Moving layers and interfaces : a thermodynamical approach of Wear Contact

Size: px
Start display at page:

Download "Moving layers and interfaces : a thermodynamical approach of Wear Contact"

Transcription

1 Moving layers and interfaces : a thermodynamical approach of Wear Contact C. Stolz M. Peigney, M. Dragon-Louiset LMS, CNRS-UMR7649, Ecole polytechnique, Palaiseau LaMSID, CNRS-UMR2832, EdF R&D, Clamart 1

2 Sxh= Ω 3 Ω 1 V Ω 2 Loss of sound material is due to wear. Friction - contact between bodies - interface propagation 2

3 Essai de video essai de vidéo 3

4 Ω 1 Ω 1 Γ 13 Γ 13 Sxh= Ω 3 Ω 3 Ω 3 Γ 23 Γ 23 Ω 1 V Ω 2 Ω 2 Ω 2 Model of damage - Dissipation - Global behaviour of the interface Ω 3 Ω 3 = Sxh : detached particles, damaged media, fluids : complex behaviour Integration over the thickness : constitutive equation for the interface S 4

5 Moving interface / moving layer Moving interface / moving layer Material characteristics change : Brutal transition : moving interface and discontinuities Continuous Transition : moving layer and continuous damage laws. Symi-2010-Keer symposium 5

6 Moving interface and Transformation of material Moving interface and Transformation of material Material 1 is changed in material 2 along a moving interface the mass flux is the loss of sound material. Symi-2010-Keer symposium 6

7 Preliminaries Preliminaries φ n Ω 2 Ω 1 Γ F = b a f(x, t) dx Γ(t) b = a f(x, t) dx + Γ(t) f(x, t) dx Symi-2010-Keer symposium 7

8 Preliminaries φ n Ω 2 Ω 1 Γ F = b a f dx + ( f(γ +, t) f(γ, t) ) Γ [ f ] Γ = f(γ +, t) f(γ, t) Propagation of interface jump conditions. Symi-2010-Keer symposium 8

9 Preliminaries φ n Ω 2 Ω 1 Γ Each medium is linear elastic : x proportion of phase 2 Equilibrium : Energy : Energy release rate σ = E 1 ε 1 = E 2 ε 2 = Σ, u(0) = 0 W(σ, x) = 1 2 σ2 ( x E x E 1 ) G = W x = 1 2 σ2 ( 1 E 2 1 E 1 ); D m = Gẋ Symi-2010-Keer symposium 9

10 Preliminaries Quasicrack : antiplane shear conditions τ α > 0 α = 0 σ = K/ rf(θ) as r e 2 A O R o α < 0 R m R h σ = 0 Ω d Γ c e 1 [ K 2 = h τ2 o ( R m ) α+1 + α 1 ] α + 1 R o 2 A Neuber (1969), Bui-Ehrlacher (1978), Stolz (2010). Symi-2010-Keer symposium 10

11 Wear description- Dissipation Wear description- Dissipation Ω 1 Ω 1 Γ 13 Γ 13 Sxh= Ω 3 Ω 3 Ω 3 Γ 23 Γ 23 Ω 1 V Ω 2 Ω 2 Ω 2 D m = S (G 13 φ 1 + G 23 φ 2 + h d 3 dz) ds G = [ w ] Γ σ : [ ε ] Γ Symi-2010-Keer symposium 11

12 Interpretation Interpretation D Γ = G φ, m = ρφ Then m = 0, no loss of sound material no wear friction D 3 = G(X, t) < G c, φ = 0 G(X, t) = G c, φ 0 h d m dz = h (σ : ε w 3 ) dz Symi-2010-Keer symposium 12

13 Moving Layer Moving Layer The material is described with continuous damage In Ω free energy : w(ε, d, α) = (1 d)w o (ε, α) + H(α) d varies from 0 to 1, no discontinuities. Y = w d, A = w α d m = Y d + A α Symi-2010-Keer symposium 13

14 Dissipation Dissipation d(x) φ Ω 2 Ω 3 Ω 1 but in the moving frame D m = h 2h Y d + A α dz f(x, t) = f(x φt n, t) f = φ f.n + D φ f Symi-2010-Keer symposium 14

15 Dissipation 1-D Example : Free energy : W = 1 2 E(d)ε2 2h d(x) φ Ω 2 Ω 3 Ω 1 Matching Conditions E(0) = E 1, E(1) = E 2 Total Dissipation under steady-state condition ( d + φ d.n = 0) 1 0 D m = φ 2 σ2 ( E E ) d dz = φ1 2 2 σ2 ( E )dd = Gφ E2 h 1 Symi-2010-Keer symposium 15

16 Dissipation with moving layer Dissipation with moving layer D m = φ h (Y d + A α)dz + h (Y D φ d + AD φ α) dz that is D m = Ḡφ + h d φ dz Steady-state motion : the last term is zero. Ḡ = h (Y d + A α)dz hy c Symi-2010-Keer symposium 16

17 Dissipation with moving layer Geometry of the layer, Curvature tensor : n.a α = b β αa β h a α X S h n Γ 2 Γ Γ 1 B ds i = det(b ± i h I) = j i ds f dω = ( f j(z)dz) ds = Γ h Γ f S ds Symi-2010-Keer symposium 17

18 Dissipation with moving layer Eshelby momentum tensor P = w I σ. u Then div P T = Y d A α Introducing the relative coordinate Γ x = X S + zn, D φ x = φn + z φ Ḡφ(s) ds = P : (D φ x) dω + n.p.d φ ( x)j i ds B Γ i Symi-2010-Keer symposium 18

19 Dissipation with moving layer Ω 1 Ω 1 Γ 13 Γ 13 Sxh= Ω 3 Ω 3 Ω 3 Γ 23 Γ 23 Ω 1 V Ω 2 Ω 2 Ω 2 D m = S (Ḡ1φ 1 + Ḡ2φ 2 + h 3 d 3 dz) ds Ḡ i (s) = ( (Y d + A α)j ds).n(s) h i Symi-2010-Keer symposium 19

20 Dissipation with moving layer Ω 1 Γ 13 Sxh= Ω 3 Ω 3 Γ 23 Ω 1 V Ω 2 Ω 2 ψ s ρ s = D s ρ s = h h w(ε, α) z ρ z j(z) dz D( ε, α) z ρ z j(z) dz Symi-2010-Keer symposium 20

21 Dissipation associated with the interface Dissipation associated with the interface Total potential energy : Ω wρ dω + Γ ψ sρ s ds D m = n.σ.v dω d dt Ω ( w i ρ i dω + i = + Ω Γ Γ ( σ i : [ ε i ] Γ + ρ i (w i ψ S ))j i φ i ds D S v i.d φ u i + D S α.d φα + Q.D φ ρ s ds The mass density is an internal parameter for the interface. Γ ρ s ψ S ds) Symi-2010-Keer symposium 21

22 The behaviour of the layer The behaviour of the layer Main idea : h z h Continuity of displacement Then u 3 (X S, z) = u o (X S ) + zu 1 (X S ) +... u 1 = u 3 (X s, h), u 2 = u 3 (X s, h) w(x s ) = u 1 u 2 = 2h u.n, u o = 1 2 (u 1 + u 2 ) + o(h 2 ) Introducing these asymptotic expansion in global potential for the layer Symi-2010-Keer symposium 22

23 Order 0 Order 0 Free global energy : ρ s ψ s (u 1, u 2, α) = Thermodynamical forces h w 3 (ε(x + zn), α)ρ 3 j(z)dz Global potential of dissipation Then Equilibrium on interface T r ψ s ψ s i = ρ s, A = ρ s u i α, G ψ s h = ρ s h ρ s D s (v 1, v 2, α) = T ir i h = ρ s D s v i,... n.σj i = T r i + T ir i ρ 3 d 3 ( ε, α)dz Symi-2010-Keer symposium 23

24 More informations : order 1 More informations : order 1 The energy depends on u o, w, so ρ s ψ s = f(u i, u i ), ρ s D s = g(v i, v i ) ρ s = ρ 3 dz, Conservation The equilibrium is then obtained as h n.σj i = ρ s ψ s u i (ρ s ψ s u i ) + ρ s D s v i (ρ s D s v i ) Symi-2010-Keer symposium 24

25 More informations : order 1 Example of constitutive laws : f volume fraction of defects ψ s = 1 2 k(f)(w n) µ(f)(w t α) 2 d(ẇ, α) = 1 2 η t(f)ẇt η n(f)ẇn H(f) α2 2 n.σ = (k n w n +η n ẇ n )n+(µ(w t α)+η t ẇ t )τ; A = k t (w t α) = H α Strömberg, IJSS 1996, Del Piero, Eur. J. Mech (2010), Stupkiewicz, Wear (1990),... Symi-2010-Keer symposium 25

26 Moving punch on a half-space Moving punch on a half-space V Rigid Punch on an elastic half space. (Dragon-Louiset,2000) Symi-2010-Keer symposium 26

27 Moving punch on a half-space The interface 3 : fluid + particles. Suspension of particles in a viscous fluid : κ(c), η(c) Integral equations on an half elastic space : Galin s Equation Displacement on the boundary due to stresses on the boundary. ψ s = 1 2 κ(c)w2 n, D s = 1 2 η(c)ẇ2 t Symi-2010-Keer symposium 27

28 Moving punch on a half-space Behavior of the interface (3) viscosity in shear σ xy = η(c)( u 1 x u 2 x), σ yy = k(c)(u 1 y u 2 y) Galin s Equations for the elastic half space c 1 u x,x (x) = c 2 σ yy (x) + V p 1 π c 1 u y,x (x) = c 2 σ xy (x) + V p 1 π a a a σ xy (s) s x ds a σ yy (s) s x ds c 1 = E 2(1 ν 2 ), c 2 = (1 2ν) 2(1 ν) Symi-2010-Keer symposium 28

29 Moving punch on a half-space Asymptotic solution for small concentration of particles c Law η(c), κ(c). order 0 : Hertz contact solution order 1 : depends upon criterion of wear : φ = λσ 2 yy Symi-2010-Keer symposium 29

30 Effect of viscosity in shear Effect of viscosity in shear Equivalent to answer with friction law. Symi-2010-Keer symposium 30

31 One more example One more example Cyclic accommodation for a Cyclic Horizontal motion of a rigid punch L poinçon translation périodique Symi-2010-Keer symposium 31

32 One more example The solution of an half space with a boundary η(x) In Galin s Equation, the kernel is changed at order 1 in η. u 1 (x) = A N o (x, y)t 1 (y)dy + A N 1 (x, y)t o (y)dy The applied loading follows the boundary, using of D φ (σ.n) leads to D φ (σ.n) = σ.n + d (ησ.τ) + γφσ.n ds Symi-2010-Keer symposium 32

33 Asymptotic Respons 1 Asymptotic Respons Final State : η(x) Control Variable η Cost function (dissipation) J J = η dx + a Γ T Γ < G(η, x, t) G c > 2 + dxdt Symi-2010-Keer symposium 33

34 Results Results Lost of matter : Γ η(x) dx G/10G c p/10max(p) x/a Symi-2010-Keer symposium 34

35 Results G/10G c p/10max(p) x/a Symi-2010-Keer symposium 35

36 Results Possibility of using homogeneization technics to describe wear contact and to propose wear laws. The mass density in the interface is a important internal parameter. Symi-2010-Keer symposium 36

37 Results Peigney M : Int. J. Solids and Structures, 2004,41, Dragon-Louiset, Stolz : Comptes Rendus Acad. Sci. Paris, 1999, 327, Dragon-Louiset : Int. J. Solids Structures, 2001, 38, C. Stolz : Entropy 12, , Bui H.D, D-L, C. S : On Prand l lifting equation arising in wear mechanics Arch. Mech., 2000, 52, Galin, Goryatcheva, Mroz, Zmitrowicz, Stupkiewicz,... Symi-2010-Keer symposium 37

ON DUALITY, SYMMETRY AND SYMMETRY LOST IN SOLID MECHANICS

ON DUALITY, SYMMETRY AND SYMMETRY LOST IN SOLID MECHANICS ON DUALITY, SYMMETRY AND SYMMETRY LOST IN SOLID MECHANICS ABSTRACT Bui Huy Duong 1,2,3 The paper recalls the concept of duality in Mathematics and extends it to Solid Mechanics. One important application

More information

Empirical versus Direct sensitivity computation

Empirical versus Direct sensitivity computation Empirical versus Direct sensitivity computation Application to the shallow water equations C. Delenne P. Finaud Guyot V. Guinot B. Cappelaere HydroSciences Montpellier UMR 5569 CNRS IRD UM1 UM2 Simhydro

More information

Modeling and simulation of bedload transport with viscous effects

Modeling and simulation of bedload transport with viscous effects Introduction Modeling and simulation of bedload transport with viscous effects E. Audusse, L. Boittin, M. Parisot, J. Sainte-Marie Project-team ANGE, Inria; CEREMA; LJLL, UPMC Université Paris VI; UMR

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Tommaso Ruggeri Department of Mathematics and Research Center of Applied Mathematics University of Bologna January 21, 2017 ommaso

More information

DRIVING FORCES. and INCLUSION BOUNDARIES with transformation strain. Xanthippi Markenscoff

DRIVING FORCES. and INCLUSION BOUNDARIES with transformation strain. Xanthippi Markenscoff DRIVING FORCES ON MOVING DEFECTS: DISLOCATIONS and INCLUSION BOUNDARIES with transformation strain Xanthippi Markenscoff UCSD Energy release rates (Driving forces) for moving defects: dislocations and

More information

Construction of a New Domain Decomposition Method for the Stokes Equations

Construction of a New Domain Decomposition Method for the Stokes Equations Construction of a New Domain Decomposition Method for the Stokes Equations Frédéric Nataf 1 and Gerd Rapin 2 1 CMAP, CNRS; UMR7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France 2 Math. Dep., NAM,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Nonlinear stability of steady flow of Giesekus viscoelastic fluid

Nonlinear stability of steady flow of Giesekus viscoelastic fluid Nonlinear stability of steady flow of Giesekus viscoelastic fluid Mark Dostalík, V. Průša, K. Tůma August 9, 2018 Faculty of Mathematics and Physics, Charles University Table of contents 1. Introduction

More information

Second-gradient theory : application to Cahn-Hilliard fluids

Second-gradient theory : application to Cahn-Hilliard fluids Second-gradient theory : application to Cahn-Hilliard fluids P. Seppecher Laboratoire d Analyse Non Linéaire Appliquée Université de Toulon et du Var BP 132-83957 La Garde Cedex seppecher@univ-tln.fr Abstract.

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 9//005 Topic7_NS_ F0 1 Momentum equation 9//005 Topic7_NS_ F0 1 Consider the moving fluid element model shown in Figure.b Basis is Newton s nd Law which says

More information

PAPER 333 FLUID DYNAMICS OF CLIMATE

PAPER 333 FLUID DYNAMICS OF CLIMATE MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 1:30 pm to 4:30 pm Draft 21 June, 2016 PAPER 333 FLUID DYNAMICS OF CLIMATE Attempt no more than THREE questions. There are FOUR questions in total.

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Lifshitz Hydrodynamics

Lifshitz Hydrodynamics Lifshitz Hydrodynamics Yaron Oz (Tel-Aviv University) With Carlos Hoyos and Bom Soo Kim, arxiv:1304.7481 Outline Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems Strange Metals

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Thursday 1 June 2006 1.30 to 4.30 PAPER 76 NONLINEAR CONTINUUM MECHANICS Attempt FOUR questions. There are SIX questions in total. The questions carry equal weight. STATIONERY

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

Basic Equations of Elasticity

Basic Equations of Elasticity A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

Chapter 6: Momentum Analysis

Chapter 6: Momentum Analysis 6-1 Introduction 6-2Newton s Law and Conservation of Momentum 6-3 Choosing a Control Volume 6-4 Forces Acting on a Control Volume 6-5Linear Momentum Equation 6-6 Angular Momentum 6-7 The Second Law of

More information

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations Hervé Lemonnier DM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9 Ph. +33(0)4 38 78 45 40 herve.lemonnier@cea.fr, herve.lemonnier.sci.free.fr/tpf/tpf.htm

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Formulation of the problem

Formulation of the problem TOPICAL PROBLEMS OF FLUID MECHANICS DOI: https://doi.org/.43/tpfm.27. NOTE ON THE PROBLEM OF DISSIPATIVE MEASURE-VALUED SOLUTIONS TO THE COMPRESSIBLE NON-NEWTONIAN SYSTEM H. Al Baba, 2, M. Caggio, B. Ducomet

More information

TRANSPORT IN POROUS MEDIA

TRANSPORT IN POROUS MEDIA 1 TRANSPORT IN POROUS MEDIA G. ALLAIRE CMAP, Ecole Polytechnique 1. Introduction 2. Main result in an unbounded domain 3. Asymptotic expansions with drift 4. Two-scale convergence with drift 5. The case

More information

Lattice Boltzmann Method for Moving Boundaries

Lattice Boltzmann Method for Moving Boundaries Lattice Boltzmann Method for Moving Boundaries Hans Groot March 18, 2009 Outline 1 Introduction 2 Moving Boundary Conditions 3 Cylinder in Transient Couette Flow 4 Collision-Advection Process for Moving

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies 13th February 2015 Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk 1 2D Flows - Shear flows Example 1. Flow over an inclined plane A

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

ME 680- Spring Representation and Stability Concepts

ME 680- Spring Representation and Stability Concepts ME 680- Spring 014 Representation and Stability Concepts 1 3. Representation and stability concepts 3.1 Continuous time systems: Consider systems of the form x F(x), x n (1) where F : U Vis a mapping U,V

More information

Finite difference MAC scheme for compressible Navier-Stokes equations

Finite difference MAC scheme for compressible Navier-Stokes equations Finite difference MAC scheme for compressible Navier-Stokes equations Bangwei She with R. Hošek, H. Mizerova Workshop on Mathematical Fluid Dynamics, Bad Boll May. 07 May. 11, 2018 Compressible barotropic

More information

Lecture 8: Tissue Mechanics

Lecture 8: Tissue Mechanics Computational Biology Group (CoBi), D-BSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials

More information

5 The Oldroyd-B fluid

5 The Oldroyd-B fluid 5 The Oldroyd-B fluid Last time we started from a microscopic dumbbell with a linear entropic spring, and derived the Oldroyd-B equations: A u = u ρ + u u = σ 2 pi + η u + u 3 + u A A u u A = τ Note that

More information

Physics of turbulent flow

Physics of turbulent flow ECL-MOD 3A & MSc. Physics of turbulent flow Christophe Bailly Université de Lyon, Ecole Centrale de Lyon & LMFA - UMR CNRS 5509 http://acoustique.ec-lyon.fr Outline of the course A short introduction to

More information

6. Laminar and turbulent boundary layers

6. Laminar and turbulent boundary layers 6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary

More information

n v molecules will pass per unit time through the area from left to

n v molecules will pass per unit time through the area from left to 3 iscosity and Heat Conduction in Gas Dynamics Equations of One-Dimensional Gas Flow The dissipative processes - viscosity (internal friction) and heat conduction - are connected with existence of molecular

More information

CML Lecture Series Primer on Homogenization

CML Lecture Series Primer on Homogenization C ecture Series Primer on Homogenization Bing C. Chen The University of ichigan, Department of echanical Engineering Computational echanics aboratory utline odel problem: asymptotic analysis for a uni-directional

More information

Macroscopic theory Rock as 'elastic continuum'

Macroscopic theory Rock as 'elastic continuum' Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave

More information

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach Ludovic Noels Computational & Multiscale Mechanics of

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Thermodynamic form of the equation of motion for perfect fluids of grade n

Thermodynamic form of the equation of motion for perfect fluids of grade n Thermodynamic form of the equation of motion for perfect fluids of grade n Henri Gouin To cite this version: Henri Gouin. Thermodynamic form of the equation of motion for perfect fluids of grade n. Comptes

More information

Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case

Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case Gianni Dal Maso, Gianluca Orlando (SISSA) Rodica Toader (Univ. Udine) R. Toader

More information

Contact Mechanics and Elements of Tribology

Contact Mechanics and Elements of Tribology Contact Mechanics and Elements of Tribology Lectures 2-3. Mechanical Contact Vladislav A. Yastrebov MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France @ Centre

More information

NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE

NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE Kevin G. Wang (1), Patrick Lea (2), and Charbel Farhat (3) (1) Department of Aerospace, California Institute of Technology

More information

Turbulence Solutions

Turbulence Solutions School of Mechanical, Aerospace & Civil Engineering 3rd Year/MSc Fluids Turbulence Solutions Question 1. Decomposing into mean and fluctuating parts, we write M = M + m and Ũ i = U i + u i a. The transport

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

20. Rheology & Linear Elasticity

20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava

More information

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum)

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum) 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 4 2.20 - Marine Hydrodynamics Lecture 4 Introduction Governing Equations so far: Knowns Equations # Unknowns # density ρ( x, t) Continuity 1 velocities

More information

Flow and Transport. c(s, t)s ds,

Flow and Transport. c(s, t)s ds, Flow and Transport 1. The Transport Equation We shall describe the transport of a dissolved chemical by water that is traveling with uniform velocity ν through a long thin tube G with uniform cross section

More information

Composites Design and Analysis. Stress Strain Relationship

Composites Design and Analysis. Stress Strain Relationship Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

COMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS

COMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS COMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS Jan Valdman Institute of Information Theory and Automation, Czech Academy of Sciences (Prague) based on joint works with Martin Kružík and Miroslav Frost

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

NONLINEAR CONTINUUM FORMULATIONS CONTENTS NONLINEAR CONTINUUM FORMULATIONS CONTENTS Introduction to nonlinear continuum mechanics Descriptions of motion Measures of stresses and strains Updated and Total Lagrangian formulations Continuum shell

More information

Rational derivation of the Boussinesq approximation

Rational derivation of the Boussinesq approximation Rational derivation of the Boussinesq approximation Kiyoshi Maruyama Department of Earth and Ocean Sciences, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan February 22, 2019 Abstract This

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

The variational approach to fracture: Jean-Jacques Marigo

The variational approach to fracture: Jean-Jacques Marigo The variational approach to fracture: main ingredients and some results Jean-Jacques Marigo Ecole Polytechnique, LMS Part I : Griffith theory The classical formulation The extended formulation The issue

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2012-13 MODULE TITLE: Introduction to Fluids DURATION OF

More information

Microstructure and Particle-Phase Stress in a Dense Suspension

Microstructure and Particle-Phase Stress in a Dense Suspension Microstructure and Particle-Phase Stress in a Dense Suspension Jim Jenkins, Cornell University Luigi La Ragione, Politecnico di Bari Predict microstructure and particle stresses in slow, steady, pure straining

More information

Uniformity of the Universe

Uniformity of the Universe Outline Universe is homogenous and isotropic Spacetime metrics Friedmann-Walker-Robertson metric Number of numbers needed to specify a physical quantity. Energy-momentum tensor Energy-momentum tensor of

More information

Continuum mechanism: Stress and strain

Continuum mechanism: Stress and strain Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Summary of the Equations of Fluid Dynamics

Summary of the Equations of Fluid Dynamics Reference: Summary of the Equations of Fluid Dynamics Fluid Mechanics, L.D. Landau & E.M. Lifshitz 1 Introduction Emission processes give us diagnostics with which to estimate important parameters, such

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Simulation of free surface fluids in incompressible dynamique

Simulation of free surface fluids in incompressible dynamique Simulation of free surface fluids in incompressible dynamique Dena Kazerani INRIA Paris Supervised by Pascal Frey at Laboratoire Jacques-Louis Lions-UPMC Workshop on Numerical Modeling of Liquid-Vapor

More information

Mass Transfer in Turbulent Flow

Mass Transfer in Turbulent Flow Mass Transfer in Turbulent Flow ChEn 6603 References: S.. Pope. Turbulent Flows. Cambridge University Press, New York, 2000. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, La Caada CA, 2000.

More information

Non-Relativistic Quantum Mechanics as a Gauge Theory

Non-Relativistic Quantum Mechanics as a Gauge Theory Non-Relativistic Quantum Mechanics as a Gauge Theory Sungwook Lee Department of Mathematics, University of Southern Mississippi LA/MS Section of MAA Meeting, March 1, 2013 Outline Lifted Quantum Mechanics

More information

Heterogeneous structures studied by interphase elasto-damaging model.

Heterogeneous structures studied by interphase elasto-damaging model. Heterogeneous structures studied by interphase elasto-damaging model. Giuseppe Fileccia Scimemi 1, Giuseppe Giambanco 1, Antonino Spada 1 1 Department of Civil, Environmental and Aerospace Engineering,

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY ABHELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D HELSINKI A posteriori error analysis for the Morley plate element Jarkko Niiranen Department of Structural

More information

Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials Peter Haupt Continuum Mechanics and Theory of Materials Translated from German by Joan A. Kurth Second Edition With 91 Figures, Springer Contents Introduction 1 1 Kinematics 7 1. 1 Material Bodies / 7

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION

DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION Chapter 1 DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION A. Berezovski Institute of Cybernetics at Tallinn Technical University, Centre for Nonlinear Studies, Akadeemia tee 21, 12618

More information

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,-2.4, 2.7, 3.1-3.8, 6.1, 6.2, 6.8, 7.1-7.4. Jaeger and Cook, Fundamentals of

More information

ON THE MODELING OF NANOCONTACTS

ON THE MODELING OF NANOCONTACTS ON THE MODELING OF NANOCONTACTS Dan DUMITRIU, eturia CHIROIU This paper deals with the derivation of the nonlocal field equations for nanocontact mechanics. The nonlocal theory is very appropriate to describe

More information

A phase field model for the coupling between Navier-Stokes and e

A phase field model for the coupling between Navier-Stokes and e A phase field model for the coupling between Navier-Stokes and electrokinetic equations Instituto de Matemáticas, CSIC Collaborators: C. Eck, G. Grün, F. Klingbeil (Erlangen Univertsität), O. Vantzos (Bonn)

More information

Tentamen/Examination TMHL61

Tentamen/Examination TMHL61 Avd Hållfasthetslära, IKP, Linköpings Universitet Tentamen/Examination TMHL61 Tentamen i Skademekanik och livslängdsanalys TMHL61 lördagen den 14/10 2000, kl 8-12 Solid Mechanics, IKP, Linköping University

More information

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves (TRAVELLING) 1D WAVES 1. Transversal & Longitudinal Waves Objectives After studying this chapter you should be able to: Derive 1D wave equation for transversal and longitudinal Relate propagation speed

More information

Fracture Mechanics of Composites with Residual Thermal Stresses

Fracture Mechanics of Composites with Residual Thermal Stresses J. A. Nairn Material Science & Engineering, University of Utah, Salt Lake City, Utah 84 Fracture Mechanics of Composites with Residual Thermal Stresses The problem of calculating the energy release rate

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

Instabilities and Dynamic Rupture in a Frictional Interface

Instabilities and Dynamic Rupture in a Frictional Interface Instabilities and Dynamic Rupture in a Frictional Interface Laurent BAILLET LGIT (Laboratoire de Géophysique Interne et Tectonophysique) Grenoble France laurent.baillet@ujf-grenoble.fr http://www-lgit.obs.ujf-grenoble.fr/users/lbaillet/

More information