1. eg Ž M. až M. d1 3. BOUDS O CASTELUOVOMUMFORD REGULARITY Let K be a algebacally closed feld. Let X be a o-degeeate closed subvaety of P wth dmž X. K d. Let R be the coodate g of X wth dmž R. d 1. We assume that X s educble educed, that s R s a tegal doma.

13 638 MIYAZAKI AD VOGEL Befoe statg ou ma esults of ths secto we eed the followg Ž. lemma whch s well kow see, e.g., 18, Coollay 2; 20,.6 b. LEMMA 3.1. Ude the aboe codto, we hae degž X. 1 až R. d1. codmž X. The followg s ou ma esult of ths secto, whch exteds 20, Ž.8. mpoves 10, Ž , Ž THEOREM 3.2. Let X be a o-degeeate closed subaety of PK wth dmž X. doe a algebacally closed feld K. Let R be the coodate g of X. Assume that X s a Ž k,. -Buchsbaum aety fo some tege k wth k 1 1 d. The we hae deg Ž X. 1 egž X. Ž d1depthž R.. k1. codm Ž X. Poof. It follows mmedately fom Remak. Compag wth the equalty of 12, Ž 3.6., we see that ou esult mpoves the esult all cases. We have oly to check that Fst we ca easly show that ž ž / / d 2 dk 1 k d. 2 d 2 d 1. 2 ž / So we have oly to study the case k 1, whch s left to the eades. The ext theoem geealzes kow esults fo quas-buchsbaum vaetes; see, e.g., 11, 19. THEOREM 3.3. Let X be a o-degeeate closed subaety of PK wth dmž X. doe a algebacally closed feld K. Let R be the coodate g of X. Assume that X s a Ž 1,. -Buchsbaum aety fo some tege wth 1 d. The we hae degž X. 1 d 1 depthž R. egž X.. codmž X. Poof. It follows mmedately fom

14 BOUDS O COHOMOLOGY 639. EXAMPLES AD OPE PROBLEMS The pupose of ths secto s to descbe shap examples of Ž Ž Moeove, we coclude wth some ope poblems. Let X P be a pojectve vaety wth dmž X. K d 1 ove a algebacally closed feld K of chaactestc 0. Let R be the coodate g of X. Assume that X s Ž k,. -Buchsbaum fo some teges k wth k 1 1 d. Let L be a -plae P K wth dmž X L. d. Let R be the coodate g of X L. Ude the above codto, Coollay Ž 2.11., Coollay Ž 2.8., Theoem Ž 3.2. ae stated as follows: ote that: Ž egž X. až R. Ž d1. kd 1, Ž 2.8. egž X. až R. Ž d1. kd 1 degž X. 1 Ž 3.2. egž X. kd 1. codmž X. degž X. 1 až R. Ž d1. až R. Ž d1.. codmž X. Hece Ž 3.2. follows fom Ž Moeove, Ž gves the followg boud case 1: egž X. ar Ž. dkd 1. But ths esult s mpoved Ž ow we wll gve shap examples of Ž Ž 2.8. Examples Ž.1. Ž.2., espectvely. These examples ae based o deas of 1, Ž , Ž The fst example shows that the equaltes of Ž ae shap fo all d k. EXAMPLE.1. Let d be a tege wth d 1. Let Yj be the pojectve le PK 1 ove a algebacally closed feld K fo j 1,...,d1. Let Y be the Sege poduct of Y Ž j1,...,d1. j, that s, Y Y1 Y d1. Let p j:y Yj be the pojecto fo j 1,...,d1. We wte a vet- ble sheaf p O 1 p O 1Ž. o Y as O Ž,...,. 1 P 1 d1 P d1 Y 1 d1 d1 though the somophsms Pc Y Pc Y1 Pc Yd1 Z. O the othe h Y s embedded the pojectve space PK, whee d The, fo ay Z, O Ž. O Ž,...,. P Y Y. Thee exsts K a educble smooth effectve dvso X of Y coespodg to the vetble sheaf O Ž,...,. Y 1 d1 fo all postve teges 1,..., d1. ŽSee, e.g., 9, p Let k be a postve tege. Let us take teges 1Ž k1.ž j1. fo j 1,...,d1. The we ca take a oj

15 60 MIYAZAKI AD VOGEL sgula subvaety X of Y such that the deal sheaf IX Y s somophc to OY 1,..., d1. Let R be the coodate g of X P K. The R s a tegal doma wth dm R d 1. I ode to get ar a Ž R., 1,...,d, we use the followg exact sequece the somophsms 0 H d1 Ž R. H d1 Y, I Ž l. H d1 Y, O Ž l. 0 XY Y lz lz Ž XY. H Ž R. H Y, I Ž l., 0, d 1, lz because Y s athmetcally CoheMacaulay Žsee, e.g., 1, Ž Sce we have by Kueth s fomula H d1 Y, I Ž l. H 1 O 1Ž l. H 1 O 1Ž l. XY P 1 P d1 d1 1 d1 H Y, O l H O 1 Y P Ž l., d1 we see that H ŽY, I Ž l.. 0f lm Ž 2. X Y 1 j d1 j 1 d1 that H ŽY, O Ž l.. 0 fo l 2. Thus we have ar Y 1 fom the above exact sequece. ext let us take a fxed tege wth 1 d. Smlaly we have by Kueth s fomula H Y, I l H 0 O 1 l H 0 O 1 XY P Ž 1. P Ž l d1. H 1 O 1Ž l. H 1 O 1Ž l.. P d2 P d1 So we see that H ŽY, I Ž l.. X Y 0f d1ld22, that s, Ž k1.ž d1. klž k1.ž d1. 1. Thus we have a Ž R. Ž k1.ž d1. 1 fo 1 d. Also we have eg Ž R. kd Ž 1. d fo 1 d, so egž R. Ž k 1. d. Futhe we ca easly see that R s a k-buchsbaum g. Thus we have a o-sgula pojectve k-buchsbaum vaety X P wth dmž X. d, ar 1, egž X. kd d 1. Hece ths example yelds the equalty stated Ž The secod example shows that the equaltes of Ž 2.8. ae shap case k 1. Also t s possble to gve examples eve case 1 k 1. I fact we have oly to take some hghe dmesoal pojectve 1 space stead of P Ž.2. K. EXAMPLE.2. I Example Ž.1., we take k 1. The the quas-buchsbaum g R gves the equalty of Coollay Ž 2.8. fo all d case

16 BOUDS O COHOMOLOGY 61 k1. I fact, we ca easly see that arhr 1 fo geec elemets h of R. The we see that 1 eg Ž R. 2 d 1 až RhR. d Ž d d 1 fo 1,...,d. Hece ths example yelds the equalty stated 2.8. Fally we coclude by descbg some ope poblems whch ase atually fom ou vestgato. We take the otato assumpto of the begg of ths secto. Poblem 1. Geealze Ž fo Ž k,. -Buchsbuam vaetes fo all 1, o costuct a example of Ž k, d. -Buchsbaum vaetes wth dmž X. d satsfyg the equalty of Ž fo all k d. We ote that the examples Ž.1. ae ot Ž k, d. -Buchsbuam fo d 2 by usg agumets of 1. Poblem 2. Impove the boud stated 2.8 ode to get shap examples fo all k d at least case 1. REFERECES 1. Betam, L. E, R. Lazasfeld, Vashg theoems, a theoem of Seve, the equatos defg pojectve vaetes, J. Ame. Math. Soc. Ž 1991., D. Esebud S. Goto, Lea fee esolutos mmal multplcty. J. Algeba 88, Ž 198., M. Foet W. Vogel, Old ew esults poblems o Buchsbaum modules, I, Sem. Geom., Uv. Stud Bologa , pp. 5361, Bologa, A. Geamta J. Mgloe, A geealzed laso addto, J. Algeba 163 Ž 199., R. Godemet, Topologe algebque et theoe des fasceaux, Hema, Pas, S. Goto, Maxmal Buchsbuam modules ove egula local gs a stuctue theoem fo geealzed CoheMacaulay modules, Advaced Studes Pue Mathematcs o. 11, Commutatve Algeba Combatocs, pp. 396, Kokuyaoth-Holl, Tokyo, S. Goto K.-I. Wataabe, O gaded gs, I, J. Math. Soc. Japa 30 Ž 1978., P. Gffths J. Has, Resdues zeo-cycles o algebac vaetes. A. of Math. Ž Ž 1978., R. Hatshoe, Algebac Geomety, Gaduate Texts Mathematcs, Vol. 52, Spge-Velag, Bel, L. T. Hoa, R. M. Mo-Rog ` W. Vogel, O umecal vaats of locally CoheMacaulay schemes P, Hoshma Math. J. 2 Ž 199., L. T. Hoa C. Myazak, Bouds o CasteluovoMumfod egulaty fo geealzed CoheMacaulay gaded gs, Math. A. 301 Ž 1995.,

17 62 MIYAZAKI AD VOGEL 12. L. T. Hoa W. Vogel, CasteluovoMumfod egulaty hypeplae sectos, J. Algeba 163 Ž 199., M. Keuze, O the caocal module of a 0-dmesoal scheme, Caad. J. Math. 6 Ž 199., C. Myazak, Gaded Buchsbuam algebas Sege poducts, Tokyo J. Math. 12 Ž 1989., C. Myazak, Spectal sequece theoy of gaded modules ts applcato to the Buchsbaum popety Sege poducts, J. Pue Appl. Algeba 85 Ž 1993., C. Myazak, Spectal sequece theoy fo geealzed CoheMacaulay gaded modules, Commutatve Algeba 1992 ICTP, Teste, Italy ŽA. Sms,. V. Tug, G. Valla, Eds.., pp , Wold Scetfc, Sgapoe, D. Mumfod, Lectues o Cuves o a Algebac Suface, A. Math. Studes, Vol. 59, Pceto Uv. Pess, Pceto, J, U. agel, O Casteluovo s egulaty Hlbet fuctos, Composto Math. 76 Ž 1990., U. agel P. Schezel, Cohomologcal ahlatos CasteluovoMumfod egulaty, Cotemp. Math. 159 Ž 199., U. agel P. Schezel, Degee bods fo geeatos of cohomology modules CasteluovoMumfod egulaty, MPI9-31, pept. 21. J. Stuckad W. Vogel, Buchsbaum Rgs Applcatos, Spge-Velag, Bel, J. Stuckad W. Vogel, Casteluovo bouds fo ceta subvaetes P, Math. A. 276 Ž 1987., J. Stuckad W. Vogel, Casteluovo bouds fo locally CoheMacaulay schemes, Math. ach. 136 Ž 1988., V. Tug, Towads a theoy of geealzed CoheMacaulay modules, agoya Math. J. 102 Ž 1986., 19.

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh)

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh) Joual of Qualty Measuemet ad Aalyss JQMA 3(), 07, 5-34 Jual Pegukua Kualt da Aalss FULLY IGHT PUE GOUP INGS (Gelaggag Kumpula Tule Kaa Peuh) MIKHLED ALSAAHEAD & MOHAMED KHEI AHMAD ABSTACT I ths pape, we

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

Stratification Analysis of Certain Nakayama Algebras

Stratification Analysis of Certain Nakayama Algebras Advaces ue athematcs, 5, 5, 85-855 ublshed Ole Decembe 5 ScRes http://wwwscpog/joual/apm http://dxdoog/46/apm55479 Statfcato Aalyss of Ceta Nakayama Algebas José Fdel Heádez Advícula, Rafael Facsco Ochoa

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space Flomat 31:5 (017), 143 1434 DOI 10.98/FIL170543W Publshed by Faculty of Sceces ad Mathematcs, Uvesty of Nš, Seba Avalable at: http://www.pmf..ac.s/flomat Iteatve Algothm fo a Splt Equlbum Poblem ad Fxed

More information

Necessary and Sufficient Conditions for the Cohen Macaulayness of Form Rings

Necessary and Sufficient Conditions for the Cohen Macaulayness of Form Rings Joural of Algebra 212, 1727 1999 Artcle ID jabr.1998.7615, avalable ole at http:www.dealbrary.com o Necessary ad Suffcet Codtos for the CoheMacaulayess of Form Rgs Eero Hyry Natoal Defese College, Satahama,

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

Quasi-Rational Canonical Forms of a Matrix over a Number Field

Quasi-Rational Canonical Forms of a Matrix over a Number Field Avace Lea Algeba & Matx Theoy, 08, 8, -0 http://www.cp.og/joual/alamt ISSN Ole: 65-3348 ISSN Pt: 65-333X Qua-Ratoal Caocal om of a Matx ove a Numbe el Zhueg Wag *, Qg Wag, Na Q School of Mathematc a Stattc,

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

Council for Innovative Research

Council for Innovative Research Geometc-athmetc Idex ad Zageb Idces of Ceta Specal Molecula Gaphs efe X, e Gao School of Tousm ad Geogaphc Sceces, Yua Nomal Uesty Kumg 650500, Cha School of Ifomato Scece ad Techology, Yua Nomal Uesty

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

On a-invariant Formulas

On a-invariant Formulas Joural of Algebra 227, 25267 2000 do:10.1006jabr.1999.8236, avalable ole at http:www.dealbrary.com o O a-ivarat Formulas Mafred Herrma 1 Mathematsches Isttut der Uerstat zu Kol, Weyertal 8690, 50931 Cologe,

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Sandwich Theorems for Mcshane Integration

Sandwich Theorems for Mcshane Integration It Joual of Math alyss, Vol 5, 20, o, 23-34 adwch Theoems fo Mcshae Itegato Ismet Temaj Pshta Uvesty Educato Faculty, Pshta, Kosovo temaj63@yahoocom go Tato Taa Polytechc Uvesty Mathematcs Egeeg Faculty,

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Bounds for Codimensions of Fitting Ideals

Bounds for Codimensions of Fitting Ideals Ž. JOUNAL OF ALGEBA 194, 378 382 1997 ATICLE NO. JA966999 Bounds fo Coensions of Fitting Ideals Michał Kwiecinski* Uniwesytet Jagiellonski, Instytut Matematyki, ul. eymonta 4, 30-059, Kakow, Poland Communicated

More information

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS Electoc tascptos Mathematcal Isttute Slesa Uvesty Opava Czech Republc August Ths tet s a electoc tascpto of the ogal eseach pape D Kupa Some Geometc Aspects of Vaatoal Poblems Fbed Mafolds Fola Fac Sc

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9 Lectue, Wte 9 Page 9 Combatos I ou dscusso o pemutatos wth dstgushable elemets, we aved at a geeal fomula by dvdg the total umbe of pemutatos by the umbe of ways we could pemute oly the dstgushable elemets.

More information

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials Poceedgs of The Natoa Cofeece O Udegaduate Reseach (NCUR) 00 The Uvesty of Noth Caoa at Asheve Asheve, Noth Caoa Ap -, 00 Pemutatos that Decompose Cyces of Legth ad ae Gve y Moomas Lous J Cuz Depatmet

More information

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences Geneatng Functons, Weghted and Non-Weghted Sums fo Powes of Second-Ode Recuence Sequences Pantelmon Stăncă Aubun Unvesty Montgomey, Depatment of Mathematcs Montgomey, AL 3614-403, USA e-mal: stanca@studel.aum.edu

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Further Results on Pair Sum Labeling of Trees

Further Results on Pair Sum Labeling of Trees Appled Mathematcs 0 70-7 do:046/am0077 Publshed Ole October 0 (http://wwwscrporg/joural/am) Further Results o Par Sum Labelg of Trees Abstract Raja Poraj Jeyaraj Vjaya Xaver Parthpa Departmet of Mathematcs

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables Appled Mathematc, 0,, 8-86 do:046/am095 Publhed Ole Novembe 0 (http://wwwscrpog/oual/am) Dtbuto of Geometcally Weghted Sum of Beoull Radom Vaable Abtact Deepeh Bhat, Phazamle Kgo, Ragaath Naayaachaya Ratthall

More information

Groupoid and Topological Quotient Group

Groupoid and Topological Quotient Group lobal Jounal of Pue and Appled Mathematcs SSN 0973-768 Volume 3 Numbe 7 07 pp 373-39 Reseach nda Publcatons http://wwwpublcatoncom oupod and Topolocal Quotent oup Mohammad Qasm Manna Depatment of Mathematcs

More information

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays Appled Mathematcal Sceces, Vol. 3, 29, o. 23, 5-25 Stablty Aalyss fo Lea me-delay Systems Descbed by Factoal Paametezed Models Possessg Multple Iteal Costat Dscete Delays Mauel De la Se Isttuto de Ivestgacó

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

#A42 INTEGERS 16 (2016) THE SUM OF BINOMIAL COEFFICIENTS AND INTEGER FACTORIZATION

#A42 INTEGERS 16 (2016) THE SUM OF BINOMIAL COEFFICIENTS AND INTEGER FACTORIZATION #A4 INTEGERS 1 (01) THE SUM OF BINOMIAL COEFFICIENTS AND INTEGER FACTORIZATION Ygu Deg Key Laboatoy of Mathematcs Mechazato, NCMIS, Academy of Mathematcs ad Systems Scece, Chese Academy of Sceces, Bejg,

More information

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES italian jounal of pue and applied mathematics n. 35 015 (433 44) 433 SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF OPERATOR MATRICES Watheq Bani-Domi Depatment of Mathematics

More information

Counting pairs of lattice paths by intersections

Counting pairs of lattice paths by intersections Coutg pas of lattce paths by tesectos Ia Gessel 1, Bades Uvesty, Waltham, MA 02254-9110, USA Waye Goddad 2, Uvesty of Natal, Duba 4000, South Afca Walte Shu, New Yo Lfe Isuace Co., New Yo, NY 10010, USA

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

On ARMA(1,q) models with bounded and periodically correlated solutions

On ARMA(1,q) models with bounded and periodically correlated solutions Reseach Repot HSC/03/3 O ARMA(,q) models with bouded ad peiodically coelated solutios Aleksade Weo,2 ad Agieszka Wy oma ska,2 Hugo Steihaus Cete, Woc aw Uivesity of Techology 2 Istitute of Mathematics,

More information

GEOMETRY OF REPRESENTATIONS OF ALGEBRAS. William Crawley-Boevey

GEOMETRY OF REPRESENTATIONS OF ALGEBRAS. William Crawley-Boevey GEOETRY OF REPRESENTATIONS OF ALGEBRAS Wllam Cawley-Boevey Cotets 1. Vaetes....................... 3 Algebas...................... 4 Submodules..................... 5 Schemes...................... 6 2.

More information

New problems in universal algebraic geometry illustrated by boolean equations

New problems in universal algebraic geometry illustrated by boolean equations New poblems in univesal algebaic geomety illustated by boolean equations axiv:1611.00152v2 [math.ra] 25 Nov 2016 Atem N. Shevlyakov Novembe 28, 2016 Abstact We discuss new poblems in univesal algebaic

More information

Available online through ISSN

Available online through  ISSN Intenational eseach Jounal of Pue Algeba -() 01 98-0 Available online though wwwjpainfo ISSN 8 907 SOE ESULTS ON THE GOUP INVESE OF BLOCK ATIX OVE IGHT OE DOAINS Hanyu Zhang* Goup of athematical Jidong

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form Hypersurfaces wth Costat Scalar Curvature a Hyperbolc Space Form Lu Xm ad Su Wehog Abstract Let M be a complete hypersurface wth costat ormalzed scalar curvature R a hyperbolc space form H +1. We prove

More information

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems It Joual of Math Aalyss, Vol 8, 04, o 8, 865-879 HIKARI Ltd, wwwm-hacom http://ddoog/0988/jma044368 A Epaded Method to Robustly Pactcally Output Tacg Cotol fo Uceta Nolea Systems Keyla Almha, Naohsa Otsua,

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

The Geometric Proof of the Hecke Conjecture

The Geometric Proof of the Hecke Conjecture The Geometc Poof of the Hecke Cojectue Kada Sh Depatmet of Mathematc Zhejag Ocea Uvety Zhouha Cty 6 Zhejag Povce Cha Atact Begg fom the eoluto of Dchlet fucto ug the e poduct fomula of two fte-dmeoal vecto

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω.

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω. Ut: Rado expeet saple space evets classcal defto of pobablty ad the theoes of total ad copoud pobablty based o ths defto axoatc appoach to the oto of pobablty potat theoes based o ths appoach codtoal pobablty

More information

Second Geometric-Arithmetic Index and General Sum Connectivity Index of Molecule Graphs with Special Structure

Second Geometric-Arithmetic Index and General Sum Connectivity Index of Molecule Graphs with Special Structure Iteatoal Joual of Cotempoay Mathematcal Sceces Vol 0 05 o 9-00 HIKARI Ltd wwwm-hacom http://dxdoog/0988/cms0556 Secod Geometc-Athmetc Idex ad Geeal Sum Coectty Idex of Molecule Gaphs wth Specal Stuctue

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle Thomas Soesso Mcoecoomcs Lecte Cosme theoy A. The efeece odeg B. The feasble set C. The cosmto decso A. The efeece odeg Cosmto bdle x ( 2 x, x,... x ) x Assmtos: Comleteess 2 Tastvty 3 Reflexvty 4 No-satato

More information

Intuitionistic Fuzzy Stability of n-dimensional Cubic Functional Equation: Direct and Fixed Point Methods

Intuitionistic Fuzzy Stability of n-dimensional Cubic Functional Equation: Direct and Fixed Point Methods Ite. J. Fuzzy Mathematcal Achve Vol. 7 No. 205 - ISSN: 220 242 (P 220 250 (ole Publhed o2 Jauay 205 www.eeachmathc.og Iteatoal Joual of Itutotc Fuzzy Stablty of -Dmeoal Cubc Fuctoal Equato: Dect ad Fxed

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EVALUATION OF SUMS INVOLVING GAUSSIAN -BINOMIAL COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EMRAH KILIÇ AND HELMUT PRODINGER Abstact We coside sums of the Gaussia -biomial coefficiets with a paametic atioal

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph Aals of Pure ad Appled Mathematcs Vol. 3, No., 7, -3 ISSN: 79-87X (P, 79-888(ole Publshed o 3 March 7 www.researchmathsc.org DOI: http://dx.do.org/.7/apam.3a Aals of O Eccetrcty Sum Egealue ad Eccetrcty

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Range Symmetric Matrices in Minkowski Space

Range Symmetric Matrices in Minkowski Space BULLETIN of the Bull. alaysia ath. Sc. Soc. (Secod Seies) 3 (000) 45-5 LYSIN THETICL SCIENCES SOCIETY Rae Symmetic atices i ikowski Space.R. EENKSHI Depatmet of athematics, amalai Uivesity, amalaiaa 608

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

This may involve sweep, revolution, deformation, expansion and forming joints with other curves. 5--8 Shapes ae ceated by cves that a sface sch as ooftop of a ca o fselage of a acaft ca be ceated by the moto of cves space a specfed mae. Ths may volve sweep, evolto, defomato, expaso ad fomg jots wth

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent Appled ad Coputatoal Matheatcs 27; 7(-): 2-7 http://www.scecepublshggoup.co//ac do:.648/.ac.s.287.2 ISSN: 2328-565 (Pt); ISSN: 2328-563 (Ole) A Covegece Aalyss of Dscotuous Collocato Method fo IAEs of

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information