Optical clock measurements beyond the geodetic limit

Size: px
Start display at page:

Download "Optical clock measurements beyond the geodetic limit"

Transcription

1 Optical clock measurements beyond the geodetic limit Andrew D. Ludlow Optical Frequency Measurements Group National Institute of Standards and Technology Boulder, CO USA

2 Talk outline Atomic clock figures of merit Yb optical lattice clocks at NIST General description Uncertainty evaluation Clock stability at long times Measurements between the Yb clocks Optical frequency ratio measurements Towards portability

3 Figures of merit So how accurate is your clock?

4 Systematic Uncertainty UNCERTAINTY IN REALIZING UNPERTURBED EIGENFREQUENCY OF ATOM characterized with an uncertainty evaluation electric and magnetic fields, atomic collisions, observational and relativistic effects,

5 (In)stability HOW MUCH THE TIMEBASE VARIES OVER TIME sets the statistical precision afforded by the clock timebase averaged over longer times generally more stable

6 Reproducibility HOW WELL THE TIMEBASES OF TWO SIMILAR STANDARDS AGREE should be determined by systematic uncertainty and stability

7 Accuracy? Accuracy Systematic Uncertainty? Accuracy Syst. Uncertainty + Stability (rss)? Accuracy Reproducibility?

8 the Yb optical lattice clock ac Stark shift [MHz] ~759 nm 3 P 0 1 S H. Katori et al., PRL 91, (2003) Wavelength [nm]

9 the Yb optical lattice clock Brown et al., PRL 119, (2017)

10 the Yb optical lattice clock

11 the Yb optical lattice clock 3 P 0 clock transition 1 S 0

12 Systematic Uncertainty UNCERTAINTY IN REALIZING UNPERTURBED EIGENFREQUENCY OF ATOM characterized with an uncertainty evaluation electric and magnetic fields, atomic collisions, observational and relativistic effects,

13 Yb clock uncertainty budget Yb-1 (x10-18 ) Yb-2 (x10-18 ) Systematic effects Shift Uncertainty Shift Uncertainty BBR Stark Lattice statistical Lattice model Lattice traveling wave 0 < Second-order Zeeman Spin polarization purity <0.1 Cold collision Background gas collision DC Stark Probe AC Stark First-order Doppler Second-order Doppler 0 <0.1 0 <0.1 Tunnelling 0 < <0.01 Servo error Line Pulling 0 <0.1 0 <0.1 AO Phase Chirp (OFS) Total W. McGrew et al., in preparation

14 Radiative thermal environment Yb

15 Blackbody Blackbody Stark shift radiation shift Beloy et al, PRL (2014)

16 Blackbody Stark shift Beloy et al, PRL (2014) Beloy et al, in preparation

17 DC Stark shift x Shift (FF) -1.0x x Shift(Hz) -2.0x x Voltage (V) Direction uncertainty X Y Z Total Beloy et al, in preparation

18 (In)stability HOW MUCH THE TIMEBASE VARIES OVER TIME sets the statistical precision afforded by the clock timebase averaged over longer times generally more stable

19 Measuring stability M. Schioppo et al., Nat. Photonics (2017)

20 Measuring stability M. Schioppo et al., Nat. Photonics (2017)

21 Downsampling of Optical Noise sensitivity function time (s)

22 Even better stability: zero dead time Yb-1 Yb-2

23 Stability: zero dead time Yb clock M. Schioppo et al., Nat. Photonics (2017)

24 Limited by optical aliasing (Dick effect) Instability at 1 second M. Schioppo et al., Nat. Photonics (2017)

25 Stability at long times Short term stability detection and laser frequency noise Long term stability drifting systematics

26 Stability at long times W. McGrew et al., in preparation

27 Reproducibility HOW WELL THE TIMEBASES OF TWO SIMILAR STANDARDS AGREE should be determined by systematic uncertainty and stability

28 Reproducibility series of measurements to assess agreement between two Yb lattice clocks frequency measurements preceded by a series of parameter checks to ensure clocks expected to be in compliance with uncertainty evaluation blinding protocol: relative frequency difference between the two systems is not known until the end of measurement day.

29 Reproducibility: geodetic perspective Δh 6 cm 6 x 10-18

30 Interspecies optical clock comparisons

31 Intercontinental: ACES ISS mission Improved test of GR redshift Special relativity tests (isotropy of the speed of light) Fine structure constant variation through ground clock comparisons Ground clock comparisons at the level

32 Optical clock comparisons Optical frequency ratio measurements: Yb, Al +, Sr Collaboration: NIST Ion Storage, JILA Sr, NIST OFM, NIST FSA

33 Optical Two-Way Time and Frequency Transfer Bern ISSI, March 20, 2018 Nathan R. Newbury, Jean-Daniel Deschênes, Laura Sinclair, William Swann, Hugo Bergeron, Issac Khader, Esther Baumann,Martha Bodine NIST, Boulder, CO, USA OctoSig, Québec, QC, Canada the following 12 slides from Newbury et al.

34 Optical Two-Way Time and Frequency Transfer (TWTFT) Optical clocks/oscillators have femtosecond jitter & extreme frequency accuracy RF/Microwave links cannot transfer these signals faithfully need an Optical link for Optical clocks/oscillators Fiber optic links work but are not always (or even often) available Goal: Method for fs-level transfer of optical clock/oscillator signals over free-space Coherent Exchange of Frequency Comb Pulses Master optical clock/oscillator Cavity-stabilized laser or full atomic clock Remote clock / oscillator optical or rf

35 Why is this hard? Turbulence, platform motion Clock Frequency Comb Frequency Comb Clock 1) Amplitude noise & signal loss From turbulence (scintillation & beam wander) From obstructions & platform motion Well-known from free-space optical communications 2) Phase noise (time-of-flight variations) From turbulence ( piston effect ) From platform motion Relative velocity of 3 nm/sec v/c < Relative motion of 300 nm 1 femtosecond

36 Two-Way Time Transfer: Basic Concept Site A Site B t A =0 t B =0 Timer Timer t B A =T link - t AB t A B =T link + t AB t AB Clock Time Offset Requires a Reciprocal Link A single-mode optical link is reciprocal!

37 Two-Way Time Transfer + Feedback Synchronization Site A feedback Site B Timer Timer t B A t A B t AB Real-time calculation

38 Two-Way Time Transfer: With Combs Site A Site B Timer Timer t B A =T link - t AB t A B =T link + t AB Comb timing is at femtosecond level! But timing information lost in photodetection still picosecond level timing

39 Coarse Two-way & Comms Comb-based Synchronization CW Laser Coherent TX/RX System Timing Exchange CW Laser Coherent TX/RX Coarse Two-way & Comms Controller Synch. T Equation Hz Feedback BW Remote Comb Comb-based timing measurement Clock Output Clock Output Comb-based timing measurement Transfer Comb Master Comb Controller Three signals between sites: Phase modulated cw light for coarse two-way timing Comb light for fine two-way timing Coherent communication (to close the loop) Plus full calibration of each terminal delays for absolute time

40 4 km Turbulent Air Path

41 From 4 km to 11.6 km: NIST to Valmont Butte Valmont Butte current link 1 km NIST View from NIST Valmont Butte

42 Carrier-Phase OTWTFT Comb fiber link Oscillator A Oscillator B Θ A Two-way carrier-phase extraction Θ B t A Relative timing t B

43 Carrier Phase OTWTFT Allows Frequency Comparisons at sec Fractional Frequency Instability (Mod. Allan) Carrier phase OTWTFT Previous OTWTFT (pulse envelope only) 10X-30X improvement to 1 second Averaging Time (s)

44 Carrier Phase OTWTFT: Same improvement at higher turbulence levels Fractional Frequency Instability (Mod. Allan) carrierphase OTWTFT Previous OTWTFT 1% fades (low turbulence) 26% fades (high turbulence) Averaging Time (s)

45 Optical Two-Way Time Transfer: Summ Remote site Femtosecond Clock Network We can synchronize to femtoseconds: Over strong turbulence Through dropouts At velocities up to 50 mph with no degradation To 1 sec quartz oscillator or optical cavity Master Optical Oscillator/Clock Future work Longer distances Networks Atomic clock to atomic clock Higher velocities J. D. Deschenes et al., Physical Review X, (2016) L. Sinclair et al., Applied Physics Letters, 109, (2016) H. Bergeron et al, Optica, (2016) L. Sinclair et al., Physical Review Lett, 120, (2018)

46 Compact cold atom sources

47 Compact cold atom sources Collaboration with E. Riis, A. Arnold, P. Griffin et al., Univ. of Strathclyde Nshii et al., Nature Nanotechnology 8, (2013)

48 Perspective With additional development OLCs could eventually reach low total (statistical and systematic) uncertainty mm level geodetic accuracy? OLCs will reach stability at 1 second - Cryo-cavity lasers - Large atom numbers - Spin squeezing - Zero dead time D.G. Matei et al., Phys. Rev. Lett. 118,

49 Acknowledgments W. McGrew X. Zhang R. Fasano D. Nicolodi K. Beloy R. Brown M. Schioppo N. Hinkley T. H. Yoon N. Phillips G. Milani T. Fortier C. W. Oates S. Diddams T. Fortier H. Leopardi postdoc position available Fund. Phys. PECASE NIST Gebbie Laboratory

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Nathan D. Lemke number of seconds to gain/lose one second Clocks, past & present 10 18 10 15 one second per billion years one second per million years

More information

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications)

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications) Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications) Ali Al-Masoudi, Sören Dörscher, Roman Schwarz, Sebastian Häfner, Uwe Sterr, and Christian Lisdat Outline Introduction

More information

The Yb lattice clock (and others!) at NIST for space-based applications

The Yb lattice clock (and others!) at NIST for space-based applications The Yb lattice clock (and others!) at NIST for space-based applications Andrew Ludlow, Jeff Sherman, Nathan Hinkley, Nate Phillips, Kyle Beloy, Nathan Lemke, and Chris Oates National Institute of Standards

More information

SR OPTICAL CLOCK WITH HIGH STABILITY AND ACCURACY *

SR OPTICAL CLOCK WITH HIGH STABILITY AND ACCURACY * SR OPTICAL CLOCK WITH HIGH STABILITY AND ACCURACY * A. LUDLOW, S. BLATT, M. BOYD, G. CAMPBELL, S. FOREMAN, M. MARTIN, M. H. G. DE MIRANDA, T. ZELEVINSKY, AND J. YE JILA, National Institute of Standards

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

High Accuracy Strontium Ion Optical Clock

High Accuracy Strontium Ion Optical Clock High Accuracy Strontium Ion Optical Clock Helen Margolis, Geoff Barwood, Hugh Klein, Guilong Huang, Stephen Lea, Krzysztof Szymaniec and Patrick Gill T&F Club 15 th April 2005 Outline Optical frequency

More information

Atomic clocks. Clocks

Atomic clocks. Clocks Atomic clocks Clocks 1 Ingredients for a clock 1. Need a system with periodic behavior: it cycles occur at constant frequency 2. Count the cycles to produce time interval 3. Agree on the origin of time

More information

arxiv:physics/ v1 [physics.atom-ph] 7 Nov 2006

arxiv:physics/ v1 [physics.atom-ph] 7 Nov 2006 87 Sr lattice clock with inaccuracy below 5 Martin M. Boyd, Andrew D. Ludlow, Sebastian Blatt, Seth M. Foreman, Tetsuya Ido, Tanya Zelevinsky, and Jun Ye JILA, National Institute of Standards and Technology

More information

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency The ACES Mission Fundamental Physics Tests with Cold Atom Clocks in Space L. Cacciapuoti European Space Agency La Thuile, 20-27 March 2011 Gravitational Waves and Experimental Gravity 1 ACES Mission Concept

More information

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten Christian Lisdat Goslar 12.02.2013 Gesetz über die Einheiten im Messwesen und die Zeitbestimmung Why clocks? 6 Physikalisch-Technische

More information

Optical Lattice Clock with Neutral Mercury

Optical Lattice Clock with Neutral Mercury Optical Lattice Clock with Neutral Mercury R. Tyumenev, Z. Xu, J.J. McFerran, Y. Le Coq and S. Bize SYRTE, Observatoire de Paris 61 avenue de l Observatoire, 75014 Paris, France rinat.tyumenev@obspm.fr

More information

National Physical Laboratory, UK

National Physical Laboratory, UK Patrick Gill Geoff Barwood, Hugh Klein, Kazu Hosaka, Guilong Huang, Stephen Lea, Helen Margolis, Krzysztof Szymaniec, Stephen Webster, Adrian Stannard & Barney Walton National Physical Laboratory, UK Advances

More information

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

Quantum Metrology Optical Atomic Clocks & Many-Body Physics Quantum Metrology Optical Atomic Clocks & Many-Body Physics Jun Ye JILA, National Institute of Standards & Technology and University of Colorado APS 4CS Fall 2011 meeting, Tucson, Oct. 22, 2011 Many-body

More information

Atom-based Frequency Metrology: Real World Applications

Atom-based Frequency Metrology: Real World Applications Atom-based Frequency Metrology: Real World Applications Anne Curtis National Physical Laboratory Teddington, UK Outline Introduction to atom-based frequency metrology Practical Uses - Tests of fundamental

More information

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division Primary Frequency Standards at NIST S.R. Jefferts NIST Time and Frequency Division Outline Atomic Clocks - general Primary Frequency Standard Beam Standards Laser-Cooled Primary Standards Systematic Frequency

More information

Optical clocks and fibre links. Je ro me Lodewyck

Optical clocks and fibre links. Je ro me Lodewyck Optical clocks and fibre links Je ro me Lodewyck J. Lodewyck Optical clocks and fibre links GRAM, Juin 2016 1/34 Content 1 Atomic clocks 2 Optical lattice clocks 3 Clock comparisons 4 Comparison of optical

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Searching for variations of fundamental constants using the atomic clocks ensemble at LNE-SYRTE

Searching for variations of fundamental constants using the atomic clocks ensemble at LNE-SYRTE Systèmes de référence Temps-Espace Searching for variations of fundamental constants using the atomic clocks ensemble at LNE-SYRTE Luigi De Sarlo, M Favier, R Tyumenev, R Le Targat, J Lodewyck, P Wolf,

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

ATOMIC CLOCK ENSEMBLE IN SPACE Mission status

ATOMIC CLOCK ENSEMBLE IN SPACE Mission status ATOMIC CLOCK ENSEMBLE IN SPACE Mission status Luigi Cacciapuoti on behalf of the ACES team 30/03/2017 Rencontres de Moriond 2017 - Gravitation, La Thuile ACES Luigi Cacciapuoti 30/03/2017 Slide 2 The Columbus

More information

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Transportable optical clocks: Towards gravimetry based on the gravitational redshift Transportable optical clocks: Towards gravimetry based on the gravitational redshift A.A. Görlitz, P. Lemonde, C. Salomon, B.S. Schiller, U. Sterr and G. Tino C.Towards a Roadmap for Future Satellite Gravity

More information

Journées Systèmes de Référence Spatio-Temporels 2011 September 19 th 2011 Vienna, Austria

Journées Systèmes de Référence Spatio-Temporels 2011 September 19 th 2011 Vienna, Austria Highly precise clocks to test fundamental physics M. Abgrall, S. Bize, A. Clairon, J. Guéna, M. Gurov, P. Laurent, Y. Le Coq, P. Lemonde, J. Lodewyck, L. Lorini, S. Mejri, J. Millo, J.J. McFerran, P. Rosenbusch,

More information

Precisely Engineered Interactions between Light and Ultracold Matter

Precisely Engineered Interactions between Light and Ultracold Matter IL NUOVO CIMENTO Vol.?, N.?? Precisely Engineered Interactions between Light and Ultracold Matter M. M. Boyd, A. D. Ludlow, S. Blatt, G. K. Campbell, T. Zelevinsky, S. M. Foreman, and J. Ye JILA, National

More information

optical evaluation with a Ca clock

optical evaluation with a Ca clock 1 Sr lattice clock at 1x10-16 fractional uncertainty by remote optical evaluation with a Ca clock A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J.

More information

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Different ion-qubit choises - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Electronic levels Structure n 2 P 3/2 n 2 P n 2 P 1/2 w/o D Be + Mg + Zn + Cd + 313 nm 280 nm 206 nm 226

More information

Clock tests of space-time variation of fundamental constants

Clock tests of space-time variation of fundamental constants 1 Systèmes de Référence Temps-Espace Clock tests of space-time variation of fundamental constants J. Guéna, S. Bize, M. Abgrall, L. De Sarlo, Ph. Laurent, Y. Le Coq, R. Le Targat, J. Lodewyck, P. Rosenbusch,

More information

Determining α from Helium Fine Structure

Determining α from Helium Fine Structure Determining α from Helium Fine Structure How to Measure Helium Energy Levels REALLY Well Lepton Moments 2006 June 18, 2006 Daniel Farkas and Gerald Gabrielse Harvard University Physics Dept Funding provided

More information

THE SPACE OPTICAL CLOCKS PROJECT

THE SPACE OPTICAL CLOCKS PROJECT THE SPACE OPTICAL CLOCKS PROJECT S. Schiller (1), G. M. Tino (2), P. Lemonde (3), U. Sterr (4), A. Görlitz (1), N. Poli (2), A. Nevsky (1), C. Salomon (5) and the SOC team (1,2,3,4) (1) Heinrich-Heine-Universität

More information

Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light

Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light Jun Ye JILA, NIST & University of Colorado MURI 25 th Birthday, Washington DC, Nov. 9, 2011 Many-body quantum

More information

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt An Electron EDM Search in HfF + : Probing P & T-violation Beyond the Standard Model Aaron E. Leanhardt Experiment: Laura Sinclair, Russell Stutz & Eric Cornell Theory: Ed Meyer & John Bohn JILA, NIST,

More information

When should we change the definition of the second?

When should we change the definition of the second? When should we change the definition of the second? Patrick Gill The new SI: units of measurement based on fundamental constants Discussion meeting, The Royal Society, London, 24-25 January 2011 Outline

More information

An Optical Lattice Clock with Accuracy and Stability at the Level

An Optical Lattice Clock with Accuracy and Stability at the Level 1 An Optical Lattice Clock with Accuracy and Stability at the 10-18 Level B. J. Bloom 1,2,*, T. L. Nicholson 1,2,*, J. R. Williams 1,2,, S. L. Campbell 1,2, M. Bishof 1,2, X. Zhang 1,2, W. Zhang 1,2, S.

More information

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications Como, 3. -7. 10. 2011 STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle):

More information

Single atom laser-based clocks D. J. Wineland, NIST, Boulder. Hg + ion

Single atom laser-based clocks D. J. Wineland, NIST, Boulder. Hg + ion Single atom laser-based clocks D. J. Wineland, NIST, Boulder Hg + ion Single atom laser-based clocks D. J. Wineland, NIST, Boulder Summary Why precise clocks? Atomic clock basics Optical atomic clocks

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26

Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26 Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26 Outline Introduction Previous experimental results Saturation spectroscopy Conclusions and future works Diatomic Molecules Total energy=electronic

More information

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation SESAME-JSPS School November 14-16, 2011 Amman, Jordan Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation Shin-ichi Adachi (Photon Factory,

More information

Absolute frequency measurement at level based on the international atomic time

Absolute frequency measurement at level based on the international atomic time Journal of Physics: Conference Series PAPER OPEN ACCESS Absolute frequency measurement at 10-16 level based on the international atomic time To cite this article: H Hachisu et al 2016 J. Phys.: Conf. Ser.

More information

Overview of Frequency Metrology at NMIJ

Overview of Frequency Metrology at NMIJ Overview of Frequency Metrology at NMIJ Kazumoto Hosaka Time and Frequency Division (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) APMP TCTF 2014 Daejeon, KOREA 20 th -

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

Quantum Logic Spectroscopy and Precision Measurements

Quantum Logic Spectroscopy and Precision Measurements Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009 Overview What is Quantum Metrology? Quantum Logic with

More information

Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector

Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector Volume 9, Number 2, April 2017 Open Access Yue Hu, Student Member, IEEE Curtis R. Menyuk, Fellow, IEEE

More information

PRECISION MEASUREMENT MEETS ULTRAFAST CONTROL

PRECISION MEASUREMENT MEETS ULTRAFAST CONTROL PRECISION MEASUREMENT MEETS ULTRAFAST CONTROL J. YE, S. BLATT, M. M. BOYD, S. M. FOREMAN, T. IDO, R. J. JONES, A. D. LUDLOW, A. MARIAN, K. MOLL, M. NOTCUTT, M. STOWE, M. THORPE, AND T. ZELEVINSKY JILA,

More information

Titelmasterformat durch Klicken bearbeiten

Titelmasterformat durch Klicken bearbeiten Towards a Space Optical Clock with 88 Sr Titelmasterformat durch Klicken bearbeiten Influence of Collisions on a Lattice Clock U. Sterr Ch. Lisdat J. Vellore Winfred T. Middelmann S. Falke F. Riehle ESA

More information

RACE: Rubidium Atomic Clock Experiment

RACE: Rubidium Atomic Clock Experiment RACE RACE: Rubidium Atomic Clock Experiment Cold collision frequency shift & 87 clocks Juggling clocks Precision short range atomic force measurements Penn State Russ Hart Ruoxin Li Chad Fertig Ron Legere

More information

Optical Clocks at PTB

Optical Clocks at PTB Optical Clocks at PTB Outline Introduction to optical clocks An optical frequency standard with Ca atoms Improved reference cavity Yb + Ion Clock Sr optical lattice clock Optical frequency measurements

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

LETTER. An optical lattice clock with accuracy and stability at the level

LETTER. An optical lattice clock with accuracy and stability at the level doi:1.138/nature12941 An optical lattice clock with accuracy and stability at the 1 218 level B. J. Bloom 1,2 *, T. L. Nicholson 1,2 *, J. R. Williams 1,2 {, S. L. Campbell 1,2, M. Bishof 1,2, X. Zhang

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Comparison with an uncertainty of between two primary frequency standards

Comparison with an uncertainty of between two primary frequency standards Comparison with an uncertainty of 2 10-16 between two primary frequency standards Cipriana Mandache, C. Vian, P. Rosenbusch, H. Marion, Ph. Laurent, G. Santarelli, S. Bize and A. Clairon LNE-SYRTE, Observatoire

More information

Mission I-SOC: An optical clock on the ISS

Mission I-SOC: An optical clock on the ISS Mission I-SOC: An optical clock on the ISS Coordinator: S. Schiller (Univ. Düsseldorf) U. Sterr Ch. Lisdat R. Le Targat J. Lodewyck Y. Singh K. Bongs N. Poli G.M. Tino F. Levi I. Prochazka When ACES was

More information

Status of the ACES/PHARAO mission

Status of the ACES/PHARAO mission XLII nd Rencontres de Moriond,, March 2007 «Gravitational Waves and Experimental Gravity» Status of the ACES/PHARAO mission Noël DIMARCQ, SYRTE, Paris Observatory What is ACES : payload, science objectives,

More information

Detecting Earth-Sized Planets with Laser Frequency Combs

Detecting Earth-Sized Planets with Laser Frequency Combs Detecting Earth-Sized Planets with Laser Frequency Combs Hayley Finley Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 Abstract Detection of Earth-mass

More information

Status Report on Time and Frequency Activities at NMIJ, AIST

Status Report on Time and Frequency Activities at NMIJ, AIST November 26, 2012 APMP TCTF meeting Status Report on Time and Frequency Activities at NMIJ, AIST Takeshi Ikegami Time and Frequency Division, National Metrology Institute of Japan, AIST Director Deputy-Directors

More information

Search for temporal variations of fundamental constants

Search for temporal variations of fundamental constants Schladming School 2010: Masses and Constants Lecture II Search for temporal variations of fundamental constants Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig,

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

RECOMMENDATION 1 (CI-2002): Revision of the practical realization of the definition of the metre

RECOMMENDATION 1 (CI-2002): Revision of the practical realization of the definition of the metre 194 91st Meeting of the CIPM RECOMMENDATION 1 (CI-2002): Revision of the practical realization of the definition of the metre The International Committee for Weights and Measures, recalling that in 1983

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Pioneer anomaly: Implications for LISA?

Pioneer anomaly: Implications for LISA? Pioneer anomaly: Implications for LISA? Denis Defrère Astrophysics and Geophysics Institute of Liege (Belgium) Andreas Rathke EADS Astrium GmbH Friedrichshafen (Germany) ISSI Meeting - Bern November 10th

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Ion traps for clocks and other metrological applications

Ion traps for clocks and other metrological applications Ion traps for clocks and other metrological applications Single ion clocks vs. neutral atom lattice clocks Storage of electrically charged particles in a rf trap Two dimensional trap Paul trap in 3d Penning

More information

ATOMIC CLOCK ENSEMBLE IN SPACE

ATOMIC CLOCK ENSEMBLE IN SPACE ATOMIC CLOCK ENSEMBLE IN SPACE L. Cacciapuoti a, P. Laurent b, C. Salomon c a European Space Agency, Keplerlaan 1, 2200 AG Noordwijk ZH - The Netherlands Luigi.Cacciapuoti@esa.int b SYRTE, CNRS UMR 8630,

More information

Optical Clocks and Tests of Fundamental Principles

Optical Clocks and Tests of Fundamental Principles Les Houches, Ultracold Atoms and Precision Measurements 2014 Optical Clocks and Tests of Fundamental Principles Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig,

More information

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics The Plasma Phase Chapter 1. An experiment - measure and understand transport processes in a plasma Three important vugraphs What we have just talked about The diagnostics Chapter 2. An introduction to

More information

Fundamental Constants and Units

Fundamental Constants and Units Schladming Winter School 2010: Masses and Constants Lecture I Fundamental Constants and Units Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig, Germany Physikalisch-Technische

More information

Development of Polarization Interferometer Based on Fourier Transform Spectroscopy for Thomson Scattering Diagnostics

Development of Polarization Interferometer Based on Fourier Transform Spectroscopy for Thomson Scattering Diagnostics 16th International Toki Conference Advanced Imaging and Plasma Diagnostics Ceratopia Toki, Gifu, JAPAN December 5-8, 2006 Development of Polarization Interferometer Based on Fourier Transform Spectroscopy

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

Development of a compact Yb optical lattice clock

Development of a compact Yb optical lattice clock Development of a compact Yb optical lattice clock A. A. Görlitz, C. Abou-Jaoudeh, C. Bruni, B. I. Ernsting, A. Nevsky, S. Schiller C. ESA Workshop on Optical Atomic Clocks D. Frascati, 14 th 16 th of October

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

An accurate optical lattice clock with 87Sr atoms

An accurate optical lattice clock with 87Sr atoms An accurate optical lattice clock with 87Sr atoms Rodolphe Le Targat, Xavier Baillard, Mathilde Fouché, Anders Brusch, Olivier Tcherbakoff, Giovanni D. Rovera, Pierre Lemonde To cite this version: Rodolphe

More information

OPTICAL GAIN AND LASERS

OPTICAL GAIN AND LASERS OPTICAL GAIN AND LASERS 01-02-1 BY DAVID ROCKWELL DIRECTOR, RESEARCH & DEVELOPMENT fsona COMMUNICATIONS MARCH 6, 2001 OUTLINE 01-02-2 I. DEFINITIONS, BASIC CONCEPTS II. III. IV. OPTICAL GAIN AND ABSORPTION

More information

Optical Cavity Tests of Lorentz Invariance

Optical Cavity Tests of Lorentz Invariance Light driven Nuclear-Particle physics and Cosmology 2017 (Pacifico Yokohama) April 20, 2017 Optical Cavity Tests of Lorentz Invariance Yuta Michimura Department of Physics, University of Tokyo H. Takeda,

More information

New Optical Tests of Relativity on Earth and in Space

New Optical Tests of Relativity on Earth and in Space New Optical Tests of Relativity on Earth and in Space Achim Peters 38th Recontres de Moriond, March 2003, Les Arcs, France Contents Motivation A modern Michelson-Morley experiment using cryogenic optical

More information

Atomic-Photonic Integration (A-PhI) A-Φ Proposers Day

Atomic-Photonic Integration (A-PhI) A-Φ Proposers Day Atomic-Photonic Integration (A-PhI) A-Φ Proposers Day Dr. John Burke Microsystems Technology Office (MTO) 1 August 2018 1 What is A-PhI? Atomic physics allows for accurate and sensitive measurements. Supporting

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

Mission I-SOC: an optical clock on the ISS. S. Schiller (Heinrich-Heine-Universität Düsseldorf) and the I-SOC science team

Mission I-SOC: an optical clock on the ISS. S. Schiller (Heinrich-Heine-Universität Düsseldorf) and the I-SOC science team Mission I-SOC: an optical clock on the ISS S. Schiller (Heinrich-Heine-Universität Düsseldorf) and the I-SOC science team Contents Introduction: quantum sensors ISOC mission: goals and methods ISOC: elegant

More information

T&F Activities in NMIJ, AIST

T&F Activities in NMIJ, AIST November 15, 2010 T&F Activities in NMIJ, AIST APMP/TCTF meeting 2010 in Thailand National Metrology Institute of Japan (NMIJ) Contents 1. Structure of T&F division of NMIJ/AIST 2. UTC(NMIJ) generation

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

Jitter measurement by electro-optical sampling

Jitter measurement by electro-optical sampling Jitter measurement by electro-optical sampling VUV-FEL at DESY - Armin Azima S. Duesterer, J. Feldhaus, H. Schlarb, H. Redlin, B. Steffen, DESY Hamburg K. Sengstock, Uni Hamburg Adrian Cavalieri, David

More information

Short Wavelength Regenerative Amplifier FELs (RAFELs)

Short Wavelength Regenerative Amplifier FELs (RAFELs) Short Wavelength Regenerative Amplifier FELs (RAFELs) Neil Thompson, David Dunning ASTeC, Daresbury Laboratory, Warrington UK Brian McNeil Strathclyde University, Glasgow, UK Jaap Karssenberg & Peter van

More information

PARCS Team. Jet Propulsion Laboratory NIST. Harvard-Smithsonian. University of Colorado. Politecnico di Torino. Steve Jefferts

PARCS Team. Jet Propulsion Laboratory NIST. Harvard-Smithsonian. University of Colorado. Politecnico di Torino. Steve Jefferts PARCS Primary Atomic Reference Clock in Space PARCS Team Jet Propulsion Laboratory Bill Klipstein Eric Burt John Dick Dave Seidel JPL engineers (lots) Lute Maleki Rob Thompson Sien Wu Larry Young Harvard-Smithsonian

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Undulator radiation from electrons randomly distributed in a bunch

Undulator radiation from electrons randomly distributed in a bunch Undulator radiation from electrons randomly distributed in a bunch Normally z el >> N u 1 Chaotic light Spectral property is the same as that of a single electron /=1/N u Temporal phase space area z ~(/

More information

Laser Cooling of Thulium Atoms

Laser Cooling of Thulium Atoms Laser Cooling of Thulium Atoms N. Kolachevsky P.N. Lebedev Physical Institute Moscow Institute of Physics and Technology Russian Quantum Center D. Sukachev E. Kalganova G.Vishnyakova A. Sokolov A. Akimov

More information

A 1014 nm linearly polarized low noise narrowlinewidth single-frequency fiber laser

A 1014 nm linearly polarized low noise narrowlinewidth single-frequency fiber laser A 1014 nm linearly polarized low noise narrowlinewidth single-frequency fiber laser Shupei Mo, 1 Shanhui Xu, 1,* Xiang Huang, 1 Weinan Zhang, 1 Zhouming Feng, 1 Dongdan Chen, 1 Tong Yang 1 and Zhongming

More information

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering Chip-Based Optical Frequency Combs Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering KISS Frequency Comb Workshop Cal Tech, Nov. 2-5,

More information

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M. Coherent manipulation of atomic wavefunctions in an optical lattice V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M. Tino Group Andrea Alberti Marco Schioppo Guglielmo M. Tino me Gabriele Ferarri

More information

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH IEEE-IFCS IFCS 2010, Newport Beach, CA June 2, 2010 BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH Marianna Safronova 1, M.G. Kozlov 1,2 Dansha Jiang 1, and U.I. Safronova 3

More information

INTRODUCTION: PRECISION FREQUENCY MEASUREMENT

INTRODUCTION: PRECISION FREQUENCY MEASUREMENT REVIEW National Science Review 3: 189 200, 2016 doi: 10.1093/nsr/nww013 Advance access publication 15 March 2016 PHYSICS Special Topic: Cold Atoms Precision measurement and frequency metrology with ultracold

More information

Overview of Frequency Metrology at NMIJ

Overview of Frequency Metrology at NMIJ Overview of Frequency Metrology at NMIJ Tomonari SUZUYAMA National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) APMP2018 TCTF meeting RESORTS

More information

A New Precise Measurement of the Stark Shift in the 6P 1/2 ->7S 1/2 378 nm Transition in Thallium

A New Precise Measurement of the Stark Shift in the 6P 1/2 ->7S 1/2 378 nm Transition in Thallium A New Precise Measurement of the Stark Shift in the 6P 1/2 ->7S 1/2 378 nm Transition in Thallium Apker Award Finalist Talk September 4, 2002 S. Charles Doret Earlier work by Andrew Speck Williams 00,

More information

Experimental Path to Echo-75 at NLCTA

Experimental Path to Echo-75 at NLCTA Experimental Path to Echo-75 at NLCTA Erik Hemsing on behalf of the ECHO group at SLAC NLCTA ICFA Workshop on Future Light Sources March 5-9, 2012 Thomas Jefferson National Accelerator Facility Motivation

More information

Planck Scale Physics in the Laboratory. Craig Hogan University of Chicago and Fermilab

Planck Scale Physics in the Laboratory. Craig Hogan University of Chicago and Fermilab Planck Scale Physics in the Laboratory Craig Hogan University of Chicago and Fermilab 1 Planck scale The physics of this minimum time is unknown 1.616 10 35 m seconds particle energy ~10 16 TeV Black hole

More information

Quantum Feedback Stabilized Solid-State Emitters

Quantum Feedback Stabilized Solid-State Emitters FOPS 2015 Breckenridge, Colorado Quantum Feedback Stabilized Solid-State Emitters Alexander Carmele, Julia Kabuss, Sven Hein, Franz Schulze, and Andreas Knorr Technische Universität Berlin August 7, 2015

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University Atom Interferometry for Detection of Gravitational Waves Mark Kasevich Stanford University kasevich@stanford.edu Atom-based Gravitational Wave Detection Why consider atoms? 1) Neutral atoms are excellent

More information