Rapidity evolution of Wilson lines

Size: px
Start display at page:

Download "Rapidity evolution of Wilson lines"

Transcription

1 Rapidity evolution of Wilson lines I. Balitsky JLAB & ODU QCD evolution May 014 QCD evolution May /

2 Outline 1 High-energy scattering and Wilson lines High-energy scattering and Wilson lines. Evolution equation for color dipoles. Leading order: BK equation. NLO high-energy amplitudes Conformal composite dipoles NLO BK kernel in QCD. NLO hierarchy of Wilson-lines evolution. Evolution of 3-Wilson-line baryon operator Conclusions QCD evolution May 014 /

3 DIS at high energy At high energies, particles move along straight lines the amplitude of γ A γ A scattering reduces to the matrix element of a two-wilson-line operator (color dipole): QCD evolution May /

4 DIS at high energy At high energies, particles move along straight lines the amplitude of γ A γ A scattering reduces to the matrix element of a two-wilson-line operator (color dipole): Formally, A(s) = d k 4π IA (k ) B Tr{U(k )U ( k )} B means the operator expansion in Wilson lines QCD evolution May /

5 Four steps of an OPE Factorize an amplitude into a product of coefficient functions and matrix elements of relevant operators. Find the evolution equations of the operators with respect to factorization scale. Solve these evolution equations. Convolute the solution with the initial conditions for the evolution and get the amplitude QCD evolution May /

6 DIS at high energy: relevant operators At high energies, particles move along straight lines the amplitude of γ A γ A scattering reduces to the matrix element of a two-wilson-line operator (color dipole): d k A(s) = 4π IA (k ) B Tr{U(k )U ( k )} B [ ] U(x ) = Pexp ig du n µ A µ (un + x ) Wilson line QCD evolution May /

7 DIS at high energy: relevant operators At high energies, particles move along straight lines the amplitude of γ A γ A scattering reduces to the matrix element of a two-wilson-line operator (color dipole): Formally, d k A(s) = 4π IA (k ) B Tr{U(k )U ( k )} B [ ] U(x ) = Pexp ig du n µ A µ (un + x ) means the operator expansion in Wilson lines Wilson line QCD evolution May /

8 Rapidity factorization Y > Y < η - rapidity factorization scale Rapidity Y > η - coefficient function ( impact factor ) Rapidity Y < η - matrix elements of (light-like) Wilson lines with rapidity divergence cut by η [ ] = Pexp ig dx + A η + (x +, x ) U η x A η µ(x) = d 4 k (π) 4 θ(eη α k )e ik x A µ (k) QCD evolution May /

9 Spectator frame: propagation in the shock-wave background. Boosted Field Each path is weighted with the gauge factor Pe ig dx µa µ. Quarks and gluons do not have time to deviate in the transverse space we can replace the gauge factor along the actual path with the one along the straight-line path. z z x y Wilson Line [ x z: free propagation] [U ab (z ) - instantaneous interaction with the η < η shock wave] [ z y: free propagation ] QCD evolution May /

10 High-energy expansion in color dipoles Y > Y < The high-energy operator expansion is T{ĵ µ (x)ĵ ν (y)} = d z 1 d z Iµν LO (z 1, z, x, y)tr{ûz η 1 Û z η } + NLO contribution QCD evolution May /

11 High-energy expansion in color dipoles Y > Y < η - rapidity factorization scale Evolution equation for color dipoles d dη tr{uη x U η y } = α s π d (x y) z (x z) (y z) [tr{uη x U y η }tr{ux η U η N c tr{u η x U η y }] + α s K NLO tr{u η x U η y } + O(α s ) y } (Linear part of K NLO = K NLO BFKL ) QCD evolution May /

12 Evolution equation for color dipoles To get the evolution equation, consider the dipole with the rapidies up to η 1 and integrate over the gluons with rapidities η 1 > η > η. This integral gives the kernel of the evolution equation (multiplied by the dipole(s) with rapidities up to η ). α s (η 1 η )K evol QCD evolution May /

13 Evolution equation in the leading order d dη Tr{Û x Û y} = K LO Tr{Û x Û y} +... d dη Tr{Û x Û y} shockwave = K LO Tr{Û x Û y} shockwave x a x * x x x x * * x a x * x b a a b y b (a) (b) (c) (d) b U ab z = Tr{t a U z t b U z } (U x U y) η 1 (U x U y) η 1 + α s (η 1 η )(U x U z U z U y) η Evolution equation is non-linear QCD evolution May /

14 Non linear evolution equation Û(x, y) 1 1 N c Tr{Û(x )Û (y )} BK equation d dη Û(x, y) = α sn c π d z (x y) } {Û(x, z) + (x z) (y z) Û(z, y) Û(x, y) Û(x, z)û(z, y) I. B. (1996), Yu. Kovchegov (1999) Alternative approach: JIMWLK ( ) QCD evolution May /

15 Non-linear evolution equation Û(x, y) 1 1 N c Tr{Û(x )Û (y )} BK equation d dη Û(x, y) = α sn c π d z (x y) } {Û(x, z) + (x z) (y z) Û(z, y) Û(x, y) Û(x, z)û(z, y) I. B. (1996), Yu. Kovchegov (1999) Alternative approach: JIMWLK ( ) LLA for DIS in pqcd BFKL (LLA: α s 1, α s η 1) QCD evolution May /

16 Non-linear evolution equation Û(x, y) 1 1 N c Tr{Û(x )Û (y )} BK equation d dη Û(x, y) = α sn c π d z (x y) } {Û(x, z) + (x z) (y z) Û(z, y) Û(x, y) Û(x, z)û(z, y) I. B. (1996), Yu. Kovchegov (1999) Alternative approach: JIMWLK ( ) LLA for DIS in pqcd BFKL (LLA: α s 1, α s η 1) LLA for DIS in sqcd BK eqn (LLA: α s 1, α s η 1, α s A 1/3 1) (s for semiclassical) QCD evolution May /

17 Why NLO correction? To check that high-energy OPE works at the NLO level. To check conformal invariance of the NLO BK equation(in N =4 SYM) To determine the argument of the coupling constant of the BK equation(in QCD). To get the region of application of the leading order evolution equation. QCD evolution May /

18 Hign-energy OPE In the next-to-leading order Y > Y < DIS structure function F (x): photon impact factor + evolution of color dipoles+ initial conditions for the small-x evolution Photon impact factor in the LO (x y) 4 T{ ˆψ(x)γ µ ν d ˆψ(x) ˆψ(y)γ ˆψ(y)} z 1 d z = z 4 Iµν LO (z 1, z )tr{ûz η 1 Û z η } 1 Iµν LO κ 4 [ (z 1, z ) = (κ ζ1 π 6 (κ ζ 1 ) 3 (κ ζ ) 3 x µ y ν )(κ ζ ) 1 κ (ζ 1 ζ ) ]. κ 1 sx + (p 1 s x p + x ) x y, ζ i ( p 1 s + z i p + z i ) NLO impact factor is calculated recently (G.A. Chirilli and I.B, 013) QCD evolution May /

19 NLO impact factor and conformal Möbius invariance z z 1 z z z 1 z y z 3 x y z 3 x z z (a) I NLO (x, y; z 1, z, z 3 ; η) = I LO λ z [ 13 π z ln eη s 1 z 3 4 Z 3 iπ ] + C The NLO impact factor is not Möbius invariant the color dipole with the cutoff η is not invariant However, if we define a composite operator (a - analog of µ for usual OPE) (b) [Tr{Ûz η 1 Û z η } ] conf + λ π = Tr{Û η z 1 Û η z } d z 1 z 3 z [Tr{T n Û 13 z z η 1 Û z η 3 T n Ûz η 3 Û z η } N c Tr{Ûz η 1 Û z η }] ln az 1 3 z 13 z 3 + O(λ ) the impact factor becomes conformal in the NLO. QCD evolution May /

20 Operator expansion in conformal dipoles T{Ô(x)Ô(y)} = + d z 1 d z I LO (z 1, z )Tr{Û η z 1 Û η z } conf d z 1 d z d z 3 I NLO (z 1, z, z 3 )[ 1 N c Tr{T n Û η z 1 Û η z 3 T n Û η z 3 Û η z } Tr{Û η z 1 Û η z }] I NLO = I LO λ π z [ 1 dz 3 z 13 z 3 ln z 1 eη as ] z Z 13 z 3 iπ + C 3 The new NLO impact factor is conformally invariant Tr{Û η z 1 Û η z } conf is Möbius invariant (in N = 4 SYM) We think that one can construct the composite conformal (in N = 4 SYM) dipole operator order by order in perturbation theory. Analogy: when the UV cutoff does not respect the symmetry of a local operator, the composite local renormalized operator in must be corrected by finite counterterms order by order in perturbaton theory. QCD evolution May /

21 Definition of the NLO kernel In general d dη Tr{Û x Û y} = α s K LO Tr{Û x Û y} + α s K NLO Tr{Û x Û y} + O(α 3 s ) QCD evolution May /

22 Definition of the NLO kernel In general d dη Tr{Û x Û y} = α s K LO Tr{Û x Û y} + α s K NLO Tr{Û x Û y} + O(α 3 s ) α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) QCD evolution May /

23 Definition of the NLO kernel In general d dη Tr{Û x Û y} = α s K LO Tr{Û x Û y} + α s K NLO Tr{Û x Û y} + O(α 3 s ) α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) We calculate the matrix element of the r.h.s. in the shock-wave background α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) QCD evolution May /

24 Definition of the NLO kernel In general d dη Tr{Û x Û y} = α s K LO Tr{Û x Û y} + α s K NLO Tr{Û x Û y} + O(α 3 s ) α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) We calculate the matrix element of the r.h.s. in the shock-wave background α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) Subtraction [ ] of the (LO) contribution (with the rigid rapidity cutoff) 1 v prescription in the integrals over Feynman parameter v Typical integral dv 1 [ 1 ] (k p) v + p (1 v) v = 1 + p ln (k p) p QCD evolution May /

25 Gluon part of the NLO BK kernel: diagrams (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) QCD evolution May /

26 Diagrams for 1 3 dipoles transition (XVI) (XVII) (XVIII) (XIX) (XX) (XXI) (XXII) (XXIII) (XXIV) (XV) (XXVI) (XXVII) (XVIII) (XXIX) (XXX) QCD evolution May /

27 Diagrams for 1 3 dipoles transition (XXXI) (XXXII) (XXXIII) (XXXIV) QCD evolution May /

28 "Running coupling" diagrams x y (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) QCD evolution May 014 /

29 1 dipole transition diagrams a x x a x x x a x x x x a * * a x * * * q q q q q b b b c c b b k k k k k k k k k k c d (a) c d d (b) (c) d c (d) (e) x x x x x * x x x x x * * * * a a a b q q q b a q a k q k k k d d d k d c k k k k c c k c c (f) (g) b (h) b (i) b (j) QCD evolution May /

30 NLO evolution of composite conformal dipoles in QCD I. B. and G. Chirilli a d da [tr{u z 1 U z }] comp a = α ( s π d z 3 [tr{u z1 U z 3 }tr{u z3 U z } N c tr{u z1 U z }] comp a z [ 1 z 1 + α sn c ( b ln z 13 z 3 4π 1 µ + b z 13 z 3 z ln z z 3 z π ) ] 3 + α s d z {[ 4 4π + z 3 z 3 + z 4 z 13 4z 1 z 34 (z 3 z 3 z 4 z 13 ) ln z 3 z ] 3 z 4 34 z 4 z 13 [tr{u z1 U z 3 }tr{u z3 U z 4 }{U z4 U z } tr{u z1 U z 3 U z4 U z U z3 U z 4 } (z 4 z 3 )] + z 1 z [ 34 z ln z 1 z ( 34 z 1 13 z 4 z 3 z z ) 34 3 z 13 z 4 z 3 z ln z 13 z ] 4 3 z 3 z 3 } [tr{u z1 U z 3 }tr{u z3 U z 4 }tr{u z4 U z } tr{u z1 U z 4 U z3 U z U z4 U z 3 } (z 4 z 3 )] b = 11 3 N c 3 n f K NLO BK = Running coupling part + Conformal "non-analytic" (in j) part + Conformal analytic (N = 4) part Linearized K NLO BK (for composite dipoles) reproduces the result for the forward NLO BFKL kernel for Green function of two reggeized gluons. QCD evolution May /

31 NLO hierarchy of evolution of Wilson lines (G.A.C. and I.B., 013) a) b) c) d) e) f) Figure : Typical NLO diagrams: self-interaction (a,b), pairwise interactions (c,d), and triple interaction (e,f) QCD evolution May /

32 Self-interaction (gluon reggeization) a) b) d dη (U 1) ij = α s d z 4 d z 5 8π 4 z 45 ([ I 1 4 ] z 45 { U4 dd (Uee 5 U4 ee ) f ade f bd e (t a U 1 t b ) ij + (z 14, z 15 ) z 14 z 15 + α s N c d z {[ π 3 z (U4 ab Uab 1 )(ta U 1 t b ) ij 14 3 ln z 14µ π 3 ln z [ 14 if ad e z ({t d, t e }U 1 t a ) ij if ade (t a ] )} U 1 {t d, t e }) ij 15 ] I 1 I(z 1, z 4, z 5 ) = ln z 14 /z [ 15 z 14 + z 15 z 14 z 15 z (z 14, z 15 ) 45 z (z 14, z 15 ) ] 14 z 15 QCD evolution May /

33 Pairwise interaction c) d) d dη (U 1) ij (U ) kl = α s 8π 4 d z 4 d z 5 (A 1 + A + A 3 ) + α s 8π 3 d z 4 (B 1 + N c B ) QCD evolution May /

34 Pairwise interaction A 1 = [ (t a U 1 ) ij (U t b ) kl + (U 1 t b ) ij (t a ] U ) kl [ ( f ade f bd e U4 dd (Uee 5 U4 ee ) K 4 z 4 + I 1 45 z + I )] 45 z 45 K = NLO BK kernel for N = 4 SYM A = 4(U 4 U 1 ) dd (U 5 U ) ee { i [ f ad e (t d U 1 t a ) ij (t e U ) kl f ade (t a ] U 1 t d ) ij (U t e ) kl J145 ln z 14 z 15 + i [ f ad e (t d U 1 ) ij (t e U t a ) kl f ade (U 1 t d ) ij (t a ] U t e ) kl J154 ln z } 4 z 5 J 145 J(z 1, z, z 4, z 5 ) = (z 14, z 5 ) z (z 15, z 45 )(z 15, z 5 ) 14 z 5 z 45 z + (z 5, z 45 ) 14 z 15 z 5 z 45 z 14 z 5 z 45 QCD evolution May /

35 Pairwise interaction A 3 = U4 {i [ dd f ad e (U 1 t a ) ij (t d t e U ) kl f ade (t a ] U 1 ) ij (U t e t d ) kl + (J 145 J 154 ) ln z ] 4 z (U 5 U ) ee 5 [ J 145 ln z 14 z 15 + i [ f ad e (t d t e U 1 ) ij (U t a ) kl f ade (U 1 t e t d ) ij (t a ] U ) kl [ J 145 ln z 4 z 5 + (J 145 J 154 ) ln z 14 z 15 ](U 5 U 1 ) ee } J 145 J (z 1, z, z 4, z 5 ) = (z 4, z 5 ) z (z 4, z 45 )(z 15, z 5 ) 4 z 5 z 45 z + (z 5, z 45 )(z 14, z 4 ) 4 z 5 z 15 z 45 z (z 14, z 4 )(z 15, z 5 ) 14 z 4 z 5 z 45 z 14 z 15 z 4 z 5 QCD evolution May /

36 Pairwise interaction B 1 = ln z 14 z 1 ln z 4 z 1 { (U 4 U 1 ) ab i [ f bde (t a U 1 t d ) ij (U t e ) kl + f ade (t e U 1 t b ) ij (t d ] [ (z 14, z 4 ) U ) kl z 1 14 z 4 z 14 + (U 4 U ) ab i [ f bde (U 1 t e ) ij (t a U t d ) kl + f ade (t d U 1 ) ij (t e U t b ) kl ] [ (z 14, z 4 ) z 14 z 4 1 z 4 ] ]} B = [ U ab { (z14, z 4 ) z 14 z 4 4 Uab 1 Uab [11 3 ln z 1µ π 3 ] [(t a U 1 ) ij (U t b ) kl + (U 1 t b ) ij (t a U ) kl ] ] 11[ z ln z 4 14 z z 4 ln z ] } 14 z 1 QCD evolution May /

37 Triple interaction e) f) J 1345 J (z 1, z, z 3, z 4, z 5 ) = (z 14, z 34 )(z 5, z 35 ) z 14 z 5 z 34 z 35 (z 14, z 45 )(z 5, z 35 ) z 14 z 5 z 35 z 45 + (z 5, z 45 )(z 14, z 34 ) z 14 z 5 z 34 z 45 + (z 14, z 5 ) z 14 z 5 z 45 QCD evolution May /

38 Triple interaction d dη (U 1) ij (U ) kl (U 3 ) mn = i α s π 4 d z 4 d z 5 {J 1345 ln z 34 z 35 f cde[ (t a U 1 ) ij (t b U ) kl (U 3 t c ) mn (U 4 U 1 ) ad (U 5 U ) be (U 1 t a ) ij (U t b ) kl (t c U 3 ) mn (U 4 U 1 ) da (U 5 U ) eb] + J 3145 ln z 14 z 15 f ade[ (U 1 t a ) ij (t b U ) kl (t c U 3 ) mn (U 4 U 3 ) cd (U 5 U ) be (t a U 1 ) ij (U t b ) kl (U 3 t c ) mn (U dc 4 Udc 3 )(Ueb 5 Ueb )] + J 1345 ln z 4 z 5 f bde[ (t a U 1 ) ij (U t b ) kl (t c U 3 ) mn (U 4 U 1 ) ad (U 5 U 3 ) ce (U 1 t a ) ij (t b U ) kl (U 3 t c ) mn (U 4 U 1 ) da (U 5 U 3 ) ec] (1) QCD evolution May /

39 Rapidity evolution of the baryon tripole Baryon operator B 13 = ε i j h ε ijh U i i (r 1 )U j j (r 1 )U h h (r 3 ) U 1 U U 3, Evolution equation in the LO (A. Grabovsky, 013) d dη B 13 = α [ s3 r ( 8π d r 1 a r ) 4 r 41 r 4 ln 1 r 41 r 4 ( B ] 6 (B 144B 34 + B 44 B 314 B 344 B 14 )) + (1 3) + ( 3). QCD evolution May /

40 Composite conformal baryon operator in the NLO General prescription: O conf = O + 1 O η r mn r im r in r mn r im r in ( r ln mn a r im r in (cf. Conformal JIMWLK by Kovner and Lublinsky, 014) Composite conformal baryon operator B conf 13 = B 13 + α s3 8π [ r d r 1 4 r 41 r 4 ( a r ln 1 r 41 r 4 ( B ] 6 (B 144B 34 + B 44 B 314 B 344 B 14 )) + (1 3) + ( 3). ) ) QCD evolution May /

41 NLO evolution of baryon operator (A. Grabovsky and I.B., 014) db conf 13 +L C 1 dη +M C 1 = LO α s 8π 4 d r 0 d r 4 ({ L 1 C ) (U 1 U 0 U 4 U 3 + tr [(U 0 U 4 U ) ) ) (U 0 U 4 U (U 1 U 0 U 4 U 3 (U ) ( ) 0 U 4 U 1 U 0 U U 3 U 4 ] 3 4 [B 144B 34 + B 44 B 134 B 344 B 14 ] + 1 B 13 ) ) ) [(U 0 U 4 U 3 (U U 0 U 1 U 4 + (U 1 U 0 U +Z 1 B 355 B 15 + (all 5 permutations 1 3) ( [ ( α s 11 r ) ( 8π 3 d r 5 ln r 5 r 5 1 ) r 15 r 1 r 01 r 5 ( 3 (B 155B 35 + B 55 B 135 B 355 B 15 ) 9B 13 ) (U 3 U 4 U 0 } ] U 4 ) + (0 4) ( r )] ln 1 µ ) ) + (1 3) + ( 3). QCD evolution May /

42 NLO evolution kernels Here L1 C BK = KNLO 1 + L 1 C BK = KNLO 1 + ( r 1 4 r 15 r 45 r ln r5 ) ( r 14 r 1 4 r + 45 r 1 4 r 5 r 45 r ln r15 r 4 14 r 45 r 1 ( r 1 4 r 15 r 45 r ln r5 ) ( r 14 r 1 4 r 45 r 1 4 r 5 r 45 r ln r15 r 4 14 r 45 r 1 Z 1 = r 1 [( r35 8 r 15 r 5 r 45 r r ) ( 5 r5 ) r r ln 45 r 4 r 45 r 1 + r 15 ( r 45 r ln r5 ) r r + r 13 ( 35 r 4 r 14 r ln r35 )] r 1 34 r (1 3), 5 r 13 ), ), QCD evolution May /

43 NLO evolution kernels ( M1 C = r 1 16 r 5 r 45 r ln r15 r ) ( 5 r 4 34 r 1 14 r 4 35 r + 14 r 4 16 r 15 r 45 r ln r35 4 r 4 45 r 4 ) 1 r 4 4 r 15 r 6 5 r 14 r 4 34 ( r r 5 r 45 r ln r15 4 r 35 r 6 ) ( 4 r 34 r 3 34 r 5 r 4 45 r r r 35 r 45 r ln r5 r ) 35 r r 4 15 r 4 r 34 ( r r 35 r 45 r ln r5 4 r ) ( 14 r 34 r r 15 r + 35 r r 15 r 45 r ln r5 4 r ) 14 r r 15 r 35 r 4 4 r ( 35 r r 15 r 5 r 45 r ln r15 r ) 35 r 4 4 r ( 3 r 1 34 r 5 r 45 r + 1 r 34 8 r 15 r 5 r 4 r ln r5 r ) 1 r r 15 r 3 r 4 r ( 14 r r 15 r 45 r 4 r ln r15 r 45 r ) 3 r 4 34 r 4 5 r 14 r 34 QCD evolution May /

44 Conclusions High-energy operator expansion in color dipoles works at the NLO level. QCD evolution May 014 /

45 Conclusions High-energy operator expansion in color dipoles works at the NLO level. The NLO BK kernel in for the evolution of conformal composite dipoles in N = 4 SYM is Möbius invariant in the transverse plane. The NLO BK kernel agrees with NLO BFKL equation. The correlation function of four Z operators is calculated at the NLO order. It gives the anomalous dimensions of gluon light-ray operators at the BFKL point j 1 NLO photon impact factor is calculated. NLO hierarchy of Wilson-line evolution is derived. NLO evolution of baryon operator ( odderon contribution) is obtained. QCD evolution May 014 /

High-energy amplitudes in N=4 SYM

High-energy amplitudes in N=4 SYM High-energy amplitudes in N=4 SYM I. Balitsky JLAB & ODU Regensburg 15 July 014 I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 014 1 / 50 Outline Regge limit in a conformal

More information

Solution of the NLO BFKL Equation from Perturbative Eigenfunctions

Solution of the NLO BFKL Equation from Perturbative Eigenfunctions Solution of the NLO BFKL Equation from Perturbative Eigenfunctions Giovanni Antonio Chirilli The Ohio State University JLAB - Newport News - VA 0 December, 013 G. A. Chirilli (The Ohio State Uni.) Solution

More information

High-energy amplitudes and impact factors at next-to-leading order

High-energy amplitudes and impact factors at next-to-leading order High-energ amplitudes and impact factors at net-to-leading order CPHT, École Poltechnique, CNRS, 9118 Palaiseau Cede, France & LPT, Université Paris-Sud, CNRS, 91405 Orsa, France E-mail: giovanni.chirilli@cpht.poltechnique.fr

More information

TMDs at small-x: an Operator Treatment

TMDs at small-x: an Operator Treatment TMDs at small-x: an Operator Treatment Yuri Kovchegov The Ohio State University work with Dan Pitonyak and Matt Sievert, arxiv:76.436 [nucl-th] and 5 other papers + papers in preparation Outline Goal:

More information

JIMWLK evolution: from principles to NLO

JIMWLK evolution: from principles to NLO JIMWLK evolution: from principles to NLO Alex Kovner University of Connecticut, Storrs, CT JLab, March 3, 2014 with... Misha Lublinsky, Yair Mulian Alex Kovner (UConn) JIMWLK evolution: from principles

More information

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Guillaume Beuf Brookhaven National Laboratory QCD Evolution Workshop: from collinear to non collinear case Jefferson Lab,

More information

Di-hadron Angular Correlations as a Probe of Saturation Dynamics

Di-hadron Angular Correlations as a Probe of Saturation Dynamics Di-hadron Angular Correlations as a Probe of Saturation Dynamics Jamal Jalilian-Marian Baruch College Hard Probes 2012, Cagliari, Italy Many-body dynamics of universal gluonic matter How does this happen?

More information

Opportunities with diffraction

Opportunities with diffraction Opportunities with diffraction Krzysztof Golec-Biernat Institute of Nuclear Physics in Kraków IWHSS17, Cortona, 2 5 April 2017 Krzysztof Golec-Biernat Opportunities with diffraction 1 / 29 Plan Diffraction

More information

Triumvirate of Running Couplings in Small-x Evolution

Triumvirate of Running Couplings in Small-x Evolution Triumvirate of Running Couplings in Small-x Evolution arxiv:hep-ph/699v1 8 Sep 6 Yuri V. Kovchegov and Heribert Weigert Department of Physics, The Ohio State University Columbus, OH 431,USA September 6

More information

High Energy QCD and Pomeron Loops

High Energy QCD and Pomeron Loops High Energy QCD and Pomeron Loops Dionysis Triantafyllopoulos Saclay (CEA/SPhT) Based on : E. Iancu, D.N.T., Nucl. Phys. A 756 (2005) 419, Phys. Lett. B 610 (2005) 253 J.-P. Blaizot, E. Iancu, K. Itakura,

More information

High energy scattering in QCD and in quantum gravity

High energy scattering in QCD and in quantum gravity High energy scattering in QCD and in quantum gravity. Gribov Pomeron calculus. BFKL equation L. N. Lipatov Petersburg Nuclear Physics Institute, Gatchina, St.Petersburg, Russia Content 3. Integrability

More information

Resumming large collinear logarithms in the non-linear QCD evolution at high energy

Resumming large collinear logarithms in the non-linear QCD evolution at high energy Resumming large collinear logarithms in the non-linear QCD evolution at high energy Institut de physique théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette, France E-mail: edmond.iancu@cea.fr

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

Chromatically Unique Bipartite Graphs With Certain 3-independent Partition Numbers III ABSTRACT

Chromatically Unique Bipartite Graphs With Certain 3-independent Partition Numbers III ABSTRACT Malaysian Chromatically Journal of Mathematical Unique Biparte Sciences Graphs with 1(1: Certain 139-16 3-Independent (007 Partition Numbers III Chromatically Unique Bipartite Graphs With Certain 3-independent

More information

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions The Pennsylvania State University, Physics Department, University Park, PA 16802 H. Niewodniczański

More information

EP elements in rings

EP elements in rings EP elements in rings Dijana Mosić, Dragan S. Djordjević, J. J. Koliha Abstract In this paper we present a number of new characterizations of EP elements in rings with involution in purely algebraic terms,

More information

Introduction to Saturation Physics

Introduction to Saturation Physics Introduction to Saturation Physics Introduction to Saturation Physics April 4th, 2016 1 / 32 Bibliography F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010)

More information

On the Projectile-Target Duality of the Color Glass Condensate in the Dipole Picture. Abstract

On the Projectile-Target Duality of the Color Glass Condensate in the Dipole Picture. Abstract CU-TP-1129 On the Projectile-Target Duality of the Color Glass Condensate in the Dipole Picture C. Marquet 1 a, A.H. Mueller 2 b, A.I. Shoshi 2 c, S.M.H. Wong 2 d 1 Service de Physique Théorique, CEA/Saclay,

More information

Diffusive scaling and the high energy limit of DDIS

Diffusive scaling and the high energy limit of DDIS RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: hatta@quark.phy.bnl.gov After reviewing the recent developments on the high energy evolution equation beyond the

More information

QCD High Energy Evolution: from Basics to NLO

QCD High Energy Evolution: from Basics to NLO QCD High Energy Evolution: from Basics to NLO Alex Kovner University of Connecticut, Storrs, CT Santiago de Compostela, July 14, 2014 with... Misha Lublinsky, Yair Mulian Alex Kovner (UConn) QCD High Energy

More information

Elementary Particle Physics

Elementary Particle Physics Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI Acknowledgments XV Color Plates XVII Part One

More information

Fe (III), Co (II), Ni(II), Cu(II) -3,3'-(5- -1,2,4- Co(II), Ni(II) 121

Fe (III), Co (II), Ni(II), Cu(II) -3,3'-(5- -1,2,4- Co(II), Ni(II) 121 .. -1,2,4-2002 3 .,. -1,2,4- / -. :. 2002. 240.,, - -1,2,4-. (5-, - (), - -3,3-(5--1,2,4- - :, -..,, -,, -. :.. ; -. ; - - ().., 2002.,., 2002 4 3 8 10 1. -1,2,4-, 5--1()-1,2,3,4-14 1.1. -1,2,4-14 1.2.

More information

arxiv: v1 [hep-ph] 27 Dec 2018

arxiv: v1 [hep-ph] 27 Dec 2018 Rare fluctuations of the S-matrix at NLO in QCD arxiv:8.739v hep-ph] 7 Dec 8 Wenchang Xiang,,, Yanbing Cai,, Mengliang Wang,, and Daicui Zhou 3, Guizhou Key Laboratory in Physics and Related Areas, Guizhou

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

Transverse Momentum Distributions: Matches and Mismatches

Transverse Momentum Distributions: Matches and Mismatches Transverse Momentum Distributions: Matches and Mismatches Ahmad Idilbi ECT* M.G. Echevarría, Ahmad Idilbi, Ignazio Scimemi. [arxiv:.947] MGE, AI, Andreas Schäfer, IS. [arxiv: 08.8] MGE, AI, IS. JHEP 07

More information

Factorization in high energy nucleus-nucleus collisions

Factorization in high energy nucleus-nucleus collisions Factorization in high energy nucleus-nucleus collisions ISMD, Kielce, September 2012 François Gelis IPhT, Saclay 1 / 30 Outline 1 Color Glass Condensate 2 Factorization in Deep Inelastic Scattering 3 Factorization

More information

Summer Review Packet AP Calculus

Summer Review Packet AP Calculus Summer Review Packet AP Calculus ************************************************************************ Directions for this packet: On a separate sheet of paper, show your work for each problem in this

More information

Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials

Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials SUPPORTING INFORMATION Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials Li Wen, Jon P. Nietfeld, Chad M. Amb,

More information

Introduction to Jets. Hsiang nan Li ( 李湘楠 ) Academia Sinica, Taipei. July. 11, 2014

Introduction to Jets. Hsiang nan Li ( 李湘楠 ) Academia Sinica, Taipei. July. 11, 2014 Introduction to Jets Hsiang nan Li ( 李湘楠 ) Academia Sinica, Taipei at CTEQ School, Beijing July. 11, 2014 1 Outlines Introduction e+e annihilation and jets Jets in experiment Jets in theory Summary 2 Introduction

More information

MAT063 and MAT065 FINAL EXAM REVIEW FORM 1R x

MAT063 and MAT065 FINAL EXAM REVIEW FORM 1R x Page NEW YORK CITY COLLEGE OF TECHNOLOGY of the City University of New York R DEPARTMENT OF MATHEMATICS Revised Spring 0 W. Colucci, D. DeSantis, and P. Deraney. Updated Fall 0 S. Singh MAT06 and MAT06

More information

The Uses of Conformal Symmetry in QCD

The Uses of Conformal Symmetry in QCD The Uses of Conformal Symmetry in QCD V. M. Braun University of Regensburg DESY, 23 September 2006 based on a review V.M. Braun, G.P. Korchemsky, D. Müller, Prog. Part. Nucl. Phys. 51 (2003) 311 Outline

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Topic 2060 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance j in two liquids l

Topic 2060 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance j in two liquids l Topic 6 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance in two liquids l and l (at the same T and p) offers a method for comparing the reference chemical potentials,

More information

Automated Computation of Born Matrix Elements in QCD

Automated Computation of Born Matrix Elements in QCD Automated Computation of Born Matrix Elements in QCD Christopher Schwan and Daniel Götz November 4, 2011 Outline Motivation Color(-Flow) Decomposition Berends-Giele-Type Recursion Relations (Daniel Götz)

More information

Quantum Mechanics: Foundations and Applications

Quantum Mechanics: Foundations and Applications Arno Böhm Quantum Mechanics: Foundations and Applications Third Edition, Revised and Enlarged Prepared with Mark Loewe With 96 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Supplementary Materials

Supplementary Materials Electronic Supplementary Material (ESI) or Nanoscale. This journal is The Royal Society o Chemistry 017 Supplementary Materials Eective electro-optic modulation in low-loss graphene-plasmonic slot waveguides

More information

MINISTRIES/DEPARTMENTS Internal and Extra-Budgetary Resources Total. Support Internal ECBs/ Others Total IEBR Resources Bonds Suppliers EBR

MINISTRIES/DEPARTMENTS Internal and Extra-Budgetary Resources Total. Support Internal ECBs/ Others Total IEBR Resources Bonds Suppliers EBR I MINISTRY OF AGRICULTURE 2929.55 0.00 2929.55 Department of Agriculture 1950.00 0.00 1950.00 and Cooperation Department of Agricultural 629.55 0.00 629.55 Research & Education D/Animal Husbandry 300.00

More information

Methods for Marsh Futures Area of Interest (AOI) Elevation Zone Delineation

Methods for Marsh Futures Area of Interest (AOI) Elevation Zone Delineation PARTNERSHIP FOR THE DELAWARE ESTUARY Science Group Methods for Marsh Futures Area of Interest (AOI) Elevation Zone Delineation Date Prepared: 07/30/2015 Prepared By: Joshua Moody Suggested Citation: Moody,

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT Chung-I Tan Brown University Dec. 19, 2008 Miami R. Brower, J. Polchinski, M. Strassler, and C-I Tan, The Pomeron and Gauge/String

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 5, 007 1 Infrared

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/24 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Thirty-Ninth Annual Columbus State Invitational Mathematics Tournament

Thirty-Ninth Annual Columbus State Invitational Mathematics Tournament Thirty-Ninth Annual Columbus State Invitational Mathematics Tournament Sponsored by The Columbus State University Department of Mathematics and Philosophy March nd, 0 ************************* Solutions

More information

Classical Initial Conditions for Ultrarelativistic Heavy Ion. Collisions

Classical Initial Conditions for Ultrarelativistic Heavy Ion. Collisions NT@UW-00-031 Classical Initial Conditions for Ultrarelativistic Heavy Ion Collisions Yuri V. Kovchegov Department of Physics, University of Washington, Box 351560 Seattle, WA 98195-1560 We construct an

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University Transverse momentum-dependent parton distributions from lattice QCD Michael Engelhardt New Mexico State University In collaboration with: B. Musch P. Hägler J. Negele A. Schäfer Lattice theorists go shopping...

More information

Iv roman numerals. Cari untuk: Cari Cari

Iv roman numerals. Cari untuk: Cari Cari Cari untuk: Cari Cari Iv roman numerals 29-4-2010 Readers Georgia and Gecko are both curious about clocks. Georgia wrote in to ask, "Why is it that some analog clocks with Roman numerals have '4' as '

More information

5 Years (10 Semester) Integrated UG/PG Program in Physics & Electronics

5 Years (10 Semester) Integrated UG/PG Program in Physics & Electronics Courses Offered: 5 Years (10 ) Integrated UG/PG Program in Physics & Electronics 2 Years (4 ) Course M. Sc. Physics (Specialization in Material Science) In addition to the presently offered specialization,

More information

c 2011 JOSHUA DAVID JOHNSTON ALL RIGHTS RESERVED

c 2011 JOSHUA DAVID JOHNSTON ALL RIGHTS RESERVED c 211 JOSHUA DAVID JOHNSTON ALL RIGHTS RESERVED ANALYTICALLY AND NUMERICALLY MODELING RESERVOIR-EXTENDED POROUS SLIDER AND JOURNAL BEARINGS INCORPORATING CAVITATION EFFECTS A Dissertation Presented to

More information

1. 4 2y 1 2 = x = x 1 2 x + 1 = x x + 1 = x = 6. w = 2. 5 x

1. 4 2y 1 2 = x = x 1 2 x + 1 = x x + 1 = x = 6. w = 2. 5 x .... VII x + x + = x x x 8 x x = x + a = a + x x = x + x x Solve the absolute value equations.. z = 8. x + 7 =. x =. x =. y = 7 + y VIII Solve the exponential equations.. 0 x = 000. 0 x+ = 00. x+ = 8.

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

High energy QCD: when CGC meets experiment

High energy QCD: when CGC meets experiment High energy QCD: when CGC meets experiment Javier L. Albacete IPhT CEA/Saclay Excited QCD Les Houches, February 0-5 011 OUTLINE Brief Intro [cf Larry s Talk] Running coupling corrections to the BK equation.

More information

BFKL pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD. Mihail Braun, Andrey Tarasov

BFKL pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD. Mihail Braun, Andrey Tarasov BFKL pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD Mihail Braun, Andrey Tarasov QCD at high energies Strong interaction at high energies is mediated by the exchange of BFKL pomerons

More information

Photon-Photon Diffractive Interaction at High Energies

Photon-Photon Diffractive Interaction at High Energies Photon-Photon Diffractive Interaction at High Energies Cong-Feng Qiao Graduate University Chinese Academy of Sciences December 17,2007 1 Contents Brief About Diffractive Interaction Leading Order Photon

More information

Skew-symmetric tensor decomposition

Skew-symmetric tensor decomposition [Arrondo,, Macias Marques, Mourrain] University of Trento, Italy September 28, 2018 Warsaw Symmetric-rank C[x 0,..., x n ] d F = r λ i L d i i=1 S d C n+1 F = r i=1 λ i v d i this corresponds to find the

More information

I) Simplifying fractions: x x. 1) 1 1 y x. 1 1 x 1. 4 x. 13x. x y xy. x 2. Factoring: 10) 13) 12) III) Solving: x 9 Prime (using only) 11)

I) Simplifying fractions: x x. 1) 1 1 y x. 1 1 x 1. 4 x. 13x. x y xy. x 2. Factoring: 10) 13) 12) III) Solving: x 9 Prime (using only) 11) AP Calculus Summer Packet Answer Key Reminders:. This is not an assignment.. This will not be collected.. You WILL be assessed on these skills at various times throughout the course.. You are epected to

More information

Small-x Scattering and Gauge/Gravity Duality

Small-x Scattering and Gauge/Gravity Duality Small-x Scattering and Gauge/Gravity Duality Marko Djurić University of Porto work with Miguel S. Costa and Nick Evans [Vector Meson Production] Miguel S. Costa [DVCS] Richard C. Brower, Ina Sarcevic and

More information

Model for Dredging a Horizontal Trapezoidal Open Channel with Hydraulic Jump

Model for Dredging a Horizontal Trapezoidal Open Channel with Hydraulic Jump Journal of Mathematics Research; Vol. 4, No. 3; 2012 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education Model for Dredging a Horizontal Trapezoidal Open Channel with

More information

Biology IA & IB Syllabus Mr. Johns/Room 2012/August,

Biology IA & IB Syllabus Mr. Johns/Room 2012/August, Biology IA & IB Syllabus Mr. Johns/Room 2012/August, 2017-2018 Description of Course: A study of the natural world centers on cellular structure and the processes of life. First semester topics include:

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Lycée des arts Math Grade Algebraic expressions S.S.4

Lycée des arts Math Grade Algebraic expressions S.S.4 Lycée des arts Math Grade 9 015-016 lgebraic expressions S.S.4 Exercise I: Factorize each of the following algebraic expressions, and then determine its real roots. (x) = 4x (3x 1) (x + ) (3x 1) + 3x 1

More information

A Revised Denotational Semantics for the Dataflow Algebra. A. J. Cowling

A Revised Denotational Semantics for the Dataflow Algebra. A. J. Cowling Verification and Testing Research Group, Department of Computer Science, University of Sheffield, Regent Court, 211, Portobello Street, Sheffield, S1 4DP, United Kingdom Email: A.Cowling @ dcs.shef.ac.uk

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

High Energy Scattering in QCD: from small to large distances

High Energy Scattering in QCD: from small to large distances High Energy Scattering in QCD: from small to large distances Functional Methods in Hadron and Nuclear Physics, ECT*,Trento, Aug.21-26, 2017 Collaboration with C.Contreras and G.P.Vacca Introduction: the

More information

Rapidity factorization and evolution of TMD s

Rapidity factorization and evolution of TMD s Rapidity factorization and evolution of TMD s I. Balitsky JLAB & ODU INT 8 Nov 208 I. Balitsky (JLAB & ODU) Rapidity factorization and evolution of TMD s INT 8 Nov 208 / 53 Outline TMD factorization for

More information

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12 FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS Lorenzo Magnea University of Torino - INFN Torino Pino Day, Cortona, 29/05/12 Outline Crossing paths with Pino Cusps, Wilson lines and Factorization

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

arxiv: v2 [hep-ph] 29 Jun 2012

arxiv: v2 [hep-ph] 29 Jun 2012 Inclusive Hadron Productions in pa Collisions Giovanni A. Chirilli, Bo-Wen Xiao, and Feng Yuan Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 947, USA Department of Physics,

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

Spiky strings, light-like Wilson loops and a pp-wave anomaly

Spiky strings, light-like Wilson loops and a pp-wave anomaly Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arxiv:080.039 A. Tseytlin, M.K. arxiv:0804.3438 R. Ishizeki, A. Tirziu, M.K. Summary Introduction

More information

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Igor O. Cherednikov Universiteit Antwerpen QCD Evolution Workshop Santa Fe (NM), 12-16 May 2014 What we can learn from the study of Wilson loops?

More information

arxiv:hep-ph/ v4 24 Feb 1999

arxiv:hep-ph/ v4 24 Feb 1999 NUC-MN-99/-T TPI-MINN-99/5 Small x F Structure Function of a Nucleus Including Multiple Pomeron Exchanges arxiv:hep-ph/998v4 4 Feb 999 Yuri V. Kovchegov School of Physics and stronomy, University of Minnesota,

More information

Summer Review Packet. for students entering. IB Math SL

Summer Review Packet. for students entering. IB Math SL Summer Review Packet for students entering IB Math SL The problems in this packet are designed to help you review topics that are important to your success in IB Math SL. Please attempt the problems on

More information

Analysis of inter-quark interactions in classical chromodynamics

Analysis of inter-quark interactions in classical chromodynamics Cent. Eur. J. Phys. 3 3 336-344 DOI:.478/s534-3-7-y Central European Journal of Physics Analysis of inter-quark interactions in classical chromodynamics Research Article Jurij W. Darewych, Askold Duviryak

More information

Gluon density and gluon saturation

Gluon density and gluon saturation Gluon density and gluon saturation Narodowe Centrum Nauki Krzysztof Kutak Supported by NCN with Sonata BIS grant Based on: Small-x dynamics in forward-central dijet decorrelations at the LHC A. van Hameren,

More information

QCD saturation predictions in momentum space: heavy quarks at HERA

QCD saturation predictions in momentum space: heavy quarks at HERA QCD saturation predictions in momentum space: heavy quarks at HERA J. T. S. Amaral, E. A. F. Basso and M. B. Gay Ducati thiago.amaral@ufrgs.br, andre.basso@if.ufrgs.br, beatriz.gay@ufrgs.br High Energy

More information

Photon from the Color Glass Condensate in the pa collision

Photon from the Color Glass Condensate in the pa collision Photon from the Color Glass Condensate in the pa collision Sanjin Benić (Tokyo) arxiv:1602.01989 Hard Probes 2016, Wuhan, China, 22 September - 27 September 2016 Motivation photon clean probes in pa initial

More information

QCD β Function. ǫ C. multiplet

QCD β Function. ǫ C. multiplet QCD β Function In these notes, I shall calculate to 1-loop order the δ counterterm for the gluons and hence the β functions of a non-abelian gauge theory such as QCD. For simplicity, I am going to refer

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

Large spin systematics in CFT

Large spin systematics in CFT University of Oxford Holography, Strings and Higher Spins at Swansea with A. Bissi and T. Lukowski Introduction The problem In this talk we will consider operators with higher spin: T rϕ µ1 µl ϕ, T rϕϕ

More information

REAL LINEAR ALGEBRA: PROBLEMS WITH SOLUTIONS

REAL LINEAR ALGEBRA: PROBLEMS WITH SOLUTIONS REAL LINEAR ALGEBRA: PROBLEMS WITH SOLUTIONS The problems listed below are intended as review problems to do before the final They are organied in groups according to sections in my notes, but it is not

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Quasi-PDFs and Pseudo-PDFs

Quasi-PDFs and Pseudo-PDFs s and s A.V. Radyushkin Physics Department, Old Dominion University & Theory Center, Jefferson Lab 2017 May 23, 2017 Densities and Experimentally, one works with hadrons Theoretically, we work with quarks

More information

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator Lingyun Dai Indiana University Based on the work done with Kang, Prokudin, Vitev arxiv:1409.5851, and in preparation 1 2 Outlines

More information

Two- Gluon Correla.ons in Heavy- Light Ion Collisions

Two- Gluon Correla.ons in Heavy- Light Ion Collisions Two- Gluon Correla.ons in Heavy- Light Ion Collisions Yuri V. Kovchegov The Ohio State University work in collabora.on with with Douglas Wertepny arxiv:22.95 [hep- ph], arxiv:30.670 [hep- ph] Outline Long-

More information

Generalized Parton Distributions in PT

Generalized Parton Distributions in PT Generalized Parton Distributions in PT Nikolai Kivel in collaboration with M. Polyakov & A. Vladimirov Deeply Virtual Compton Scattering e e * A DVCS Q 2 large >> 1/R N Q 2 /s =x Bj fixed Δ 2 ~ 1/R N

More information

Forward Jets with the CAL

Forward Jets with the CAL Forward Jets with the CAL Sabine Lammers Juan Terron March 4, 004 ZEUS Collaboration Meeting Motivation Event Selection Monte Carlo Programs Forward Jet Measurements Summary and Plans Parton Evolution

More information

Theory of Elementary Particles homework XI (July??)

Theory of Elementary Particles homework XI (July??) Theory of Elementary Particles homework XI (July??) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like II-1, II-3, IV- ).

More information

Calculating Radiative Recombination Continuum From a Hot Plasma

Calculating Radiative Recombination Continuum From a Hot Plasma Calculating Radiative Recombination Continuum From a Hot Plasma Randall Smith August 2, 2008 When an electron collides with an atom or ion, it may excite the atom/ion (I + e I + e) ionize the atom/ion

More information

DIELECTRIC PROPERTIES OF MIXTURES OF CLAY-WATER-ORGANIC COMPOUNDS

DIELECTRIC PROPERTIES OF MIXTURES OF CLAY-WATER-ORGANIC COMPOUNDS DIELECTRIC PROPERTIES OF MIXTURES OF CLAY-WATER-ORGANIC COMPOUNDS By Birsen Canan ABSTRACT The propagation of an electromagnetic wave through a material is dependent on the electrical and magnetic properties

More information

Anisotropic gluon distributions of a nucleus

Anisotropic gluon distributions of a nucleus Anisotropic gluon distributions of a nucleus Adrian Dumitru Baruch College, CUNY INT Program INT-15-2b Correlations and Fluctuations in p+a and A+A Collisions anisotropy of gluon distribution in CGC formalism

More information

Interpolation and Polynomial Approximation I

Interpolation and Polynomial Approximation I Interpolation and Polynomial Approximation I If f (n) (x), n are available, Taylor polynomial is an approximation: f (x) = f (x 0 )+f (x 0 )(x x 0 )+ 1 2! f (x 0 )(x x 0 ) 2 + Example: e x = 1 + x 1! +

More information

Factorizations of b n ±1, Up to High Powers. Third Edition. John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.

Factorizations of b n ±1, Up to High Powers. Third Edition. John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr. CONTEMPORARY MATHEMATICS 22 Factorizations of b n ±1, b = 2, 3, 5, 6, 7,10, 11, 12 Up to High Powers Third Edition John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.

More information

C.A. Bertulani, Texas A&M University-Commerce

C.A. Bertulani, Texas A&M University-Commerce C.A. Bertulani, Texas A&M University-Commerce in collaboration with: Renato Higa (University of Sao Paulo) Bira van Kolck (Orsay/U. of Arizona) INT/Seattle, Universality in Few-Body Systems, March 10,

More information

Testing Saturation Physics with pa collisions at NLO Accuracy

Testing Saturation Physics with pa collisions at NLO Accuracy Testing Saturation Physics with pa collisions at NLO Accuracy David Zaslavsky with Anna Staśto and Bo-Wen Xiao Penn State University January 24, 2014 Prepared for University of Jyväskylä HEP group seminar

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information