How quickly can you stop a car?

Size: px
Start display at page:

Download "How quickly can you stop a car?"

Transcription

1 How quickly can you stop a car? You are driving along a road at a constant speed V 0. You see a stop sign, you step on the breaks, and the car slows down with constant decelera;on a. 1. How much ;me does it take to stop? 2. How far do you travel before you come to a stop? x 0 x 1 When you hit the brakes Where you stop 1

2 Constant accelera;on Velocity changes at at constant rate: a v = v + at 0 is the slope of v(t): a = v ( t ) v 0 t 0 v( t) v 0 = at 0 t The average velocity is The distance traveled is ( ) + v 0 v = v t = v 0 + at 2 2 x = x 0 + v t 0 ( ) x = x 0 + v 0 t at 2 2

3 Free Fall Free fall is a good example for a one dimensional problem Gravity Things accelerate towards earth with a constant accelera;on g = 9.8m/s 2 towards the earth We ll use Gravity a lot! 3

4 Throw a Ball up You throw a ball upward into the air with ini;al velocity V 0. Calculate: a) The ;me it takes to reach its highest point (the top). b) Distance from your hand to the top c) Time to go from your hand and come back to your hand d) Velocity when it reaches your hand e) Time from leaving your hand to reach some random height h. 4

5 Speeder A speeder passes a police officer siyng by the side of the road and maintains her constant velocity V. The officer immediately starts to chase the speeder. He starts from rest with constant accelera;on a. How much ;me does it take to catch the speeder? How far does he travel to catch the speeder? What is his final speed? Police Officer Speeder X 5

6 Even the signs of posi;on and ;me may not be related: consider a pendulum: posi;on x(t) velocity accelera;on

7 Jules throws a baseball straight up, with an ini;al velocity of 10 m/s. a) How high does it go before coming momentarily to a stop? b) How much ;me passes before it falls and hits him on the head? 1. Draw a picture of the situa=on, and your visualiza=on of the trajectory of the ball. 2. Model the problem using the tools of physics. Choose either to analyze it by wri=ng equa=ons of mo=on, or by using average velocity. 3. Solve the model to obtain the quan==es asked in the problem.

8 2. Two soccer players, Bob and Jane, are 30 m apart. At the same instant they start to run towards each other. Bob runs with a constant accelera;on of 0.60 m/ s 2 and Jane runs with a constant speed of 2 m/s. a) How far does Jane run un;l they collide? b) What is Bob's speed just before they collide? 1. Draw a picture that shows what is happening in the problem. Give names to the kinema=c quan==es in the problem. For vectors, show their direc=on. 2. Write equa=ons of mo=on for Bob and Jane. Define the moment when they collide. 3. Solve for the quan==es asked in the problem.

9 Posi;on, Velocity, Accelera;on are measured in a reference frame! r!! R y!! r z! r!! r " = R" x

10 The same applies when an object is observed in to frames that are co- moving! v!! v! v!! v " = V"!! V

11 Mo;on in Two Dimensions We will use the same tools of kinema;cs to describe mo;on in two dimensions. A common kind of problem has constant accelera;on in one dimension, uniform mo;on in the other dimension: Example: Basketball shot parabolic trajectory The key to this kind of problem is to analyze the mo;on in each coordinate direc;on separately, then put the two descrip;ons together to describe the mo;on in 2- D. 11

12 3. A passenger is looking out the window of a train as it travels E at a velocity of 20 m/s on a rainy day. The raindrops are falling ver;cally down, but as she sees them they appear to make an angle of 30 o W of ver;cal. What is the speed of the raindrops? a) as seen from the train? b) as seen by an observer standing on the ground outside? 1. Draw a picture that shows what is happening in the problem. Give names to the kinema=c quan==es in the problem. For vectors, show their direc=on. 2. Write vector equa=ons rela=ng the veloci=es in the problem. 3. Solve for the quan==es asked in the problem.

13 Ball Dropping, Ball Tossed Horizontally Analyze ver;cal and horizontal mo;ons separately!!! A y = g (downwards) A x = 0 V x = Constant for both cases uniform mo;on! V x = 0 V x >0 13

14 Superposi=on: Describe the x, y mo;ons separately Prove that an object projected horizontally will reach the ground at the same ;me as an object dropped ver;cally. Study the spreadsheet of the 2- D trajectory of an ar;llery shell on e- learning. Experiment with it to determine the angle that gives maximum range. 14

15 The case of the dog who dived from the cliff A ver;cal cliff is located at the edge of a lake, with its ledge 5 m above the water. A dog runs horizontally off the cliff. He lands 6 m from the shore. What was his speed as he leapt from the cliff? How much ;me was he in the air? There is a method for analyzing problems in physics. We are going to apply that method to this problem: 1. Visualize the problem draw a picture, label the features that are at issue in the problem. 2. State what you know and what you are asked to find. 3. Write a model of the problem in the language of physics. 4. Solve for what you are asked to find in the problem.

16 1. Visualize the problem v 0 h = 5m d = 6m 2. State what you know, what you must find. The dog moves in 2 dimensions: x and z. There is no accelera;on in x: uniform mo;on. There is constant downward accelera;on g.

17 3. Model the problem: Set up equa;ons of mo;on in x, z General equa;on of mo;on with constant accelera;on: x = x 0 + v 0 t at 2 Horizontal mo;on: x 0 = 0, v x0 =?, a x = 0 x = v 0 t Ver;cal mo;on: z 0 = 5m, v z0 = 0, a z = - 9.8m/s 2 z = (5m)+ 1 ( 9.8m / s2)t 2 2 The dog hits the water when (x,z) = (6m,0)

18 4. Solve the problem There are two unknowns in the equa;ons of mo;on: v x0 and T (the ;me when the dog hits the water). Two equaoons in two unknowns you can solve for both unknowns. x: 6m = v 0 T z: T = 6m v 0 v 0 = 6m ( ) 0 = 5m ( ) (9.8m / s 2 ) 2 5m ( ) ( 9.8m / s2)t 2 0 = (5m)+ 1 2! ( 9.8m / ) 6m $ s2 # & " % v 0 = 6m / s T = 6m 6m / s =1s 2

Unit #1: Dynamics. Introduction. Example #

Unit #1: Dynamics. Introduction. Example # Unit #1: Dynamics Lesson #4: Accelera4on due to Gravity 1/24 Introduction Accelera4on due to gravity is defined as the accelera4on of an object caused by the force of gravity. The accelera4on due to gravity

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

PH Fall - Section 05 - Version C DRAFT

PH Fall - Section 05 - Version C DRAFT 1. A truck (traveling in a straight line), starts from rest and accelerates to 30 m/s in 20 seconds. It cruises along at that constant speed for one minute, then brakes, coming to a stop in 25 m. Determine

More information

Physics 201 Homework 1

Physics 201 Homework 1 Physics 201 Homework 1 Jan 9, 2013 1. (a) What is the magnitude of the average acceleration of a skier who, starting (a) 1.6 m/s 2 ; (b) 20 meters from rest, reaches a speed of 8.0 m/s when going down

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Car and Bicycle Rider Problem Set 1 A car is driving along a straight line with a speed v 0. At time t = 0 the car is at the

More information

Unit 1 Motion. Projectile Motion

Unit 1 Motion. Projectile Motion Unit 1 Motion Projectile Motion Motion to Date Uniform Motion Accelerated Motion Relative Motion Uniform Motion Motion with a constant velocity - Constant speed - Same direction Equation: v d t Problems

More information

Classical Mechanics Lecture 2

Classical Mechanics Lecture 2 Classical Mechanics Lecture 2 Today's Concepts: a) Vectors b) Projec@le mo@on c) Reference frames Mechanics Lecture 2, Slide 1 Unit 6 Activity Guide Today Not everyone is doing the pre-lecture This is

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground?

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground? Physics Lecture #6: Falling Objects A falling object accelerates as it falls. A bowling ball dropped on your foot will hurt more if it is dropped from a greater height since it has more time to increase

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

Classical Mechanics Lecture 2

Classical Mechanics Lecture 2 Classical Mechanics Lecture 2 Today's Concepts: a) Vectors b) Projec@le mo@on c) Reference frames Mechanics Lecture 2, Slide 1 Unit 6 Activity Guide Today Name Date (YY/MM/DD) / / SFU e-mail @sfu.ca Section

More information

REVIEW SET MIDTERM 1

REVIEW SET MIDTERM 1 Physics 010 Fall 01 Orest Symko REVIEW SET MIDTERM 1 1. On April 15, 1991, Dr. Rudolph completed the Boston Marathon (6 miles, 385 yards) in a time of 3 hours, minutes, 30 seconds. Later in the summer

More information

Chapter 9 Review. Block: Date:

Chapter 9 Review. Block: Date: Science 10 Chapter 9 Review Name: Block: Date: 1. A change in velocity occurs when the of an object changes, or its of motion changes, or both. These changes in velocity can either be or. 2. To calculate

More information

1-D Motion: Free Falling Objects

1-D Motion: Free Falling Objects v (m/s) a (m/s^2) 1-D Motion: Free Falling Objects So far, we have only looked at objects moving in a horizontal dimension. Today, we ll look at objects moving in the vertical. Then, we ll look at both

More information

Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter.

Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter. Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter. (a) How much does it weigh? (density of steel: ρ = 7560 kg/m3) 2. An automobile moving along a straight track changes its velocity

More information

CHAPTER 3 ACCELERATED MOTION

CHAPTER 3 ACCELERATED MOTION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 3 ACCELERATED MOTION Day Plans for the day Assignments for the day 1 3.1 Acceleration o Changing Velocity

More information

Frames of reference. Objectives. Assessment. Physics terms. Equations. What is a frame of reference? 5/19/14

Frames of reference. Objectives. Assessment. Physics terms. Equations. What is a frame of reference? 5/19/14 Frames of reference Objectives Identify and describe motion relative to different frames of reference. Calculate the one-dimensional velocity of an object in a moving frame of reference. A train is moving

More information

Recitation Questions 1D Motion (part 1)

Recitation Questions 1D Motion (part 1) Recitation Questions 1D Motion (part 1) 18 January Question 1: Two runners (This problem is simple, but it has the same template as most of the problems that you ll be doing for this unit. Take note of

More information

Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch 4)

Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch 4) July-15-14 10:39 AM Chapter 2 Kinematics in One Dimension Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch

More information

stopping distance : Physics 201, Spring 2011 Lect. 4 Example 2 13, The Flying Cap (p 44) Example 2 13, The Flying Cap (p 44) 1/19/11

stopping distance : Physics 201, Spring 2011 Lect. 4 Example 2 13, The Flying Cap (p 44) Example 2 13, The Flying Cap (p 44) 1/19/11 Physics 201, Spring 2011 Lect. 4 Chapter 2: Mo;on in One Dimension (examples and applica;ons) stopping distance : You were driving on a country road at an instantaneous velocity of 55 mph, east. You suddenly

More information

Physics 1120: 1D Kinematics Solutions

Physics 1120: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 Physics 1120: 1D Kinematics Solutions 1. Initially, a ball has a speed of 5.0 m/s as it rolls up an incline. Some time later, at a distance of 5.5 m up the incline, the ball has

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

Physics 1100: 1D Kinematics Solutions

Physics 1100: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Physics 1100: 1D Kinematics Solutions 1. Neatly sketch the following dot motion diagrams: (a) A particle moving right

More information

Practice Test What two units of measurement are necessary for describing speed?

Practice Test What two units of measurement are necessary for describing speed? Practice Test 1 1. What two units of measurement are necessary for describing speed? 2. What kind of speed is registered by an automobile? 3. What is the average speed in kilometers per hour for a horse

More information

Science 20 Physics Review

Science 20 Physics Review Science 20 Physics Review Name 1. Which velocity-time graph below best represents the motion of an object sliding down a frictionless slope? a. b. c. d. Numerical response 1 The roadrunner is moving at

More information

Today: Review for Exam 1 Wednesday: Chapter 5

Today: Review for Exam 1 Wednesday: Chapter 5 Exam Informa+on 1/1/14 Wednesday 7:3 PM All Sec+ons 55-59 à MPHY 25 (this room, 3 min a.er class ends) Dura+on à 1 hour 15 min Today: Review for Exam 1 Wednesday: Chapter 5 Ø Please return to the classroom

More information

Chapter 2. Kinematics in one dimension

Chapter 2. Kinematics in one dimension Chapter 2 Kinematics in one dimension Galileo - the first modern kinematics 1) In a medium totally devoid of resistance all bodies will fall at the same speed 2) During equal intervals of time, a falling

More information

4.1 - Acceleration. What is acceleration?

4.1 - Acceleration. What is acceleration? 4.1 - Acceleration How do we describe speeding up or slowing down? What is the difference between slowing down gradually and hitting a brick wall? Both these questions have answers that involve acceleration.

More information

Do Now: Why are we required to obey the Seat- Belt law?

Do Now: Why are we required to obey the Seat- Belt law? Do Now: Why are we required to obey the Seat- Belt law? Newton s Laws of Motion Newton s First Law An object at rest remains at rest and an object in motion remains in motion with the same speed and direction.

More information

Constants: Acceleration due to gravity = 9.81 m/s 2

Constants: Acceleration due to gravity = 9.81 m/s 2 Constants: Acceleration due to gravity = 9.81 m/s 2 PROBLEMS: 1. In an experiment, it is found that the time t required for an object to travel a distance x is given by the equation = where is the acceleration

More information

Constants: Acceleration due to gravity = 9.81 m/s 2

Constants: Acceleration due to gravity = 9.81 m/s 2 Constants: Acceleration due to gravity = 9.81 m/s 2 PROBLEMS: 1. In an experiment, it is found that the time t required for an object to travel a distance x is given by the equation = where is the acceleration

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment Name: Email address (write legibly): AP Physics 1 Summer Assignment Packet 3 The assignments included here are to be brought to the first day of class to be submitted. They are: Problems from Conceptual

More information

Principles and Problems. Chapter 6: Motion in Two Dimensions

Principles and Problems. Chapter 6: Motion in Two Dimensions PHYSICS Principles and Problems Chapter 6: Motion in Two Dimensions CHAPTER 6 Motion in Two Dimensions BIG IDEA You can use vectors and Newton s laws to describe projectile motion and circular motion.

More information

Chapter: Basic Physics-Motion

Chapter: Basic Physics-Motion Chapter: Basic Physics-Motion The Big Idea Speed represents how quickly an object is moving through space. Velocity is speed with a direction, making it a vector quantity. If an object s velocity changes

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

2.1 KINEMATICS HW/Study Packet

2.1 KINEMATICS HW/Study Packet 2.1 KINEMATICS HW/Study Packet Required: READ Hamper pp 17-28 READ Tsokos, pp 38-62 SL/HL Supplemental: Cutnell and Johnson, pp 28-52 Giancoli, pp 19-38 ü ü ü ü ü REMEMBER TO. Work through all of the example

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13 General Physics (PHY 170) Chap 2 Acceleration motion with constant acceleration 1 Average Acceleration Changing velocity (non-uniform) means an acceleration is present Average acceleration is the rate

More information

b) (6) How far down the road did the car travel during the acceleration?

b) (6) How far down the road did the car travel during the acceleration? General Physics I Quiz 2 - Ch. 2-1D Kinematics June 17, 2009 Name: For full credit, make your work clear to the grader. Show the formulas you use, all the essential steps, and results with correct units

More information

Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7. Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 PHYS 2211

Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7. Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 PHYS 2211 PHYS 2211 Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7 PHYS 1111 Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Topics Covered 1) Average Speed 2) Average Velocity

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

Phys 2425: University Physics I Summer 2016 Practice Exam 1

Phys 2425: University Physics I Summer 2016 Practice Exam 1 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving Physics 11 Chapter 3: Kinematics in Two Dimensions The only thing in life that is achieved without effort is failure. Source unknown "We are what we repeatedly do. Excellence, therefore, is not an act,

More information

Chapter 2. Motion In One Dimension

Chapter 2. Motion In One Dimension I. Displacement, Position, and Distance Chapter 2. Motion In One Dimension 1. John (Mike, Fred, Joe, Tom, Derek, Dan, James) walks (jogs, runs, drives) 10 m north. After that he turns around and walks

More information

Graphing Motion Part 2

Graphing Motion Part 2 Kinematics 2: Motion Graphs & Free Fall Sep 5 10:34 AM Sep 5 1:25 PM Graphing Motion Part 2 How do you calculate the slope of a line? What would the slope of a distance vs time graph represent? What would

More information

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 1 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

A scalar quantity has just magnitude A vector quantity has both magnitude and direction

A scalar quantity has just magnitude A vector quantity has both magnitude and direction Name Date Mods REVIEW FOR MIDYEAR ASSESSMENT 1. Physics is the most basic science because Physics supports chemistry, chemistry supports biology. The ideas of physics are fundamental to these more complicated

More information

Physics 201, Midterm Exam 1, Fall Answer Key

Physics 201, Midterm Exam 1, Fall Answer Key Physics 201, Midterm Exam 1, Fall 2006 Answer Key 1) The equation for the change of position of a train starting at x = 0 m is given by x(t) = 1 2 at 2 + bt 3. The dimensions of b are: A. T 3 B. LT 3 C.

More information

Final Exam Review Answers

Final Exam Review Answers Weight (Pounds) Final Exam Review Answers Questions 1-8 are based on the following information: A student sets out to lose some weight. He made a graph of his weight loss over a ten week period. 180 Weight

More information

Falling Objects. Bởi: OpenStaxCollege

Falling Objects. Bởi: OpenStaxCollege Falling Objects Bởi: OpenStaxCollege Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by dropping a rock into it and listening

More information

FIRST MIDTERM - REVIEW PROBLEMS

FIRST MIDTERM - REVIEW PROBLEMS Physics 10 Spring 009 George Williams FIRST MIDTERM - REVIEW PROBLEMS A data sheet is provided at the end. Problems labeled [Ch. 4] are relevant to the second midterm. 1. Convert 747 m to feet. Convert

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Recap: Position and displacement

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Recap: Position and displacement Physics 5 Fall 28 Mechanics, Thermodynamics, Waves, Fluids Lecture 3: motion in a straight line II Slide 3- Recap: Position and displacement In one dimension, position can be described by a positive or

More information

Part D: Kinematic Graphing - ANSWERS

Part D: Kinematic Graphing - ANSWERS Part D: Kinematic Graphing - ANSWERS 31. On the position-time graph below, sketch a plot representing the motion of an object which is.... Label each line with the corresponding letter (e.g., "a", "b",

More information

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY SPECIFICATIN 1.1.1 UNIT 1 THE MARKET i EDEXCEL INTERNATINAL A LEVEL MATHEMATICS MECHANICS 1 Student Book CNTENTS ii ABUT THIS BK VI 1 MATHEMATICAL MDELS IN MECHANICS 2 2 VECTRS IN MECHANICS 12 3 CNSTANT

More information

Forces and Motion in One Dimension. Chapter 3

Forces and Motion in One Dimension. Chapter 3 Forces and Motion in One Dimension Chapter 3 Constant velocity on an x-versus-t graph Velocity and Position In general, the average velocity is the slope of the line segment that connects the positions

More information

Name AP Physics2. Summer 2015 problems.

Name AP Physics2. Summer 2015 problems. Name AP Physics2. Summer 2015 problems. Each problem good for one bonus point on the First Day 50 point Multiple Choice Exam. All your steps must be documented in pencil with units in calculations. Answer

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term = # v x. t " =0. are the values at t = 0.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term = # v x. t  =0. are the values at t = 0. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 1: Practice Problems! d r!! d v! One-Dimensional Kinematics: v =, a = dt dt t " =t v x (t)! v x,0 = # a x (

More information

Relative Motion (a little more than what s in your text, so pay attention)

Relative Motion (a little more than what s in your text, so pay attention) Lab Activity Relative Motion (a little more than what s in your tet, so pay attention) Relative motion is something we use everyday, but we don t really think about it. For eample, passing a truck on the

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t =

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t = PH 2213 : Chapter 02 Homework Solutions Problem 2.6 : You are driving home from school steadily at 90 km/hr for 130 km. It then begins to rain and you slow to 50 km/hr. You arrive home after driving 3

More information

PH105 Exam 1 Solution

PH105 Exam 1 Solution PH105 Exam 1 Solution 1. The graph in the figure shows the position of an object as a function of time. The letters A-E represent particular moments of time. At which moment shown (A, B, etc.) is the speed

More information

College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension. 2.1 Conceptual Questions

College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension. 2.1 Conceptual Questions College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension 2.1 Conceptual Questions 1) Consider a deer that runs from point A to point B. The distance the deer runs can be greater

More information

A. Basic Concepts and Graphs

A. Basic Concepts and Graphs A. Basic Concepts and Graphs A01 [Qual] [Easy] For each of the following, select if it is a vector or a scalar. a) Speed b) Distance traveled c) Velocity d) (Linear) Displacement A02 [Qual] [Easy] Give

More information

Tuesday January 17. 1D, a=constant Eqns:

Tuesday January 17. 1D, a=constant Eqns: Tuesday January 17 Assignment 2 Due Friday by 11:59pm Help Room: W/Th 6-9PM - Walter 245 Lab Starts Next Week No Open-toed shoes; No food or drinks Print lab writeup & bring to lab Do pre-lab. Bring a

More information

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills 3.3 Acceleration Constant speed is easy to understand. However, almost nothing moves with constant speed for long. When the driver steps on the gas pedal, the speed of the car increases. When the driver

More information

PH Fall - Section 04 - Version A DRAFT

PH Fall - Section 04 - Version A DRAFT 1. A truck (traveling in a straight line), starts from rest and accelerates to 30 m/s in 20 seconds. It cruises along at that constant speed for one minute, then brakes, coming to a stop in 25 m. Determine

More information

Announcements. Unit 1 homework due tomorrow 11:59 PM Quiz 1 on 3:00P Unit 1. Units 2 & 3 homework sets due 11:59 PM

Announcements. Unit 1 homework due tomorrow 11:59 PM Quiz 1 on 3:00P Unit 1. Units 2 & 3 homework sets due 11:59 PM Announcements Unit 1 homework due tomorrow (Tuesday) @ 11:59 PM Quiz 1 on Wednesday @ 3:00P Unit 1 Ø First 12 minutes of class: be on time!!! Units 2 & 3 homework sets due Sunday @ 11:59 PM Ø Most homework

More information

Classical Mechanics Lecture 8

Classical Mechanics Lecture 8 Classical Mechanics Lecture 8 Today's Concepts: a) Poten2al Energy b) Mechanical Energy Mechanics Lecture 8, Slide 1 Stuff you asked about: Gravity is the law. violators will be brought down. How were

More information

Honors Physics Acceleration and Projectile Review Guide

Honors Physics Acceleration and Projectile Review Guide Honors Physics Acceleration and Projectile Review Guide Major Concepts 1 D Motion on the horizontal 1 D motion on the vertical Relationship between velocity and acceleration Difference between constant

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 PackBack The first answer gives a good physical picture. The video was nice, and worth the second answer. https://www.youtube.com/w atch?v=m57cimnj7fc Slide 3-2 Slide 3-3

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity GALILEAN RELATIVITY Projectile motion The Principle of Relativity When we think of the term relativity, the person who comes immediately to mind is of course Einstein. Galileo actually understood what

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

Physics! Unit 2 Review Constant Acceleration Particle Model

Physics! Unit 2 Review Constant Acceleration Particle Model Physics! Unit 2 Review Constant Acceleration Particle Model Name 1. Use the graph to answer the following questions. a. Describe the motion of the object. b. Determine the of the object from the graph.

More information

Force Concept Inventory

Force Concept Inventory Force Concept Inventory 1. Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single story building at the same instant of time. The time

More information

5. All forces change the motion of objects. 6. The net force on an object is equal to the mass of the object times the acceleration of the object.

5. All forces change the motion of objects. 6. The net force on an object is equal to the mass of the object times the acceleration of the object. Motion, Forces, and Newton s Laws Newton s Laws of Motion What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Section 2-2: Constant velocity means moving at a steady speed in the same direction

Section 2-2: Constant velocity means moving at a steady speed in the same direction Section 2-2: Constant velocity means moving at a steady speed in the same direction 1. A particle moves from x 1 = 30 cm to x 2 = 40 cm. The displacement of this particle is A. 30 cm B. 40 cm C. 70 cm

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c. Class: Date: Chapter 2 Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the speed of an object at rest? a. 0.0 m/s c. 9.8 m/s

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Lecture Notes Kinematics Recap 2.4 Acceleration

Lecture Notes Kinematics Recap 2.4 Acceleration Lecture Notes 2.5-2.9 Kinematics Recap 2.4 Acceleration Acceleration is the rate at which velocity changes. The SI unit for acceleration is m/s 2 Acceleration is a vector, and thus has both a magnitude

More information

Motion in two dimensions: vertical projectile motion *

Motion in two dimensions: vertical projectile motion * OpenStax-CNX module: m39546 1 Motion in two dimensions: vertical projectile motion * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

PHYS 100 MidTerm Practice

PHYS 100 MidTerm Practice University of the Fraser Valley Physics 100 PHYS 100 MidTerm Practice Name: Directions: Fill in the scantron form with the following information: 1. ID number (student number) 2. Name at top of form 3.

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information