Robust trajectory design using invariant manifolds. Application to (65803) Didymos

Size: px
Start display at page:

Download "Robust trajectory design using invariant manifolds. Application to (65803) Didymos"

Transcription

1 Robust trajectory design using invariant manifolds. Application to (65803) Didymos L. Dell'Elce Sophia Antipolis, 22/02/2018

2 The AIDA mission 2

3 Uncertainties and nonlinearities in space missions Radar imaging of Bennu Landing of Philae 3

4 Are there safe orbits in the Didymos system? Nominal periodic orbit Failure of the propulsion system? Real trajectory Can we place a CubeSat? 4

5 Outline 1. Safe orbits in the Didymos system 2. Robust mission design using manifolds 3. Application to the Didymos system 5

6 Outline 1. Safe orbits in the Didymos system 2. Robust mission design using manifolds 3. Application to the Didymos system 6

7 1. High fidelity propagator of the Didymos system SRP 3rd body 3 axial Ellipsoid Polihedron 7

8 1. Binary model: full three body problem Binary Asteroid Model Orbital period ~ 1/2 day Eccentricity: max 0.03 Didymoon (103 x 79 x 66 m) Mass parameter ~ 1% Didymain (790 x 790 x 761 m) McMahon, J., and Scheeres, D. J., Dynamic limits on planar librationorbit coupling around an oblate primary, CMDA, 115(4) (2013) 8

9 1. Various stable orbits in the CRTBP are considered Selection rbit Selection ular Equilibrium Points of the ideal CR3BP Triangular points Planar periodic orbits L4 Planar Periodic Orbits Close toprimary the small bodies Subject to strong gravity field signals Secondary But Frequent eclipses No observation ofl5the asteroid system Terminator orbits 6 9

10 1. Robustness is assessed with a Monte Carlo analysis Monte Carlo: Inputs 1000 samples Uniform distributions No correlation 10

11 1. Triangular points are not safe rbit Selection Triangular Equilibrium Points of the ideal CR3BP 1 L4 Pfailure 0.75 Primary Secondary 0.5 L tfailure [day]

12 1. Most planar orbits are not safe Direct exterior orbits Similar results for: direct interior, direct/retrograde exterior, CSO 12

13 1. Retrograde interior orbits are safe! 7 13

14 1. Retrograde interior orbits are safe! θ(0) [deg] Failure events Cr m/b [m2 / km]

15 1. Terminator orbits are safe! ar to the Sun n due to SRP ystem Side view 3D orbit 8 15

16 1. Terminator orbits are safe! 400 tfailure [day] θ(0) [deg] Cr /B [m2 / km] Cr /B [m2 / km]

17 Outline 1. Safe orbits in the Didymos system 2. Robust mission design using manifolds 3. Application to the Didymos system 17

18 2. Can we guarantee where the motion will evolve? Nominal periodic orbit Real trajectory Bounds 18

19 2. Invariant manifolds of an orbit Quasi periodic tori Unstable manifold Stable manifold Stable periodic orbit Unstable periodic orbit Numerical computation: solution of a PDE 19

20 2. Invariant manifolds as bounds for the motion Surface of section Initial conditions on the manifold remain on the manifold stable periodic orbit Torus section 20

21 2. Uncertainties can change the manifold Uncertain gravity field 21

22 2. Lyapunov like stability to accommodate uncertainties Take all possible realizations The motion is bounded by this union If initial conditions are in this intersection 22

23 2. Trade off between large intersection and narrow union min J I(p), U(p) p s.t I(p) I Injection accuracy requirements U(p) U Collision avoidance Min bounds of the motion I U Max tolerable uncertainty in initial conditions 23

24 Outline 1. Safe orbits in the Didymos system 2. Robust mission design using manifolds 3. Application to the Didymos system 24

25 3. Design of robust interior orbits in the Didymos system 20% uncertainty in mass parameter No impact 1 cm/s uncertainty 25

26 3. Unperturbed solution: 2d torus y [ ] x [ ] Technical need: compute manifold passing through a desired point 26

27 3. Safest orbit given uncertainty in the injection velocity 1.25 Objective function =U Min distance from bodies y [ ] 0 Worst case trajectories x [ ] Nominal initial conditions

28 3. Maximum tolerable uncertainty in the injection velocity 1.25 Objective function = I Avoid impact y [ ] 0 Nominal initial conditions Worst case trajectories x [ ]

29 3. Ballistic landing from L2 Stable manifold Landing trajectory Unstable manifold 20% uncertainty in mass parameter L2 Lyapunov orbit We consider only the first impact Envelope of asymptotic orbits 29

30 3. Libration point L2 (unstable) 0.6 y L x

31 3. Manifolds of L2: minimum energy landing 0.6 y Stable manifold Unstable manifold L x Unfeasible in practice (infinite time and no uncertainty ) 31

32 3. Lyapunov orbit (unstable) 0.6 y Lyapunov orbit x

33 3. Asymptotic trajectory of the Lyapunov orbit 0.6 y Unstable manifold Stable manifold x

34 3. Manifolds of the Lyapunov orbit 0.6 y Unstable manifold Stable manifold 0 Lyapunov orbit x

35 3. How to guarantee that a trajectory will land? If the lander is deployed from this point with the same energy of the manifold Feasible deployment directions 35

36 3. High energy allows to accommodate more uncertainty vy vx tan 1 y y y y y y y x = 0.05 = 0.1 = 0.2 = 0.3 = 0.4 = 0.5 = JLyapunov JL2 105 [deg] 80 x

37 3. Feasible set of the velocity relative to the manifold vy [cm / s] Min energy L2 Feasible Ma xe set ne rgy Envelope of transit orbits Max y crossing at L2 vx [cm / s] 37

38 3. Maximization of the uncertainty in the initial velocity Max tolerable uncertainty in velocity Guaranteed impact location U 50 y [m] vy [cm / s] 2 0 I vx [cm / s] x [m]

39 3. Monte Carlo validation of a deployment from y = y Zero velocity curves for maximum energy x

40 Conclusions Two families of safe orbits exist: interior retrograde and terminator orbits Invariant manifolds are used to bound the motion Mission design: trade off between large initial state uncertainty and narrow bounds Way forward: accommodating binary eccentricity and uncertainties polyhedron Nonlinear Conley criterion for the landing 40

41 Robust trajectory design using invariant manifolds. Application to (65803) Didymos L. Dell'Elce Sophia Antipolis, 22/02/2018

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

Verified High-Order Optimal Control in Space Flight Dynamics

Verified High-Order Optimal Control in Space Flight Dynamics Verified High-Order Optimal Control in Space Flight Dynamics R. Armellin, P. Di Lizia, F. Bernelli-Zazzera K. Makino and M. Berz Fourth International Workshop on Taylor Methods Boca Raton, December 16

More information

Dynamics of the Didymos asteroid binary

Dynamics of the Didymos asteroid binary Dynamics of the Didymos asteroid binary target of the AIDA mission Kleomenis Tsiganis Aristotle University of Thessaloniki (AUTh) with: George Voyatzis (AUTh), Christos Efthymiopoulos (RCAAM Athens), Ioannis

More information

The Asteroid Geophysical EXplorer (AGEX) to explore Didymos

The Asteroid Geophysical EXplorer (AGEX) to explore Didymos CubeSat 2016, the 5th Interplanetary CubeSat Workshop The Asteroid Geophysical EXplorer (AGEX) to explore Didymos. Karatekin & AGEX TEAM. Karatekin, B. Ritter N. Gerbal, M. van Ruymebeke. Royal Observatory

More information

Escape Trajectories from Sun Earth Distant Retrograde Orbits

Escape Trajectories from Sun Earth Distant Retrograde Orbits Trans. JSASS Aerospace Tech. Japan Vol. 4, No. ists30, pp. Pd_67-Pd_75, 06 Escape Trajectories from Sun Earth Distant Retrograde Orbits By Yusue OKI ) and Junichiro KAWAGUCHI ) ) Department of Aeronautics

More information

Orbital Dynamics and Impact Probability Analysis

Orbital Dynamics and Impact Probability Analysis Orbital Dynamics and Impact Probability Analysis (ISAS/JAXA) 1 Overview This presentation mainly focuses on a following point regarding planetary protection. - How to prove that a mission satisfies the

More information

COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS

COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS AAS 11-423 COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS Rodney L. Anderson and Jeffrey S. Parker INTRODUCTION In this study, transfer trajectories from the Earth to the Moon

More information

CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS. K.C. Howell and B.G. Marchand Purdue University

CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS. K.C. Howell and B.G. Marchand Purdue University CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS K.C. Howell an B.G. Marchan Purue University 1 Previous Work on Formation Flight Multi-S/C Formations in the 2BP Small Relative

More information

AIM RS: Radio Science Investigation with AIM

AIM RS: Radio Science Investigation with AIM Prepared by: University of Bologna Ref. number: ALMARS012016 Version: 1.0 Date: 08/03/2017 PROPOSAL TO ESA FOR AIM RS Radio Science Investigation with AIM ITT Reference: Partners: Radio Science and Planetary

More information

STABILITY OF ORBITS NEAR LARGE MASS RATIO BINARY SYSTEMS

STABILITY OF ORBITS NEAR LARGE MASS RATIO BINARY SYSTEMS IAA-AAS-DyCoSS2-05-08 STABILITY OF ORBITS NEAR LARGE MASS RATIO BINARY SYSTEMS Natasha Bosanac, Kathleen C. Howell and Ephraim Fischbach INTRODUCTION With recent scientific interest into the composition,

More information

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem C C Dynamical A L T E C S H Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane/pub/thesis/ April

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Sang Koon and Martin Lo Shane Ross Control and Dynamical Systems, Caltech shane@cds.caltech.edu Constructing Orbits of Prescribed Itineraries:

More information

Dynamical system theory and numerical methods applied to Astrodynamics

Dynamical system theory and numerical methods applied to Astrodynamics Dynamical system theory and numerical methods applied to Astrodynamics Roberto Castelli Institute for Industrial Mathematics University of Paderborn BCAM, Bilbao, 20th December, 2010 Introduction Introduction

More information

NON-KEPLERIAN MODELS FOR MISSION ANALYSIS SCENARIOS ABOUT SMALL SOLAR SYSTEM BODIES

NON-KEPLERIAN MODELS FOR MISSION ANALYSIS SCENARIOS ABOUT SMALL SOLAR SYSTEM BODIES POLITECNICO DI MILANO DEPARTMENT OF AEROSPACE SCIENCE AND TECHNOLOGY DOCTORAL PROGRAMME IN AEROSPACE ENGINEERING NON-KEPLERIAN MODELS FOR MISSION ANALYSIS SCENARIOS ABOUT SMALL SOLAR SYSTEM BODIES Doctoral

More information

End-Of-Life Disposal Concepts for Lagrange-Point and Highly Elliptical Orbit Missions

End-Of-Life Disposal Concepts for Lagrange-Point and Highly Elliptical Orbit Missions End-Of-Life Disposal Concepts for Lagrange-Point and Highly Elliptical Orbit Missions Executive summary of the main study and the study extension Version 1.0 12 February 2015 ESA/ESOC contract No. 4000107624/13/F/MOS

More information

David A. Surovik Daniel J. Scheeres The University of Colorado at Boulder

David A. Surovik Daniel J. Scheeres The University of Colorado at Boulder David A. Surovik Daniel J. Scheeres The University of Colorado at Boulder 6 th International Conference on Astrodynamics Tools and Techniques March 16, 2016 Irregular shapes and proportionally large external

More information

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION Yasuihiro Kawakatsu (*1) Ken Nakajima (*2), Masahiro Ogasawara (*3), Yutaka Kaneko (*1), Yoshisada Takizawa (*1) (*1) National Space Development Agency

More information

Spacecraft Rendezvous Utilizing Invariant Manifolds for a Halo Orbit *

Spacecraft Rendezvous Utilizing Invariant Manifolds for a Halo Orbit * Trans. Japan Soc. Aero. Space Sci. Vol. 58, No. 5, pp. 6 69, 5 Spacecraft Utilizing Invariant Manifolds for a Halo Orbit * Yuki SATO, Kenji KITAMURA, and Takeya SHIMA Mitsubishi Electric Corporation, Tokyo

More information

COUPLING HIGH FIDELITY BODY MODELING WITH NON-KEPLERIAN DYNAMICS TO DESIGN AIM-MASCOT-2 LANDING TRAJECTORIES ON DIDYMOS BINARY ASTEROID

COUPLING HIGH FIDELITY BODY MODELING WITH NON-KEPLERIAN DYNAMICS TO DESIGN AIM-MASCOT-2 LANDING TRAJECTORIES ON DIDYMOS BINARY ASTEROID COUPLING HIGH FIDELITY BODY MODELING WITH NON-KEPLERIAN DYNAMICS TO DESIGN AIM-MASCOT-2 LANDING TRAJECTORIES ON DIDYMOS BINARY ASTEROID F. Ferrari, M. Lavagna Politecnico di Milano Department of Aerospace

More information

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM HOU Xi-yun,2 TANG Jing-shi,2 LIU Lin,2. Astronomy Department, Nanjing University, Nanjing 20093, China 2. Institute of Space Environment

More information

Design of Low Energy Space Missions using Dynamical Systems Theory

Design of Low Energy Space Missions using Dynamical Systems Theory Design of Low Energy Space Missions using Dynamical Systems Theory Koon, Lo, Marsden, and Ross W.S. Koon (Caltech) and S.D. Ross (USC) CIMMS Workshop, October 7, 24 Acknowledgements H. Poincaré, J. Moser

More information

ASPECT Spectral Imager CubeSat Mission to Didymos

ASPECT Spectral Imager CubeSat Mission to Didymos ASPECT Spectral Imager CubeSat Mission to Didymos Kestilä A. 1),Näsilä A. 2), Kohout T. 3),Tikka T. 1),Granvik M. 3) 1. Aalto University, Finland. 2. Technical Research Center of Finland, Finland 3. Helsinki

More information

ASTEROID IMPACT MISSION: AIM3P MISSION AND PAYLOAD OPERATIONS SCENARIO

ASTEROID IMPACT MISSION: AIM3P MISSION AND PAYLOAD OPERATIONS SCENARIO estec European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands T +31 (0)71 565 6565 F +31 (0)71 565 6040 www.esa.int ASTEROID IMPACT MISSION: AIM3P MISSION AND PAYLOAD

More information

Chapter 8. Precise Lunar Gravity Assist Trajectories. to Geo-stationary Orbits

Chapter 8. Precise Lunar Gravity Assist Trajectories. to Geo-stationary Orbits Chapter 8 Precise Lunar Gravity Assist Trajectories to Geo-stationary Orbits Abstract A numerical search technique for designing a trajectory that transfers a spacecraft from a high inclination Earth orbit

More information

Earth-Mars Halo to Halo Low Thrust

Earth-Mars Halo to Halo Low Thrust Earth-Mars Halo to Halo Low Thrust Manifold Transfers P. Pergola, C. Casaregola, K. Geurts, M. Andrenucci New Trends in Astrodynamics and Applications V 3 June / -2 July, 28 Milan, Italy Outline o Introduction

More information

INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS

INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS 6 th International Conference on Astrodynamics Tools and Technique (ICATT) INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT LI Xiangyu, Qiao Dong, Cui Pingyuan Beijing Institute of Technology Institute of

More information

EXPLORATION OF DISTANT RETROGRADE ORBITS AROUND EUROPA

EXPLORATION OF DISTANT RETROGRADE ORBITS AROUND EUROPA AAS 05-110 EXPLORATION OF DISTANT RETROGRADE ORBITS AROUND EUROPA Try Lam * and Gregory J. Whiffen This paper explores the applications of Distant Retrograde Orbits (DROs) around Europa, a class of orbit

More information

Connecting orbits and invariant manifolds in the spatial three-body problem

Connecting orbits and invariant manifolds in the spatial three-body problem C C Dynamical A L T E C S H Connecting orbits and invariant manifolds in the spatial three-body problem Shane D. Ross Control and Dynamical Systems, Caltech Work with G. Gómez, W. Koon, M. Lo, J. Marsden,

More information

Barcelona, Spain. RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen

Barcelona, Spain.   RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 27 (pp. 1 8) The dynamics around the collinear point L 3 of the RTBP E. Barrabés 1, J.M.

More information

Orbital Stability Regions for Hypothetical Natural Satellites

Orbital Stability Regions for Hypothetical Natural Satellites Orbital Stability Regions for Hypothetical Natural Satellites By Samantha RIEGER, 1) Daniel SCHEERES, 1) 1) Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder,

More information

What is the InterPlanetary Superhighway?

What is the InterPlanetary Superhighway? What is the InterPlanetary Superhighway? Kathleen Howell Purdue University Lo and Ross Trajectory Key Space Technology Mission-Enabling Technology Not All Technology is hardware! The InterPlanetary Superhighway

More information

ORBITAL PERTURBATION ANALYSIS NEAR BINARY ASTEROID SYSTEMS

ORBITAL PERTURBATION ANALYSIS NEAR BINARY ASTEROID SYSTEMS AAS 15-33 ORBITAL PERTURBATION ANALYSIS NEAR BINARY ASTEROID SYSTEMS Loic Chappaz, Stephen B. Broschart, Gregory Lantoine, and Kathleen Howell Current estimates indicate that approximately sixteen percent

More information

From the Earth to the Moon: the weak stability boundary and invariant manifolds -

From the Earth to the Moon: the weak stability boundary and invariant manifolds - From the Earth to the Moon: the weak stability boundary and invariant manifolds - Priscilla A. Sousa Silva MAiA-UB - - - Seminari Informal de Matemàtiques de Barcelona 05-06-2012 P.A. Sousa Silva (MAiA-UB)

More information

FORMATIONS NEAR THE LIBRATION POINTS: DESIGN STRATEGIES USING NATURAL AND NON-NATURAL ARCS K. C. Howell and B. G. Marchand

FORMATIONS NEAR THE LIBRATION POINTS: DESIGN STRATEGIES USING NATURAL AND NON-NATURAL ARCS K. C. Howell and B. G. Marchand 1 FORMATIONS NEAR THE LIBRATION POINTS: DESIGN STRATEGIES USING NATURAL AND NON-NATURAL ARCS K. C. Howell and B. G. Marchand Formations Near the Libration Points ŷ ˆx Moon L 2 Deputy S/C (Orbit Chief Vehicle)

More information

Invariant Manifolds and Transport in the Three-Body Problem

Invariant Manifolds and Transport in the Three-Body Problem Dynamical S C C A L T E C H Invariant Manifolds and Transport in the Three-Body Problem Shane D. Ross Control and Dynamical Systems California Institute of Technology Classical N-Body Systems and Applications

More information

The B-Plane Interplanetary Mission Design

The B-Plane Interplanetary Mission Design The B-Plane Interplanetary Mission Design Collin Bezrouk 2/11/2015 2/11/2015 1 Contents 1. Motivation for B-Plane Targeting 2. Deriving the B-Plane 3. Deriving Targetable B-Plane Elements 4. How to Target

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Koon and Martin Lo Wang Sang Koon Control and Dynamical Systems, Caltech koon@cds.caltech.edu The Flow near L and L 2 : Outline Outline

More information

Quasi-Satellite Orbits around Deimos and Phobos motivated by the DePhine Mission Proposal

Quasi-Satellite Orbits around Deimos and Phobos motivated by the DePhine Mission Proposal Quasi-Satellite Orbits around Deimos and Phobos motivated by the DePhine Mission Proposal By Sofya SPIRIDONOVA, 1) Kai WICKHUSEN, 2) Ralph KAHLE 1) and Jürgen OBERST 2) 1) German Space Operations Center,

More information

THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS

THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS Fabio Ferrari (1), Michèle Lavagna (2), Ingo Gerth (3), Bastian Burmann (4), Marc

More information

THE LUNAR ICECUBE MISSION DESIGN: CONSTRUCTION OF FEASIBLE TRANSFER TRAJECTORIES WITH A CONSTRAINED DEPARTURE

THE LUNAR ICECUBE MISSION DESIGN: CONSTRUCTION OF FEASIBLE TRANSFER TRAJECTORIES WITH A CONSTRAINED DEPARTURE AAS 16-285 THE LUNAR ICECUBE MISSION DESIGN: CONSTRUCTION OF FEASIBLE TRANSFER TRAJECTORIES WITH A CONSTRAINED DEPARTURE David C. Folta *, Natasha Bosanac, Andrew Cox, and Kathleen C. Howell INTRODUCTION

More information

RELATIVE MISSION ANALYSIS FOR PROBA 3: SAFE ORBITS AND CAM

RELATIVE MISSION ANALYSIS FOR PROBA 3: SAFE ORBITS AND CAM 5TH INTERNATIONAL CONFERENCE ON SPACECRAFT FORMATION FLYING MISSIONS AND TECHNOLOGIES RELATIVE MISSION ANALYSIS FOR PROBA 3: SAFE ORBITS AND CAM Munich, 31 st May 2013 T. V. Peters D. Escorial Presented

More information

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS Francesco Topputo (), Massimiliano Vasile () and Franco Bernelli-Zazzera () () Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano,

More information

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system Gary Quinsac, PhD student at PSL Supervisor: Benoît Mosser Co-supervisors: Boris Segret, Christophe Koppel icubesat,

More information

Chapter 8 SENSITIVITY ANALYSIS OF INTERVAL SYSTEM BY ROOT LOCUS APPROACH

Chapter 8 SENSITIVITY ANALYSIS OF INTERVAL SYSTEM BY ROOT LOCUS APPROACH Chapter 8 SENSITIVITY ANALYSIS OF INTERVAL SYSTEM BY ROOT LOCUS APPROACH SENSITIVITY ANALYSIS OF INTERVAL SYSTEM BY ROOT LOCUS APPROACH 8.1 INTRODUCTION Practical systems are difficult to model, as this

More information

Celestial and Spaceflight Mechanics Laboratory. University of Colorado at Boulder. 3

Celestial and Spaceflight Mechanics Laboratory. University of Colorado at Boulder. 3 Pre-proofreading version. Final version can be found in CMDA 121(4): 365-384 https://dx.doi.org/10.1007/s10569-015-9604-9 ON THE a AND g FAMILIES OF ORBITS IN THE HILL PROBLEM WITH SOLAR RADIATION PRESSURE

More information

GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying

GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying Kieran A. Carroll, Gedex Systems Inc. Henry Spencer, SP Systems Robert E. Zee, Space Flight Laboratory CASI ASTRO 2016 30 th Annual

More information

Sensitivity and Reliability Analysis of Nonlinear Frame Structures

Sensitivity and Reliability Analysis of Nonlinear Frame Structures Sensitivity and Reliability Analysis of Nonlinear Frame Structures Michael H. Scott Associate Professor School of Civil and Construction Engineering Applied Mathematics and Computation Seminar April 8,

More information

AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission

AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission Andy Cheng (The Johns Hopkins Applied Physics Laboratory) Patrick Michel (Univ. Nice, CNRS, Côte d Azur Observatory) On behalf of

More information

A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission

A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission A presentation for the New Trends in Astrodynamics conference Michael Reardon 1, Jun Yu 2, and Carl Brandon 3 1 PhD

More information

Exploiting astrodynamics for the manipulation of asteroids

Exploiting astrodynamics for the manipulation of asteroids Celestial and Spaceflight Mechanics Laboratory, CU Boulder Exploiting astrodynamics for the manipulation of asteroids D. Garcia Yarnoz Advanced Space Concepts Laboratory University of Strathclyde, Glasgow,

More information

Exploration of Distant Retrograde Orbits Around Europa AAS

Exploration of Distant Retrograde Orbits Around Europa AAS Exploration of Distant Retrograde Orbits Around Europa AAS 05-110 Try Lam Gregory J. Whiffen 2005 AAS/AIAA Space Flight Mechanics Meeting Copper Mountain, Colorado 23-27 January 2005 Agenda 1/24/2005 Motivation

More information

13 th AAS/AIAA Space Flight Mechanics Meeting

13 th AAS/AIAA Space Flight Mechanics Meeting Paper AAS 3-3 CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS K.C. Howell and B.G. Marchand School of Aeronautics and Astronautics Purdue University West Lafayette, IN 4797-8

More information

Theory in Model Predictive Control :" Constraint Satisfaction and Stability!

Theory in Model Predictive Control : Constraint Satisfaction and Stability! Theory in Model Predictive Control :" Constraint Satisfaction and Stability Colin Jones, Melanie Zeilinger Automatic Control Laboratory, EPFL Example: Cessna Citation Aircraft Linearized continuous-time

More information

DISPOSAL OF LIBRATION POINT ORBITS ON A HELIOCENTRIC GRAVEYARD ORBIT: THE GAIA MISSION

DISPOSAL OF LIBRATION POINT ORBITS ON A HELIOCENTRIC GRAVEYARD ORBIT: THE GAIA MISSION DISPOSAL OF LIBRATION POINT ORBITS ON A HELIOCENTRIC GRAVEYARD ORBIT: THE GAIA MISSION Camilla Colombo (1), Francesca Letizia (), Stefania Soldini (3) and Florian Renk (4) (1)()(3) Aeronautics, Astronautics

More information

(2015) ISSN

(2015) ISSN Colombo, Camilla and Alessi, Elisa Maria and van der Weg, Willem Johan and Soldini, Stefania and Letizia, Francesca and Vetrisano, Massimo and Vasile, Massimiliano and Rossi, Alessandro and Landgraf, Markus

More information

Bifurcations thresholds of halo orbits

Bifurcations thresholds of halo orbits 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 1/23 spazio Bifurcations thresholds of halo orbits Dr. Ceccaroni Marta ceccaron@mat.uniroma2.it University of Roma Tor Vergata Work

More information

Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space

Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space Noname manuscript No. (will be inserted by the editor) Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space L. Hagen A. Utku P. Palmer Received: date / Accepted:

More information

Executive Summary. ESA Contract Nr /16/NL/LF/ as. Assessment of an Anchoring Device for CubeSat Landers

Executive Summary. ESA Contract Nr /16/NL/LF/ as. Assessment of an Anchoring Device for CubeSat Landers of ESA Contract Nr. 40006950/6/NL/LF/ as Assessment of an Anchoring Device for CubeSat Landers Prepared by: Name (function) Date Signature Team from Gravity, Microgravity and Nanosatellites department

More information

The Analysis of Dispersion for Trajectories of Fire-extinguishing Rocket

The Analysis of Dispersion for Trajectories of Fire-extinguishing Rocket The Analysis of Dispersion for Trajectories of Fire-extinguishing Rocket CRISTINA MIHAILESCU Electromecanica Ploiesti SA Soseaua Ploiesti-Tirgoviste, Km 8 ROMANIA crismihailescu@yahoo.com http://www.elmec.ro

More information

Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics CHAOS VOLUME 10, NUMBER 2 JUNE 2000 Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics Wang Sang Koon a) Control and Dynamical Systems, Caltech 107-81, Pasadena,

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

BINARY ASTEROID ORBIT MODIFICATION

BINARY ASTEROID ORBIT MODIFICATION 2013 IAA PLANETARY DEFENSE CONFERENCE BEAST BINARY ASTEROID ORBIT MODIFICATION Property of GMV All rights reserved TABLE OF CONTENTS 1. Mission Concept 2. Asteroid Selection 3. Physical Principles 4. Space

More information

Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage

Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage Matteo Ceriotti (corresponding author) Advanced Space Concepts Laboratory, Department of Mechanical & Aerospace Engineering

More information

Suggestions for Making Useful the Uncertainty Quantification Results from CFD Applications

Suggestions for Making Useful the Uncertainty Quantification Results from CFD Applications Suggestions for Making Useful the Uncertainty Quantification Results from CFD Applications Thomas A. Zang tzandmands@wildblue.net Aug. 8, 2012 CFD Futures Conference: Zang 1 Context The focus of this presentation

More information

Periodic Orbits in Rotating Second Degree and Order Gravity Fields

Periodic Orbits in Rotating Second Degree and Order Gravity Fields Chin. J. Astron. Astrophys. Vol. 8 (28), No. 1, 18 118 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Periodic Orbits in Rotating Second Degree and Order Gravity Fields Wei-Duo Hu

More information

AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES. Raffaele Savino University of Naples Federico II

AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES. Raffaele Savino University of Naples Federico II AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES Raffaele Savino University of Naples Federico II Objectives Show the main capabilities of deployable aero-brakes for Earth

More information

STATION KEEPING OF A SOLAR SAIL AROUND A HALO ORBIT

STATION KEEPING OF A SOLAR SAIL AROUND A HALO ORBIT IAA-AAS-DyCoSS1-11-3 STATION KEEPING OF A SOLAR SAIL AROUND A HALO ORBIT Ariadna Farrés and Àngel Jorba INTRODUCTION Solar sails are a concept of spacecraft propulsion that takes advantage of solar radiation

More information

Design of a Multi-Moon Orbiter

Design of a Multi-Moon Orbiter C C Dynamical A L T E C S H Design of a Multi-Moon Orbiter Shane D. Ross Control and Dynamical Systems and JPL, Caltech W.S. Koon, M.W. Lo, J.E. Marsden AAS/AIAA Space Flight Mechanics Meeting Ponce, Puerto

More information

DESIGN AND CONTROL OF FORMATIONS NEAR THE LIBRATION POINTS OF THE SUN-EARTH/MOON EPHEMERIS SYSTEM * K. C. Howell and B. G. Marchand Purdue University

DESIGN AND CONTROL OF FORMATIONS NEAR THE LIBRATION POINTS OF THE SUN-EARTH/MOON EPHEMERIS SYSTEM * K. C. Howell and B. G. Marchand Purdue University DESIGN AND CONTROL OF FORMATIONS NEAR THE LIBRATION POINTS OF THE SUN-EARTH/MOON EPHEMERIS SYSTEM * K. C. Howell and B. G. Marchand Purdue University ABSTRACT The concept of formation flight of multiple

More information

This is an author-deposited version published in : Eprints ID : 13810

This is an author-deposited version published in :   Eprints ID : 13810 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 8.1 Vijay Kumar 1 Definitions State State equations Equilibrium 2 Stability Stable Unstable Neutrally (Critically) Stable 3 Stability Translate the origin to x e x(t) =0 is stable (Lyapunov stable)

More information

SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID. F. Gabern, W.S. Koon and J.E. Marsden

SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID. F. Gabern, W.S. Koon and J.E. Marsden PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS June 16 19, 2004, Pomona, CA, USA pp. 1 10 SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID F. Gabern, W.S. Koon

More information

Ballistic Transfers Across the 1:1 Resonance Around Vesta. Following Invariant Manifolds 1

Ballistic Transfers Across the 1:1 Resonance Around Vesta. Following Invariant Manifolds 1 This is a preprint of: Ballistic Transfers Across the 1:1 Resonance Around Vesta Following Invariant Manifolds, José María Mondelo, Stephen B. Broschart, Benjamin F. Villac, J. Guidance Control Dynam.,

More information

Decentralized and distributed control

Decentralized and distributed control Decentralized and distributed control Centralized control for constrained discrete-time systems M. Farina 1 G. Ferrari Trecate 2 1 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) Politecnico

More information

A Study of Six Near-Earth Asteroids Summary Introduction

A Study of Six Near-Earth Asteroids Summary Introduction A Study of Six Near-Earth Asteroids John Junkins 1, Puneet Singla 1, Daniele Mortari 1, William Bottke 2, Daniel Durda 2 Summary We consider here 6 Earth-orbit-crossing asteroids (ECAs) as possible targets

More information

OptElec: an Optimisation Software for Low-Thrust Orbit Transfer Including Satellite and Operation Constraints

OptElec: an Optimisation Software for Low-Thrust Orbit Transfer Including Satellite and Operation Constraints OptElec: an Optimisation Software for Low-Thrust Orbit Transfer Including Satellite and Operation Constraints 7th International Conference on Astrodynamics Tools and Techniques, DLR, Oberpfaffenhofen Nov

More information

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) CDS 280, January 8, 2001 shane@cds.caltech.edu

More information

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION AAS 11-499 ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION J. Bauman,* K. Getzandanner, B. Williams,* K. Williams* The proximity operations phases of a sample return mission to an

More information

Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo

Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo A Toolbox for Preliminary Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo Mission Analysis and Design PAMSIT IMAGO ATOM-C EPIC Massimiliano Vasile, Stefano

More information

An Investigation of Alternate Transfer Strategies to the Sun-Earth Triangular Lagrangian Points

An Investigation of Alternate Transfer Strategies to the Sun-Earth Triangular Lagrangian Points University of Colorado, Boulder CU Scholar Aerospace Engineering Sciences Graduate Theses & Dissertations Aerospace Engineering Sciences Spring 1-1-2014 An Investigation of Alternate Transfer Strategies

More information

Coupling High Fidelity Body Modeling with Non- Keplerian Dynamics to Design AIM-MASCOT-2 Landing Trajectories on Didymos Binary Asteroid

Coupling High Fidelity Body Modeling with Non- Keplerian Dynamics to Design AIM-MASCOT-2 Landing Trajectories on Didymos Binary Asteroid 6 th Internatinal Cnference n Astrdynamics Tls and Techniques (ICATT) Darmstadt 14 17 March 2016 Cupling High Fidelity Bdy Mdeling with Nn- Keplerian Dynamics t Design AIM-MASCOT-2 Landing Trajectries

More information

MISSION ANALYSIS FOR ROSETTA DESCENDING PHASE

MISSION ANALYSIS FOR ROSETTA DESCENDING PHASE MISSION ANALYSIS FOR ROSETTA DESCENDING PHASE J. BERNARD CNES 18,Avenue E. Belin : 33 (0) 5 61 8 5 00 Fax : (0) 5 61 7 35 40 Email : jacques.bernard@cnes.fr F.X. CHAFFAUT CNES 18,Avenue E. Belin : 33 (0)

More information

Numerical analysis of the compliance of interplanetary CubeSats with planetary protection requirements

Numerical analysis of the compliance of interplanetary CubeSats with planetary protection requirements Numerical analysis of the compliance of interplanetary CubeSats with planetary protection requirements Francesca Letizia, Camilla Colombo University of Southampton 5th Interplanetary CubeSat Workshop Session

More information

arxiv: v1 [astro-ph.ep] 6 Aug 2017

arxiv: v1 [astro-ph.ep] 6 Aug 2017 Preprint 28 August 2018 Compiled using MNRAS LATEX style file v3.0 Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact arxiv:1708.01853v1

More information

Copyright 2013 The Authors.

Copyright 2013 The Authors. n Ceriotti, M., and Sanchez Cuartielles, J.P. (23) Orbit control of asteroids in libration point orbits for resource exploitation. In: 64th International Astronautical Congress (IAC23), 23-27 Sep 23, Beijing,

More information

Invariant Manifolds, Material Transport and Space Mission Design

Invariant Manifolds, Material Transport and Space Mission Design C A L T E C H Control & Dynamical Systems Invariant Manifolds, Material Transport and Space Mission Design Shane D. Ross Control and Dynamical Systems, Caltech Candidacy Exam, July 27, 2001 Acknowledgements

More information

STABILITY OF PLANAR NONLINEAR SWITCHED SYSTEMS

STABILITY OF PLANAR NONLINEAR SWITCHED SYSTEMS LABORATOIRE INORMATIQUE, SINAUX ET SYSTÈMES DE SOPHIA ANTIPOLIS UMR 6070 STABILITY O PLANAR NONLINEAR SWITCHED SYSTEMS Ugo Boscain, régoire Charlot Projet TOpModel Rapport de recherche ISRN I3S/RR 2004-07

More information

Identifying Safe Zones for Planetary Satellite Orbiters

Identifying Safe Zones for Planetary Satellite Orbiters AIAA/AAS Astrodynamics Specialist Conference and Exhibit 16-19 August 2004, Providence, Rhode Island AIAA 2004-4862 Identifying Safe Zones for Planetary Satellite Orbiters M.E. Paskowitz and D.J. Scheeres

More information

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT AAS 16-366 AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT Jason A. Reiter * and David B. Spencer INTRODUCTION Collision avoidance maneuvers to prevent orbital

More information

Libration Orbit Mission Design: Applications Of Numerical And Dynamical Methods

Libration Orbit Mission Design: Applications Of Numerical And Dynamical Methods Libration Orbit Mission Design: Applications Of Numerical And Dynamical Methods David Folta and Mark Beckman NASA - Goddard Space Flight Center Libration Point Orbits and Applications June 1-14, 22, Girona,

More information

Earth Escape from a Sun-Earth Halo Orbit Using the Unstable Manifold and Lunar Gravity Assists

Earth Escape from a Sun-Earth Halo Orbit Using the Unstable Manifold and Lunar Gravity Assists Earth Escape from a Sun-Earth Halo Orbit Using the Unstable Manifold and Lunar Gravity Assists By Hongru Chen 1), Yasuhiro Kawakatsu 2) and Toshiya Hanada 1) 1) Department of Aeronautics and Astronautics,

More information

arxiv: v1 [astro-ph.ep] 1 May 2018

arxiv: v1 [astro-ph.ep] 1 May 2018 Origin and continuation of 3/2, 5/2, 3/1, 4/1 and 5/1 resonant periodic orbits in the circular and elliptic restricted three-body problem Kyriaki I. Antoniadou and Anne-Sophie Libert NaXys, Department

More information

Optimal Transfers Between Unstable Periodic Orbits Using Invariant Manifolds

Optimal Transfers Between Unstable Periodic Orbits Using Invariant Manifolds Celestial Mechanics and Dynamical Astronomy manuscript No. (will be inserted by the editor Optimal Transfers Between Unstable Periodic Orbits Using Invariant Manifolds Kathryn E. Davis Rodney L. Anderson

More information

END-OF-LIFE DISPOSAL CONCEPTS FOR LIBRATION POINT AND HIGHLY ELLIPTICAL ORBIT MISSIONS

END-OF-LIFE DISPOSAL CONCEPTS FOR LIBRATION POINT AND HIGHLY ELLIPTICAL ORBIT MISSIONS (Preprint) IAA-AAS-DyCoSS2-3-1 END-OF-LIFE DISPOSAL CONCEPTS FOR LIBRATION POINT AND HIGHLY ELLIPTICAL ORBIT MISSIONS Camilla Colombo 1, Francesca Letizia 2, Stefania Soldini 3, Hugh Lewis 4, Elisa Maria

More information

Connecting orbits and invariant manifolds in the spatial restricted three-body problem

Connecting orbits and invariant manifolds in the spatial restricted three-body problem INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 17 (2004) 1571 1606 NONLINEARITY PII: S0951-7715(04)67794-2 Connecting orbits and invariant manifolds in the spatial restricted three-body problem GGómez 1,WSKoon

More information

IAC-16.A Jason A. Reiter a *, David B. Spencer b

IAC-16.A Jason A. Reiter a *, David B. Spencer b IAC-16.A6.7.5 Trading Spacecraft Propellant Use and Mission Performance to Determine the Optimal Collision Probability in Emergency Collision Avoidance Scenarios Jason A. Reiter a *, David B. Spencer b

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL. Kanagawa, Japan ,

TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL. Kanagawa, Japan , TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL Takanao Saiki (), Yoji Shirasawa (), Osamu Mori () and Jun ichiro Kawaguchi (4) ()()()(4) Japan Aerospace Exploration Agency,

More information

IMPROVED DESIGN OF ON-ORBIT SEPARATION SCHEMES FOR FORMATION INITIALIZATION BASED ON J 2 PERTURBATION

IMPROVED DESIGN OF ON-ORBIT SEPARATION SCHEMES FOR FORMATION INITIALIZATION BASED ON J 2 PERTURBATION IAA-AAS-DyCoSS- IMPROVED DESIGN OF ON-ORBIT SEPARATION SCHEMES FOR FORMATION INITIALIZATION BASED ON J PERTURBATION Jiang Chao, * Wang Zhaokui, and Zhang Yulin INTRODUCTION Using one Multi-satellite Deployment

More information

ASE 379L Space Systems Engineering Fb February 4, Group 1: Johnny Sangree. Nimisha Mittal Zach Aitken

ASE 379L Space Systems Engineering Fb February 4, Group 1: Johnny Sangree. Nimisha Mittal Zach Aitken Rosetta Mission Scope and CONOPS ASE 379L Space Systems Engineering Fb February 4, 2008 Group 1: Johnny Sangree Ankita Mh Maheshwarih Kevin Burnett Nimisha Mittal Zach Aitken 1 Need Statement To understand

More information