Invariant Manifolds, Material Transport and Space Mission Design

Size: px
Start display at page:

Download "Invariant Manifolds, Material Transport and Space Mission Design"

Transcription

1 C A L T E C H Control & Dynamical Systems Invariant Manifolds, Material Transport and Space Mission Design Shane D. Ross Control and Dynamical Systems, Caltech Candidacy Exam, July 27, 2001

2 Acknowledgements W. Koon, M. Lo, J. Marsden H. Poincaré, J. Moser C. Conley, R. McGehee C. Simó, J. Llibre, R. Martinez E. Belbruno, B. Marsden, J. Miller G. Gómez, J. Masdemont K. Howell, B. Barden, R. Wilson L. Petzold, S. Radu 2

3 Outline Theme Using dynamical systems theory for understanding solar system dynamics and identifying useful orbits for space missions. 3

4 Outline Theme Using dynamical systems theory for understanding solar system dynamics and identifying useful orbits for space missions. Current research importance development of some NASA mission trajectories, such as the Genesis Discovery Mission to be launched Monday 3

5 Outline Theme Using dynamical systems theory for understanding solar system dynamics and identifying useful orbits for space missions. Current research importance development of some NASA mission trajectories, such as the Genesis Discovery Mission to be launched Monday of current astrophysical interest for understanding the transport of solar system material (eg, how ejecta from Mars gets to Earth, etc.) 3

6 Genesis Discovery Mission Genesis will collect solar wind samples at the Sun- Earth L1 and return them to Earth. It was the first mission designed start to finish using dynamical systems theory. Moon's Orbit Return Trajectory to Earth Transfer to Halo Earth z (km) 0 1E+06 Halo Orbit Sun y (km) E+06 0 x (km) Y Z X 4

7 Previous Work Topics: solar system dynamics (eg, dynamics of comets) 5

8 Previous Work Topics: solar system dynamics (eg, dynamics of comets) the role of the three and four body problems 5

9 Previous Work Topics: solar system dynamics (eg, dynamics of comets) the role of the three and four body problems space mission trajectory design 5

10 Previous Work Topics: solar system dynamics (eg, dynamics of comets) the role of the three and four body problems space mission trajectory design Petit Grand Tour of Jupiter s moons 5

11 Previous Work Topics: solar system dynamics (eg, dynamics of comets) the role of the three and four body problems space mission trajectory design Petit Grand Tour of Jupiter s moons low energy transfer from Earth to Moon 5

12 Previous Work Topics: solar system dynamics (eg, dynamics of comets) the role of the three and four body problems space mission trajectory design Petit Grand Tour of Jupiter s moons low energy transfer from Earth to Moon Earth-Moon L1 Gateway station 5

13 Previous Work Topics: solar system dynamics (eg, dynamics of comets) the role of the three and four body problems space mission trajectory design Petit Grand Tour of Jupiter s moons low energy transfer from Earth to Moon Earth-Moon L1 Gateway station optimal control 5

14 Previous Work Topics: solar system dynamics (eg, dynamics of comets) the role of the three and four body problems space mission trajectory design Petit Grand Tour of Jupiter s moons low energy transfer from Earth to Moon Earth-Moon L1 Gateway station optimal control trajectory correction maneuvers for Genesis 5

15 Jupiter Comets We consider the historical record of the comet Oterma from 1910 to 1980 first in an inertial frame then in a rotating frame a special case of pattern evocation similar pictures exist for many other comets 6

16 Jupiter Comets Rapid transition: outside to inside Jupiter s orbit. Captured temporarily by Jupiter during transition. Exterior (2:3 resonance) to interior (3:2 resonance). Oterma s orbit 2:3 resonance Second encounter Jupiter y (inertial frame) START Sun 3:2 resonance END First encounter Jupiter s orbit x (inertial frame) 7

17 Viewed in Rotating Frame Oterma s orbit in rotating frame with some invariant manifolds of the 3-body problem superimposed. Homoclinic Orbits Oterma's Trajectory Oterma y (rotating) 1980 Sun L 1 Jupiter L 2 y (rotating) 1910 Jupiter Heteroclinic Connection x (rotating) Boundary of Energy Surface x (rotating) 8

18 Viewed in Rotating Frame oterma-rot.qt 9

19 Three-Body Problem Circular restricted problem the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them 10

20 Three-Body Problem Circular restricted problem the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them the two primaries could be the Sun and Earth, or Earth and Moon, or the Sun and Jupiter, etc. the smaller body could be a spacecraft, comet, or asteroid 10

21 Three-Body Problem Circular restricted problem the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them the two primaries could be the Sun and Earth, or Earth and Moon, or the Sun and Jupiter, etc. the smaller body could be a spacecraft, comet, or asteroid we consider the planar and spatial problems there are five equilibrium points in the rotating frame, places of balance which generate interesting dynamics 10

22 Three-Body Problem 3 unstable points on line joining two main bodies L 1,L 2,L 3 2stablepointsat±60 along the circular orbit L 4,L 5 1 L 4 spacecraft 0.5 y (rotating frame) L 3 S L 1 E m S = 1 - µ m E = µ L 2-1 L 5 Earth s orbit x (rotating frame) Equilibrium points 11

23 Three-Body Problem orbits exist around L 1 and L 2 ; both periodic and quasiperiodic Lyapunov, halo and Lissajous orbits one can draw the invariant manifolds assoicated to L 1 (and L 2 ) and the orbits surrounding them these invariant manifolds play a key role in what follows 12

24 Three-Body Problem Equations of motion: ẍ 2ẏ = U eff x, ÿ +2ẋ= U eff y where U eff = (x2 + y 2 ) 1 µ µ. 2 r 1 r 2 Have a first integral, the Hamiltonian energy, given by E(x, y, ẋ, ẏ) = 1 2 (ẋ2 +ẏ 2 )+U eff (x, y). 13

25 Three-Body Problem Equations of motion: ẍ 2ẏ = U eff x, ÿ +2ẋ= U eff y where U eff = (x2 + y 2 ) 1 µ µ. 2 r 1 r 2 Have a first integral, the Hamiltonian energy, given by E(x, y, ẋ, ẏ) = 1 2 (ẋ2 +ẏ 2 )+U eff (x, y). Energy manifolds are 3-dimensional surfaces foliating the 4-dimensional phase space. This is for the planar problem, but the spatial problem is similar. 13

26 Regions of Possible Motion Effective potential In a rotating frame, the equations of motion describe a particle moving in an effective potential plus a magnetic field (goes back to work of Jacobi, Hill, etc). U eff Forbidden Region Exterior Region (X) S L 1 J L 2 Interior (Sun) Region (S) Effective potential Jupiter Region (J) Level set shows accessible regions 14

27 Transport Between Regions Invariant manifolds of L 1 /L 2 orbits red = unstable, green =stable z x y 15

28 Transport Between Regions These manifold tubes play an important role in what passes by Jupiter (transit orbits) and what bounces back (non-transit orbits) transit possible for objects inside the tube, otherwise no transit this is important for transport issues 16

29 Transport Between Regions These manifold tubes play an important role in what passes by Jupiter (transit orbits) and what bounces back (non-transit orbits) transit possible for objects inside the tube, otherwise no transit this is important for transport issues earlier work in this direction by Conley and McGehee in the 1960 s was extended by Koon, Lo, Marsden, and Ross [2000] discovery of heteroclinic connection between L 1 and L 2 orbits was key 16

30 Transport Between Regions Theorem of global orbit structure says we can construct an orbit with any itinerary, eg (...,J,X,J,S,J,S,...), where X, J and S denote the different regions (symbolic dynamics) X U 3 U 4 U 1 S U 3 J L 1 L 2 J U 2 U 2 17

31 Construction of Trajectories One can systematically construct new trajectories, which use little fuel. by linking stable and unstable manifold tubes in the right order and using Poincaré sections to find trajectories inside the tubes One can construct trajectories involving multiple 3-body systems. 18

32 Tour of Jupiter s Moons Tours of planetary satellite systems. Example 1: Europa Io Jupiter 19

33 Tour of Jupiter s Moons Example 2: Ganymede Europa injection into Europa orbit Maneuver performed Jupiter Ganymede's orbit Europa's orbit z Close approach to Ganymede y (a) x Injection into high inclination orbit around Europa z z y x x y (b) (c) 20

34 Tour of Jupiter s Moons pgt-3d-orbit-eu.qt 21

35 Earth to Moon Transfer In 1991, a Japanese mission was saved by using a more fuel efficient way to the Moon (Miller and Belbruno) now a deeper understanding of this is emerging 22

36 Earth to Moon Transfer In 1991, a Japanese mission was saved by using a more fuel efficient way to the Moon (Miller and Belbruno) now a deeper understanding of this is emerging we approach this problem by systematically implementing the view that the Sun-Earth-Moonspacecraft 4-body system can be regarded as two coupled 3- body systems and using invariant manifold ideas 22

37 Earth to Moon Transfer In 1991, a Japanese mission was saved by using a more fuel efficient way to the Moon (Miller and Belbruno) now a deeper understanding of this is emerging we approach this problem by systematically implementing the view that the Sun-Earth-Moonspacecraft 4-body system can be regarded as two coupled 3- body systems and using invariant manifold ideas we transfer from the Sun-Earth-spacecraft system to the Earth-Moon-spacecraft system 22

38 Earth to Moon Transfer 20% more fuel efficient than Apollo-like transfer but takes longer; a few months compared to a few days Inertial Frame Sun-Earth Rotating Frame V Earth V y Moon's Orbit x Ballistic Capture y L 1 Earth Sun Moon's Orbit x Ballistic Capture L 2 23

39 Earth to Moon Transfer shootthemoon-rotating.qt 24

40 L1 Gateway Station The Earth-Moon L 1 point is of interest as a permanent manned site. could operate as a transportation node for going to the moon, asteroids and planets could provide servicing for telescopes at Sun-Earth L 2 point Efficient transfers can be created using the 3-body and invariant manifold techniques discussed 25

41 L1 Gateway Station Below is a near-optimal transfer between the L 1 Gateway station and a Sun-Earth L 2 orbit Moon L1 to Earth L2 Transfer: Earth-Moon Rotating Frame Moon L1 to Earth L2 Transfer: Earth-Sun Rotating Frame V = 14 m/s Transfer Trajectory Moon Transfer Trajectory (38 days) y 0 y Earth Moon L1 orbit x Earth Moon's Orbit Sun Earth L2 orbit x 26

42 Optimal Control Halo Orbit Insertion After launch, the Genesis Discovery Mission will get onto the stable manifold of its eventual periodic orbit around L 1 Launch velocity errors necessitate corrective maneuvers The software coopt has been used to determine the necessary corrections (burn sizes and timing) systematically for a variety of launch conditions It gets one onto the orbit at the right time, while minimizing fuel consumption 27

43 Optimal Control A very nice mixture of dynamical systems (providing guidance and first guesses) and optimal control Delay in first maneuver (days) Perturbation in initial velocity (m/s) see Serban, Koon, Lo, Marsden, Petzold, Ross, and Wilson [2001] Pert. in initial vel. (m/s) Delay in first maneuver (days) Optimal cost C 2 (m/s) Optimal cost C 2 (m/s)

44 Proposed Research Topics: extension of work to 3D symbolic dynamics in 3D, another theorem? 29

45 Proposed Research Topics: extension of work to 3D symbolic dynamics in 3D, another theorem? trajectory design rendezvous problems (to/from Moon L1 Gateway) optimal control using NTG, COOPT, etc. 29

46 Proposed Research Topics: extension of work to 3D symbolic dynamics in 3D, another theorem? trajectory design rendezvous problems (to/from Moon L1 Gateway) optimal control using NTG, COOPT, etc. continuous (low) thrust 29

47 Proposed Research solar system dynamics probabilities of transition, capture, collision comets between planets / Kuiper Belt Shoemaker-Levy 9 type collisions (Chodas, et al.) Earth collision, eg. KT impactor (Muller, et al.) impact ejecta between planets (Burns, Levison, et al.) 30

48 Proposed Research solar system dynamics probabilities of transition, capture, collision comets between planets / Kuiper Belt Shoemaker-Levy 9 type collisions (Chodas, et al.) Earth collision, eg. KT impactor (Muller, et al.) impact ejecta between planets (Burns, Levison, et al.) large scale structure dust clouds around stellar systems (for TPF) 30

49 Transport Between Planets Comets transfer between the giant planets eg, jumping between tubes of Saturn and Jupiter Semimajor Axis of Comet Smirnova-Chernykh (AD ) Inertial Plot of Comet Smirnova-Chernykh 9 Saturn 10 Saturn Semimajor Axis (AU) Smirnova-Chernykh Jupiter y (AU, inertial frame) Sun Jupiter Year -10 Smirnova-Chernykh x (AU, inertial frame) 31

50 Minor Body Statistics Computation of long term statistics is possible Compare manifold computation (green) with comet data Shortperiod comet orbits (~800 yrs, black) and SunJupiter interior L1 manifold (~5,000,000 yrs, green) relative number of orbits (period of orbit)/(jupiter s period) 32

51 Impact Trajectories Deeper understanding of low velocity impacts eg, Shoemaker-Levy 9 and Earth crossers Example Collision Trajectory x Collision! Comes from Interior Region 33

52 Circumstellar Dust Clouds 1 y (AU, Sun-Earth Rotating Frame) (A Sun Earth x (AU, Sun-Earth Rotating Frame) Earth's Orbit Relative Particle Density 34

53 Proposed Research Tools to use and develop use knowledge of phase space geometry and ideas from transport theory (MacKay, Meiss, Wiggins, Rom- Kedar, Jaffé, Uzer, et al.) 35

54 Proposed Research Tools to use and develop use knowledge of phase space geometry and ideas from transport theory (MacKay, Meiss, Wiggins, Rom- Kedar, Jaffé, Uzer, et al.) use graph theoretic methods (Dellnitz, et al.) 35

55 Proposed Research Tools to use and develop use knowledge of phase space geometry and ideas from transport theory (MacKay, Meiss, Wiggins, Rom- Kedar, Jaffé, Uzer, et al.) use graph theoretic methods (Dellnitz, et al.) use symplectic integrators (Wisdom, Marsden, et al.) combine the above methods 35

56 References Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] Invariant manifolds, the spatial three-body problem and space mission design. AAS/AIAA Astrodynamics Specialist Conference. Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy, to appear. Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Low energy transfer to the Moon. Celestial Mechanics and Dynamical Astronomy. toappear. Serban, R., Koon, W.S., M.W. Lo, J.E. Marsden, L.R. Petzold, S.D. Ross, and R.S. Wilson [2001] Halo orbit mission correction maneuvers using optimal control. Automatica, toappear. Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), The End 36

Invariant Manifolds and Transport in the Three-Body Problem

Invariant Manifolds and Transport in the Three-Body Problem Dynamical S C C A L T E C H Invariant Manifolds and Transport in the Three-Body Problem Shane D. Ross Control and Dynamical Systems California Institute of Technology Classical N-Body Systems and Applications

More information

Connecting orbits and invariant manifolds in the spatial three-body problem

Connecting orbits and invariant manifolds in the spatial three-body problem C C Dynamical A L T E C S H Connecting orbits and invariant manifolds in the spatial three-body problem Shane D. Ross Control and Dynamical Systems, Caltech Work with G. Gómez, W. Koon, M. Lo, J. Marsden,

More information

Design of Low Energy Space Missions using Dynamical Systems Theory

Design of Low Energy Space Missions using Dynamical Systems Theory Design of Low Energy Space Missions using Dynamical Systems Theory Koon, Lo, Marsden, and Ross W.S. Koon (Caltech) and S.D. Ross (USC) CIMMS Workshop, October 7, 24 Acknowledgements H. Poincaré, J. Moser

More information

Dynamical Systems and Control in Celestial Mechanics and Space Mission Design. Jerrold E. Marsden

Dynamical Systems and Control in Celestial Mechanics and Space Mission Design. Jerrold E. Marsden C A L T E C H Control & Dynamical Systems Dynamical Systems and Control in Celestial Mechanics and Space Mission Design Jerrold E. Marsden Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/

More information

Chaotic Motion in the Solar System: Mapping the Interplanetary Transport Network

Chaotic Motion in the Solar System: Mapping the Interplanetary Transport Network C C Dynamical A L T E C S H Chaotic Motion in the Solar System: Mapping the Interplanetary Transport Network Shane D. Ross Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/ shane W.S.

More information

Design of low energy space missions using dynamical systems theory

Design of low energy space missions using dynamical systems theory C C Dynamical A L T E C S H Design of low energy space missions using dynamical systems theory Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane Collaborators: J.E. Marsden

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Sang Koon and Martin Lo Shane Ross Control and Dynamical Systems, Caltech shane@cds.caltech.edu Constructing Orbits of Prescribed Itineraries:

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dnamical Sstems and Space Mission Design Wang Koon, Martin Lo, Jerrold Marsden and Shane Ross Wang Sang Koon Control and Dnamical Sstems, Caltech koon@cds.caltech.edu Acknowledgements H. Poincaré, J. Moser

More information

Design of a Multi-Moon Orbiter

Design of a Multi-Moon Orbiter C C Dynamical A L T E C S H Design of a Multi-Moon Orbiter Shane D. Ross Control and Dynamical Systems and JPL, Caltech W.S. Koon, M.W. Lo, J.E. Marsden AAS/AIAA Space Flight Mechanics Meeting Ponce, Puerto

More information

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem C C Dynamical A L T E C S H Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane/pub/thesis/ April

More information

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) CDS 280, January 8, 2001 shane@cds.caltech.edu

More information

Halo Orbit Mission Correction Maneuvers Using Optimal Control

Halo Orbit Mission Correction Maneuvers Using Optimal Control Halo Orbit Mission Correction Maneuvers Using Optimal Control Radu Serban and Linda Petzold (UCSB) Wang Koon, Jerrold Marsden and Shane Ross (Caltech) Martin Lo and Roby Wilson (JPL) Wang Sang Koon Control

More information

Design of a Multi-Moon Orbiter. Jerrold E. Marsden

Design of a Multi-Moon Orbiter. Jerrold E. Marsden C A L T E C H Control & Dynamical Systems Design of a Multi-Moon Orbiter Jerrold E. Marsden Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/ marsden/ Wang Sang Koon (CDS), Martin Lo (JPL),

More information

Periodic Orbits and Transport: From the Three-Body Problem to Atomic Physics

Periodic Orbits and Transport: From the Three-Body Problem to Atomic Physics Periodic Orbits and Transport: From the Three-Body Problem to Atomic Physics Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) CDS 280, November 13, 2000 shane@cds.caltech.edu http://www.cds.caltech.edu/

More information

Dynamical Systems, the Three-Body Problem

Dynamical Systems, the Three-Body Problem Dynamical Systems, the Three-Body Problem and Space Mission Design Wang Sang Koon, Martin W. Lo, Jerrold E. Marsden, Shane D. Ross Control and Dynamical Systems, Caltech and JPL, Pasadena, California,

More information

Invariant Manifolds, Spatial 3-Body Problem and Space Mission Design

Invariant Manifolds, Spatial 3-Body Problem and Space Mission Design Invariant Manifolds, Spatial 3-Bod Problem and Space Mission Design Góme, Koon, Lo, Marsden, Masdemont and Ross Wang Sang Koon Control and Dnamical Sstems, Caltech koon@cdscaltechedu Acknowledgements H

More information

The Coupled Three-Body Problem and Ballistic Lunar Capture

The Coupled Three-Body Problem and Ballistic Lunar Capture The Coupled Three-Bod Problem and Ballistic Lunar Capture Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) Control and Dnamical Sstems California Institute of Technolog Three Bod

More information

Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics CHAOS VOLUME 10, NUMBER 2 JUNE 2000 Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics Wang Sang Koon a) Control and Dynamical Systems, Caltech 107-81, Pasadena,

More information

From the Earth to the Moon: the weak stability boundary and invariant manifolds -

From the Earth to the Moon: the weak stability boundary and invariant manifolds - From the Earth to the Moon: the weak stability boundary and invariant manifolds - Priscilla A. Sousa Silva MAiA-UB - - - Seminari Informal de Matemàtiques de Barcelona 05-06-2012 P.A. Sousa Silva (MAiA-UB)

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Koon and Martin Lo Wang Sang Koon Control and Dynamical Systems, Caltech koon@cds.caltech.edu The Flow near L and L 2 : Outline Outline

More information

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS Francesco Topputo (), Massimiliano Vasile () and Franco Bernelli-Zazzera () () Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano,

More information

Dynamical system theory and numerical methods applied to Astrodynamics

Dynamical system theory and numerical methods applied to Astrodynamics Dynamical system theory and numerical methods applied to Astrodynamics Roberto Castelli Institute for Industrial Mathematics University of Paderborn BCAM, Bilbao, 20th December, 2010 Introduction Introduction

More information

THE ROLE OF INVARIANT MANIFOLDS IN LOW THRUST TRAJECTORY DESIGN

THE ROLE OF INVARIANT MANIFOLDS IN LOW THRUST TRAJECTORY DESIGN AAS 4-288 THE ROLE OF INVARIANT MANIFOLDS IN LOW THRUST TRAJECTORY DESIGN Martin W. Lo *, Rodney L. Anderson, Gregory Whiffen *, Larry Romans * INTRODUCTION An initial study of techniques to be used in

More information

DESIGN OF A MULTI-MOON ORBITER

DESIGN OF A MULTI-MOON ORBITER AAS 03-143 DESIGN OF A MULTI-MOON ORBITER S.D. Ross, W.S. Koon, M.W. Lo, J.E. Marsden February 7, 2003 Abstract The Multi-Moon Orbiter concept is introduced, wherein a single spacecraft orbits several

More information

Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics

Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics Wang Sang Koon Control and Dynamical Systems and JPL Caltech 17-81, Pasadena, CA 91125 koon@cds.caltech.edu

More information

What is the InterPlanetary Superhighway?

What is the InterPlanetary Superhighway? What is the InterPlanetary Superhighway? Kathleen Howell Purdue University Lo and Ross Trajectory Key Space Technology Mission-Enabling Technology Not All Technology is hardware! The InterPlanetary Superhighway

More information

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM HOU Xi-yun,2 TANG Jing-shi,2 LIU Lin,2. Astronomy Department, Nanjing University, Nanjing 20093, China 2. Institute of Space Environment

More information

Set oriented methods, invariant manifolds and transport

Set oriented methods, invariant manifolds and transport C C Dynamical A L T E C S H Set oriented methods, invariant manifolds and transport Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane Caltech/MIT/NASA: W.S. Koon, F. Lekien,

More information

14 th AAS/AIAA Space Flight Mechanics Conference

14 th AAS/AIAA Space Flight Mechanics Conference Paper AAS 04-289 Application of Dynamical Systems Theory to a Very Low Energy Transfer S. D. Ross 1, W. S. Koon 1, M. W. Lo 2, J. E. Marsden 1 1 Control and Dynamical Systems California Institute of Technology

More information

TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS

TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS Annelisie Aiex Corrêa 1, Gerard Gómez 2, Teresinha J. Stuchi 3 1 DMC/INPE - São José dos Campos, Brazil 2 MAiA/UB - Barcelona,

More information

Earth-to-Halo Transfers in the Sun Earth Moon Scenario

Earth-to-Halo Transfers in the Sun Earth Moon Scenario Earth-to-Halo Transfers in the Sun Earth Moon Scenario Anna Zanzottera Giorgio Mingotti Roberto Castelli Michael Dellnitz IFIM, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany (e-mail:

More information

TECHNICAL SUPPORT PACKAGiE

TECHNICAL SUPPORT PACKAGiE NATONAL AERONAUTCS AND SPACE ADMN/STRATON CONTRACT NO NAS 7-918 ~ TECHNCAL SUPPORT PACKAGiE On LOW-ENERGY NTERPLANETARY TRANSFE+S USNG LAGRANGAN PONTS for November 99 NASA TECH BREF Vol 23, No 11, tem

More information

SPACE MANIFOLD DYNAMICS

SPACE MANIFOLD DYNAMICS SPACE MANIFOLD DYNAMICS Gerard Gómez Muntané Universitat de Barcelona, Spain Esther Barrabés Vera Universitat de Girona, Spain Keywords: spacecraft mission analysis, restricted three-body problem, equilibrium

More information

Astrodynamics Applications of Dynamical Systems Theory

Astrodynamics Applications of Dynamical Systems Theory Astrodynamics Applications of Dynamical Systems Theory ASEN6519 - Fall 2007 Tuesday/Thursday 12:30 1:45 pm ECCR 1B08 Overview: The course will focus on applying dynamical systems tools to astrodynamics

More information

Low-Energy Earth-to-Halo Transfers in the Earth Moon Scenario with Sun-Perturbation

Low-Energy Earth-to-Halo Transfers in the Earth Moon Scenario with Sun-Perturbation Low-Energy Earth-to-Halo Transfers in the Earth Moon Scenario with Sun-Perturbation Anna Zanzottera, Giorgio Mingotti, Roberto Castelli and Michael Dellnitz Abstract In this work, trajectories connecting

More information

INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS

INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS 6 th International Conference on Astrodynamics Tools and Technique (ICATT) INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT LI Xiangyu, Qiao Dong, Cui Pingyuan Beijing Institute of Technology Institute of

More information

Dynamical Systems, the Three-Body Problem and Space Mission Design

Dynamical Systems, the Three-Body Problem and Space Mission Design Dynamical Systems, the Three-Body Problem and Space Mission Design Wang Sang Koon California Institute of Technology Martin W. Lo Jet Propulsion Laboratory Jerrold E. Marsden California Institute of Technology

More information

COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS

COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS AAS 11-423 COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS Rodney L. Anderson and Jeffrey S. Parker INTRODUCTION In this study, transfer trajectories from the Earth to the Moon

More information

Low Energy Interplanetary Transfers Using Halo Orbit Hopping Method with STK/Astrogator

Low Energy Interplanetary Transfers Using Halo Orbit Hopping Method with STK/Astrogator AAS 05-111 Low Energy Interplanetary Transfers Using Halo Orbit Hopping Method with STK/Astrogator Tapan R. Kulkarni and Daniele Mortari Texas A&M University, College Station, Texas 77843-3141 Abstract

More information

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem Thesis by Shane David Ross In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute

More information

Heteroclinic and Homoclinic Connections Between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations

Heteroclinic and Homoclinic Connections Between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations Publications 2013 Heteroclinic and Homoclinic Connections Between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations Pedro J. Llanos G.M.V. Aerospace & Defence S.A.U., llanosp@erau.edu

More information

Connecting orbits and invariant manifolds in the spatial restricted three-body problem

Connecting orbits and invariant manifolds in the spatial restricted three-body problem INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 17 (2004) 1571 1606 NONLINEARITY PII: S0951-7715(04)67794-2 Connecting orbits and invariant manifolds in the spatial restricted three-body problem GGómez 1,WSKoon

More information

Trajectory Correction manoeuvres in the Transfer to Libration Point Orbits

Trajectory Correction manoeuvres in the Transfer to Libration Point Orbits Trajectory Correction manoeuvres in the Transfer to Libration Point Orbits Gerard Gómez, Manuel Marcote IEEC & Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona, Gran Via 545, 87 Barcelona,

More information

Research Article Application of Periapse Maps for the Design of Trajectories Near the Smaller Primary in Multi-Body Regimes

Research Article Application of Periapse Maps for the Design of Trajectories Near the Smaller Primary in Multi-Body Regimes Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 212, Article ID 351759, 22 pages doi:1.1155/212/351759 Research Article Application of Periapse Maps for the Design of Trajectories

More information

Astronomy November, 2016 Introduction to Astronomy: The Solar System. Mid-term Exam 3. Practice Version. Name (written legibly):

Astronomy November, 2016 Introduction to Astronomy: The Solar System. Mid-term Exam 3. Practice Version. Name (written legibly): Astronomy 101 16 November, 2016 Introduction to Astronomy: The Solar System Mid-term Exam 3 Practice Version Name (written legibly): Honor Pledge: On my honor, I have neither given nor received unauthorized

More information

LOW-COST LUNAR COMMUNICATION AND NAVIGATION

LOW-COST LUNAR COMMUNICATION AND NAVIGATION LOW-COST LUNAR COMMUNICATION AND NAVIGATION Keric Hill, Jeffrey Parker, George H. Born, and Martin W. Lo Introduction Spacecraft in halo orbits near the Moon could relay communications for lunar missions

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

TWO APPROACHES UTILIZING INVARIANT MANIFOLDS TO DESIGN TRAJECTORIES FOR DMOC OPTIMIZATION

TWO APPROACHES UTILIZING INVARIANT MANIFOLDS TO DESIGN TRAJECTORIES FOR DMOC OPTIMIZATION TWO APPROACHES UTILIZING INVARIANT MANIFOLDS TO DESIGN TRAJECTORIES FOR DMOC OPTIMIZATION INTRODUCTION Ashley Moore Invariant manifolds of the planar circular restricted 3-body problem are used to design

More information

Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo

Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo A Toolbox for Preliminary Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo Mission Analysis and Design PAMSIT IMAGO ATOM-C EPIC Massimiliano Vasile, Stefano

More information

Analysis for the Earth Escape Strategy Using Unstable Manifolds of Sun-Earth Halo Orbit and Lunar Gravity Assists

Analysis for the Earth Escape Strategy Using Unstable Manifolds of Sun-Earth Halo Orbit and Lunar Gravity Assists Analysis for the Earth Escape Strategy Using Unstable Manifolds of Sun-Earth Halo Orbit and Lunar Gravity Assists Hongru Chen ), Yasuhiro Kawakatsu ) and Toshiya Hanada ) ) Department of Aeronautics and

More information

Design of Low Fuel Trajectory in Interior Realm as a Backup Trajectory for Lunar Exploration

Design of Low Fuel Trajectory in Interior Realm as a Backup Trajectory for Lunar Exploration MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Design of Low Fuel Trajectory in Interior Realm as a Backup Trajectory for Lunar Exploration Sato, Y.; Grover, P.; Yoshikawa, S. TR0- June

More information

OPTIMAL CONTROL FOR HALO ORBIT MISSIONS

OPTIMAL CONTROL FOR HALO ORBIT MISSIONS z OPTIMAL CONTROL FOR HALO ORBIT MISSIONS Radu Serban Wang Sang Koon Martin Lo Jerrold E.Marsden Linda R.Petzold Shane D.Ross Roby S.Wilson Department of Mechanical and Environmental Engineering, University

More information

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS Sandro da Silva Fernandes Instituto Tecnológico de Aeronáutica, São José dos Campos - 12228-900 - SP-Brazil, (+55) (12) 3947-5953 sandro@ita.br Cleverson

More information

The Law of Ellipses (Kepler s First Law): all planets orbit the sun in a

The Law of Ellipses (Kepler s First Law): all planets orbit the sun in a Team Number Team Members Present Learning Objectives 1. Practice the Engineering Process a series of steps to follow to design a solution to a problem. 2. Practice the Five Dimensions of Being a Good Team

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Koon and Martin Lo Wang Sang Koon Control and Dynamical Systems, Caltech koon@cds.caltech.edu Halo Orbit and Its Computation From now on,

More information

Interplanetary Trajectory Design using Dynamical Systems Theory

Interplanetary Trajectory Design using Dynamical Systems Theory Interplanetary Trajectory Design using Dynamical Systems Theory THESIS REPORT by Linda van der Ham 8 February 2012 The image on the front is an artist impression of the Interplanetary Superhighway [NASA,

More information

Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists. Final Summer Undergraduate Research Fellowship Report

Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists. Final Summer Undergraduate Research Fellowship Report Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists Final Summer Undergraduate Research Fellowship Report September 25, 2009 Natasha Bosanac Mentor: Professor Jerrold

More information

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Survey of the Solar System The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Definition of a dwarf planet 1. Orbits the sun 2. Is large enough to have become round due to the

More information

OPTIMIZATION OF SPACECRAFT TRAJECTORIES: A METHOD COMBINING INVARIANT MANIFOLD TECHNIQUES AND DISCRETE MECHANICS AND OPTIMAL CONTROL

OPTIMIZATION OF SPACECRAFT TRAJECTORIES: A METHOD COMBINING INVARIANT MANIFOLD TECHNIQUES AND DISCRETE MECHANICS AND OPTIMAL CONTROL (Preprint) AAS 09-257 OPTIMIZATION OF SPACECRAFT TRAJECTORIES: A METHOD COMBINING INVARIANT MANIFOLD TECHNIQUES AND DISCRETE MECHANICS AND OPTIMAL CONTROL Ashley Moore, Sina Ober-Blöbaum, and Jerrold E.

More information

Bifurcations thresholds of halo orbits

Bifurcations thresholds of halo orbits 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 1/23 spazio Bifurcations thresholds of halo orbits Dr. Ceccaroni Marta ceccaron@mat.uniroma2.it University of Roma Tor Vergata Work

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n) When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1 Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology I Terrestrial and Jovian planets Similarities/differences between planetary satellites Surface and atmosphere

More information

TITAN TRAJECTORY DESIGN USING INVARIANT MANIFOLDS AND RESONANT GRAVITY ASSISTS

TITAN TRAJECTORY DESIGN USING INVARIANT MANIFOLDS AND RESONANT GRAVITY ASSISTS AAS 10-170 TITAN TRAJECTORY DESIGN USING INVARIANT MANIFOLDS AND RESONANT GRAVITY ASSISTS Natasha Bosanac, * Jerrold E. Marsden, Ashley Moore and Stefano Campagnola INTRODUCTION Following the spectacular

More information

Earth-Mars transfers with ballistic escape and low-thrust capture

Earth-Mars transfers with ballistic escape and low-thrust capture Earth-Mars transfers with ballistic escape and low-thrust capture G. Mingotti, F. Topputo, F. Bernelli-Zazzera To cite this version: G. Mingotti, F. Topputo, F. Bernelli-Zazzera. Earth-Mars transfers with

More information

HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP *

HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP * IJST, Transactions of Mechanical Engineering, Vol. 6, No. M1, pp 8-9 Printed in The Islamic Republic of Iran, 01 Shiraz University HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP * A. ARAM

More information

Halo orbit mission correction maneuvers using optimal control

Halo orbit mission correction maneuvers using optimal control Automatica 38 (22) 571 583 www.elsevier.com/locate/automatica Halo orbit mission correction maneuvers using optimal control Radu Serban a, Wang S. Koon b, Martin W. Lo c, Jerrold E. Marsden b, Linda R.

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

Astro 1: Introductory Astronomy

Astro 1: Introductory Astronomy Astro 1: Introductory Astronomy David Cohen Class 16: Thursday, March 20 Spring 2014 large cloud of interstellar gas and dust - giving birth to millions of stars Hubble Space Telescope: Carina Nebula

More information

Paweł Kankiewicz, Ireneusz Włodarczyk

Paweł Kankiewicz, Ireneusz Włodarczyk Meeting on Asteroids and Comets in Europe Vienna, Austria, 12-14.05.2006 The stability of orbits of effective Mars Crossers Paweł Kankiewicz, Ireneusz Włodarczyk Astrophysics Division, Institute of Physics,

More information

INVESTIGATION OF ORBITAL EVOLUTION OF INTERPLANETARY DUST PARTICLES ORIGINATING FROM KUIPER BELT AND ASTEROID BELT OBJECTS

INVESTIGATION OF ORBITAL EVOLUTION OF INTERPLANETARY DUST PARTICLES ORIGINATING FROM KUIPER BELT AND ASTEROID BELT OBJECTS INVESTIGATION OF ORBITAL EVOLUTION OF INTERPLANETARY DUST PARTICLES ORIGINATING FROM KUIPER BELT AND ASTEROID BELT OBJECTS 1 PALAK DHARSANDIA, 2 DR. JAYESH PABARI, 3 DR. CHARMY PATEL 1 Research Scholar,

More information

Barcelona, Spain. RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen

Barcelona, Spain.   RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 27 (pp. 1 8) The dynamics around the collinear point L 3 of the RTBP E. Barrabés 1, J.M.

More information

Low-energy capture of asteroids onto KAM tori

Low-energy capture of asteroids onto KAM tori Low-energy capture of asteroids onto KAM tori Patricia E. Verrier 1 and Colin R. McInnes 2 University of Strathclyde, Glasgow, Scotland G1 1XJ, United Kingdom I. Introduction Engineering the artificial

More information

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is 8-3 Escape Speed Vocabulary Escape Speed: The minimum speed an object must possess in order to escape from the gravitational pull of a body. In Chapter 6, you worked with gravitational potential energy

More information

Identifying Safe Zones for Planetary Satellite Orbiters

Identifying Safe Zones for Planetary Satellite Orbiters AIAA/AAS Astrodynamics Specialist Conference and Exhibit 16-19 August 2004, Providence, Rhode Island AIAA 2004-4862 Identifying Safe Zones for Planetary Satellite Orbiters M.E. Paskowitz and D.J. Scheeres

More information

Spacecraft Rendezvous Utilizing Invariant Manifolds for a Halo Orbit *

Spacecraft Rendezvous Utilizing Invariant Manifolds for a Halo Orbit * Trans. Japan Soc. Aero. Space Sci. Vol. 58, No. 5, pp. 6 69, 5 Spacecraft Utilizing Invariant Manifolds for a Halo Orbit * Yuki SATO, Kenji KITAMURA, and Takeya SHIMA Mitsubishi Electric Corporation, Tokyo

More information

Multiple Gravity Assists, Capture, and Escape in the Restricted Three-Body Problem

Multiple Gravity Assists, Capture, and Escape in the Restricted Three-Body Problem SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 6, No. 3, pp. 576 596 c 2007 Society for Industrial and Applied Mathematics Multiple Gravity Assists, Capture, and Escape in the Restricted Three-Body Problem Shane

More information

DYNAMICS: THE PRAGMATIC POINT OF VIEW

DYNAMICS: THE PRAGMATIC POINT OF VIEW SPACE MANIFOLD DYNAMICS: THE PRAGMATIC POINT OF VIEW Ettore Perozzi Telespazio, Roma (Italy) Workshop on Stability and Instability in Mechanical Systems Barcellona, 1-5 December 2008 Being Pragmatic: Kaguya

More information

Astronomy 241: Review Questions #2 Distributed: November 7, 2013

Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Review the questions below, and be prepared to discuss them in class. For each question, list (a) the general topic, and (b) the key laws

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space

Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space Noname manuscript No. (will be inserted by the editor) Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space L. Hagen A. Utku P. Palmer Received: date / Accepted:

More information

ESA s Juice: Mission Summary and Fact Sheet

ESA s Juice: Mission Summary and Fact Sheet ESA s Juice: Mission Summary and Fact Sheet JUICE - JUpiter ICy moons Explorer - is the first large-class mission in ESA's Cosmic Vision 2015-2025 programme. Planned for launch in 2022 and arrival at Jupiter

More information

MULTIPLE GRAVITY ASSISTS IN THE RESTRICTED THREE-BODY PROBLEM

MULTIPLE GRAVITY ASSISTS IN THE RESTRICTED THREE-BODY PROBLEM AAS 07-227 MULTIPLE GRAVITY ASSISTS IN THE RESTRICTED THREE-BODY PROBLEM Shane D. Ross and Daniel J. Scheeres Abstract For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter

More information

A DYNAMICAL SYSTEMS APPROACH TO THE DESIGN OF THE SCIENCE ORBIT AROUND EUROPA

A DYNAMICAL SYSTEMS APPROACH TO THE DESIGN OF THE SCIENCE ORBIT AROUND EUROPA ISTS 26-d-2 A DYNAMICAL SYSTEMS APPROACH TO THE DESIGN OF THE SCIENCE ORBIT AROUND EUROPA Gerard Gomez Dept. Matematica Aplicada i Analisi, Universitat de Barcelona, 8 7 Barcelona, Spain (gerard@maia.ub.es)

More information

An overview of Celestial Mechanics: from the stability of the planets to flight dynamics Alessandra Celletti

An overview of Celestial Mechanics: from the stability of the planets to flight dynamics Alessandra Celletti An overview of Celestial Mechanics: from the stability of the planets to flight dynamics Alessandra Celletti Dipartimento di Matematica Università di Roma Tor Vergata celletti@mat.uniroma2.it Image: CICLOPS,

More information

BINARY ASTEROID PAIRS A Systematic Investigation of the Full Two-Body Problem

BINARY ASTEROID PAIRS A Systematic Investigation of the Full Two-Body Problem BINARY ASTEROID PAIRS A Systematic Investigation of the Full Two-Body Problem Michael Priolo Jerry Marsden, Ph.D., Mentor Shane Ross, Graduate Student, Co-Mentor Control and Dynamical Systems 107-81 Caltech,

More information

INVARIANT MANIFOLDS, DISCRETE MECHANICS, AND TRAJECTORY DESIGN FOR A MISSION TO TITAN

INVARIANT MANIFOLDS, DISCRETE MECHANICS, AND TRAJECTORY DESIGN FOR A MISSION TO TITAN AAS 9-226 INVARIANT MANIFOLDS, DISCRETE MECHANICS, AND TRAJECTORY DESIGN FOR A MISSION TO TITAN Evan S. Gawlik, Jerrold E. Marsden, Stefano Campagnola, Ashley Moore With an environment comparable to that

More information

EVOLUTIONS OF SMALL BODIES IN OUR SOLAR SYSTEM

EVOLUTIONS OF SMALL BODIES IN OUR SOLAR SYSTEM EVOLUTIONS OF SMALL BODIES IN OUR SOLAR SYSTEM Dynamics and collisional processes Dr. Patrick MICHEL Côte d'azur Observatory Cassiopée Laboratory, CNRS Nice, France 1 Plan Chapter I: A few concepts on

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets

outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets Earth s Place in the Universe outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets the big bang the universe is expanding

More information

Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

More information

Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission

Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission Deepak Gaur 1, M. S. Prasad 2 1 M. Tech. (Avionics), Amity Institute of Space Science and Technology, Amity University, Noida, U.P.,

More information

Planetarium observing is over. Nighttime observing starts next week.

Planetarium observing is over. Nighttime observing starts next week. Homework #2 was due today at 11:50am! It s too late now. Planetarium observing is over. Solar observing is over. Nighttime observing starts next week. Outline Switch Gears Solar System Introduction The

More information

SOLAR SYSTEM B Division

SOLAR SYSTEM B Division SOLAR SYSTEM B Division Team Name: Team #: Student Names: IMAGE SHEET A E B C D F G H Spectrum I Spectrum II SS2014 Spectrum III Spectrum IV Spectrum V Spectrum VI 1. A. What satellite is pictured in Image

More information

The Jovian Planets. Why do we expect planets like this in the outer reaches of the solar system?(lc)

The Jovian Planets. Why do we expect planets like this in the outer reaches of the solar system?(lc) The Jovian Planets Beyond Mars and the Asteroid belt are the Jovian or Gas Giant Planets that are totally different than the terrestrial planets: They are composed almost entirely of gas They do not have

More information

[12] Overview of the Solar System (10/5/17)

[12] Overview of the Solar System (10/5/17) 1 [12] Overview of the Solar System (10/5/17) Upcoming Items Voyager Family Portrait 1. Read Ch. 8.1 & 8.2 by next class and do the self-study quizzes 2. Midterm #1 on Tuesday Good luck to all of you!

More information

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Exam# 2 Review Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the

More information

A SYMPLECTIC MAPPING MODEL FOR THE STUDY OF 2:3 RESONANT TRANS-NEPTUNIAN MOTION

A SYMPLECTIC MAPPING MODEL FOR THE STUDY OF 2:3 RESONANT TRANS-NEPTUNIAN MOTION 3 A SYMPLECTIC MAPPING MODEL FOR THE STUDY OF 2:3 RESONANT TRANS-NEPTUNIAN MOTION K.G. HADJIFOTINOU and JOHN D. HADJIDEMETRIOU Department of Physics, University of Thessaloniki, 540 06 Thessaloniki, Greece

More information

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 11 Astronomy Today 8th Edition Chaisson/McMillan Chapter 11 Jupiter Units of Chapter 11 11.1 Orbital and Physical Properties 11.2 Jupiter s Atmosphere Discovery 11.1 A Cometary

More information

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope)

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope) Asteroids Titius-Bode Law (1766) 2 The distances between the planets gets bigger as you go out. Johann Daniel Titius ( 1729 1796) Johann Elert Bode (1747-1826) updated May 16, 2013 Titius & Bode came up

More information