Complex number 3. z = cos π ± i sin π (a. = (cos 4π ± I sin 4π ) + (cos ( 4π ) ± I sin ( 4π )) in terms of cos θ, where θ is not a multiple of.

Size: px
Start display at page:

Download "Complex number 3. z = cos π ± i sin π (a. = (cos 4π ± I sin 4π ) + (cos ( 4π ) ± I sin ( 4π )) in terms of cos θ, where θ is not a multiple of."

Transcription

1 Complex number 3. Given that z + z, find the values of (a) z + z (b) z5 + z 5. z + z z z + 0 z ± 3 i z cos π ± i sin π (a 3 3 (a) z + (cos π ± I sin π z 3 3 ) + (cos π ± I sin π ) + (cos ( π ) ± I sin ( π )) (cos π 3 ±I sinπ 3 ) (cos π 3 ± I sin π 3 ) + (cos π 3 I sin π 3 ) cos π 3 (b) z 5 + z 5 (cos 5π 3 ± i sin 5π 3 ) + (cos 5π 3 i sin 5π 3 ) cos 5π 3. (a) Using demoivre s Theorem to show that sin 5θ a sin 5 θ + bcos θsin 3 θ + cos θ sin θ, where a, b and c are integers to be determined. (b) Express sin 5θ sin θ in terms of cos θ, where θ is not a multiple of. Hence, find the roots of the equation 6x x + 0 in trigonometric form. (a) cos 5θ + i sin 5θ (cos θ + i sin θ) 5 (c + i s) 5, where c cos θ, s sin θ c 5 + 5c (i s) + 0 c 3 (i s) + 0 c (i s) c (i s) + (i s) 5 (c 5 0 c 3 s + 5 c s ) + i(s 5 0 c s c s) Compare imaginary part, we have sin 5θ s 5 0 c s c s sin 5 θ 0 cos θsin 3 θ + 5 cos θ sin θ (b) sin 5θ sin θ sin θ 0 cos θsin θ + 5 cos θ ( cos θ) 0 cos θ( cos θ) + 5 cos θ ( cos θ + cos θ) 0 cos θ + 0 cos θ + 5 cos θ 6 cos θ cos θ + Let x cos θ, 6x x cos θ cos θ + 0 sin 5θ sin θ 0 sin 5θ 0, where θ kπ, where kε. θ kπ 5, where kε. x cos kπ 5, where k 0,,,3,. Since x cos 0 is not a root of 6x x + 0, x cos kπ 5, where k,,3,.

2 3. (a) Find the roots of z 5. (b) Show that one of the roots in (a) is ω cos π 5 + i sin π 5 (c) Show that (i) + ω + ω + ω 3 + ω 0, 5 + i 0+ 5 (ii) + ω + ω 3 5. (a) By de Moirvres Theorem, z 5 z (cis kπ) 5 cis kπ 5, k 0,,, 3,. (b) In (a), k, ω cos π 5 + i sin π 5 Put θ π 5, then 5θ π, 3θ π θ, cos 3θ cos(π θ) cos θ Put x cos π 5, x3 3x x, x 3 x 3x + 0. Since x, dividing the left-hand side of the cubic equation by x, we get x + x 0, x 5 or 5 Rejecting the negative root, we have x cos π 5 5. Using Pythagoras theorem, sin π ( 5 ) Hence ω cos π 5 + i sin π i 0+ 5 (c) (i) Method + ω + ω + ω 3 + ω + cis π 5 + (cis π 5 ) + (cis π 5 )3 + (cis π 5 ) + cis π 5 + cis π 5 + cis 6π 5 + cis 8π 5, by de Moirvres Theorem + cis π 5 + cis π 5 + cis ( π 5 ) + cis ( π 5 ) + [cis π 5 + cis ( π 5 )] + [cis π 5 + cis ( π 5 )] + cos π 5 + cos π 5 + cos π 5 + ( cos π 5 ) + ( 5 ) + [ ( 5 ) ] 0

3 Method + ω + ω + ω 3 + ω + cis π 5 + (cis π 5 ) + (cis π 5 )3 + (cis π 5 ) (cis π 5 )5 cis π 5 (cis π)5 cis π 5 (Geometric series), by de Moirvres Theorem ()5 cis π 5 0 Method 3 Since ω cos π 5 + i sin π 5 is a root of z5, ω 5. + ω + ω + ω 3 + ω ω5 ω ω 0 (c) (ii) + ω + ω (ω ) 3 ω ω6 ω ωω5 ω ω ω +ω i 0+ (+ 5 ) ( ) ω. Show that + i is a root if x The root + i is located on a circle of radius in an Argand diagram and plot all the roots. Method Since complex roots occur in pairs, we consider the polynomial: [x ( + i )][x ( i )] (x + ) (i ) x + x + Since irrational roots occur in pairs, we consider the polynomial: [x + x + ][x x + ] (x + ) ( x) x + 6 Also, note that, x x + (x ) (i ) [x ( + i )][x ( i )] So, we get : x [x + x + ][x x + ] 0 [x ( + i )][x ( i )][x ( + i )][x ( i )] 0 3

4 Roots are: x ± i, ± i ( ± i), ( ± i) x [cos (± π ) + i sin (± π )], [cos (± 3π ) + i sin (± 3π )] (in polar form) Method x x 6 6 (cos π + i sin π) x [cos (kπ + π) + i sin (kπ + π)] x [cos ( kπ+π ) + i sin ( kπ+π )], k 0,,,3 x [cos ( π ) + i sin (π )], [cos (3π ) + i sin (3π )], [cos ( 5π ) + i sin (5π )], [cos (7π ) + i sin (7π )]. Note that : [cos ( 3π ) + i sin (3π)] [ cos (π) + i sin (π )] ( + i) + i is a root of x which is what we want in the first part of the question. Also, other roots can be written in rectangular forms easily. 5. Solve the equation 5z z 3 + z z Since the given equation is symmetric, divide 5z z 3 + z z by z, we get 5 (z + z ) (z + z ) + 0 () Put ω z +, z ω z + z +, eq () becomes 5(ω ) ω + 0 5ω ω 6 0 ω or ω 6 5 When ω, z + z z z + 0 z ± 3 i When ω 6 5, z + z 6 5 5z 6z z 3± i 5

5 6. ABCD is a square with the letters in the anticlockwise order. The points A and B represents + 3i and 6 + i respectively. Find the complex number represented by C and D. Let z A + 3i, z B 6 + i. z B z A (6 + i) ( + 3i) i Rotate z A z B anticlockwisely by π you get z Az D : z D z A (z B z A )e i(π ) z D ( + 3i) ( i) [cos ( π ) + i sin (π )] ( i)[i] + i z D ( + i) + ( + 3i) + 7i z A z B + i Rotate z B z A clockwisely by π, you get you get z Bz C : z C z B (z B z A )e i( π ) z C (6 + i) ( + i) [cos ( π ) i sin (π )] ( + i)[ i] + i z C ( + i) + (6 + i) 8 + 5i 7. The equation z z 3 + kz 8z has imaginary roots. Obtain all the roots of the equation and the value of the real constant k. Since the given has an imaginary root, z ±ai, a > 0 are roots. Hence (z ai)(z + ai) z + a is a factor of z z 3 + kz 8z + 5 z z 3 + kz 8z + 5 (z + a )(z + bz + c) Compare coefficients z 3 term, b Compare coefficients z term, 8 a b 8 a a 3 (take a > 0) Compare constant term, 5 a c 9c c 5 Compare coefficients z term, k a + b 3 7 Hence the equation becomes z z 3 + 7z 8z + 5 (z + 9)(z z + 5) 0 The roots are ±3i, ± i. 8. (a) Let z 3i, find z. (b) Hence solve the equations : (i) w + w 9 + i (ii) w + w 9 + i. (a) z 5 + i (b)(i) w + w 9 + i w + w i (w + ) ( 3i) (w + ) ( 3i) 0 5

6 [(w + ) + ( 3i)][(w + ) ( 3i)] 0 [w 3i][w + + 3i] 0 w 3i or w 3i (ii) w + w 9 + i w + w i (w + ) ( 3i) (w + ) ( 3i) 0 [(w + ) + ( 3i)][(w + ) ( 3i)] 0 [w 3i][w + + 3i] 0 w 3i or w 3i w 3 cis π or w 5 cis(.89) w 3 [cis (kπ + π )] or 5 [cis (kπ.89)] 3 [cis ( kπ+π )] or 3 [cis ( kπ.89 )], k 0,. w 3 [cos π + i sin π ] 3 ( + i) i w 3 [cos 5π + i sin 5π ] 3 ( + i).79.79i w 3 3[cos(.5) + i sin(.5)] i w 3[cos (π.5) + i sin(π.5)] i 9. If z cos θ + i sin θ, show that ( i tan θ) and write +z z in similar form. z (cos θ + i sin θ) cos θ + i sin θ + z ( + cos θ) + i sin θ cos θ + i sinθ cos θ cos θ (cos θ + i sin θ) [cos( θ) + i sin( θ)] (cos θ i sin θ) ( i tan θ) +z cos θ(cos θ+i sin θ) cos θ cos θ z ( cos θ) i sin θ sin θ i sinθ cos θ sin θ (sin θ i cos θ) sin θ [cos ( π θ) i sin (π θ)] sin θ {cos [ (π θ)] + i sin [ (π θ)]} {cos z sin θ{cos[ ( π θ)]+i sin[ (π θ)]} sin θ (π θ) + i sin (π θ)} (sin θ + i cos θ) sin θ ( + i cot θ) 6

7 0. (a) Let z + i, find z n, n,,3,, in Cartesian form. (b) Find z n in polar form. (c) Explain, without plotting, how you can represent z n in Argand diagram. ( ) k n k (a) z n ( ) k ( i) n k ( ) k k i n k { ( ) k ( + i) n k 3 where k,,3. (b) z + i ( + i ) (cos π + i sin π ) z n ( ) n (cos nπ + i sin nπ ), n,,3,, (c) It is easier to write the answers in polar form in (b) and the Argand diagram is easier to draw. If we put z 0 ( + i) 0 z cis π can be plot by rotating anti-clockwisely the vector z0 by an angle π and lengthen the radius by a factor of. Similarly by rotating z anti-clockwisely by an angle π and lengthen the radius of z by a factor of, we can get z, We can get a spiral of points. Yue Kwok Choy /0/07 7

AH Complex Numbers.notebook October 12, 2016

AH Complex Numbers.notebook October 12, 2016 Complex Numbers Complex Numbers Complex Numbers were first introduced in the 16th century by an Italian mathematician called Cardano. He referred to them as ficticious numbers. Given an equation that does

More information

MATHS (O) NOTES. SUBJECT: Maths LEVEL: Ordinary Level TEACHER: Jean Kelly. The Institute of Education Topics Covered: Complex Numbers

MATHS (O) NOTES. SUBJECT: Maths LEVEL: Ordinary Level TEACHER: Jean Kelly. The Institute of Education Topics Covered: Complex Numbers MATHS (O) NOTES The Institute of Education 07 SUBJECT: Maths LEVEL: Ordinary Level TEACHER: Jean Kelly Topics Covered: COMPLEX NUMBERS Strand 3(Unit ) Syllabus - Understanding the origin and need for complex

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

3 + 4i 2 + 3i. 3 4i Fig 1b

3 + 4i 2 + 3i. 3 4i Fig 1b The introduction of complex numbers in the 16th century was a natural step in a sequence of extensions of the positive integers, starting with the introduction of negative numbers (to solve equations of

More information

2 sin 2 (x) 1 = 0 2 sin 2 (x) = 1. sin 2 (x) = sin(x) = ± 2. x 3 = sin 1 ( 1/ 2) = π. x 2 = π x 1 = 3π 4. 4 x 4 = π x 3 = 5π 4

2 sin 2 (x) 1 = 0 2 sin 2 (x) = 1. sin 2 (x) = sin(x) = ± 2. x 3 = sin 1 ( 1/ 2) = π. x 2 = π x 1 = 3π 4. 4 x 4 = π x 3 = 5π 4 Math 147 - Assignment 1 Solutions - Spring 01 - BSU - Jaimos F Skriletz 1 1. Trigonometric Equations Find all solutions to the following trigonometric equations: (a) sin (x) 1 = 0 sin (x) = 1 If sin(x)

More information

Math 421 Homework 1. Paul Hacking. September 22, 2015

Math 421 Homework 1. Paul Hacking. September 22, 2015 Math 421 Homework 1 Paul Hacking September 22, 2015 (1) Compute the following products of complex numbers. Express your answer in the form x + yi where x and y are real numbers. (a) (2 + i)(5 + 3i) (b)

More information

ALGEBRAIC LONG DIVISION

ALGEBRAIC LONG DIVISION QUESTIONS: 2014; 2c 2013; 1c ALGEBRAIC LONG DIVISION x + n ax 3 + bx 2 + cx +d Used to find factors and remainders of functions for instance 2x 3 + 9x 2 + 8x + p This process is useful for finding factors

More information

MATH 127 SAMPLE FINAL EXAM I II III TOTAL

MATH 127 SAMPLE FINAL EXAM I II III TOTAL MATH 17 SAMPLE FINAL EXAM Name: Section: Do not write on this page below this line Part I II III TOTAL Score Part I. Multiple choice answer exercises with exactly one correct answer. Each correct answer

More information

College Trigonometry

College Trigonometry College Trigonometry George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 131 George Voutsadakis (LSSU) Trigonometry January 2015 1 / 25 Outline 1 Functions

More information

Chapter 8: Polar Coordinates and Vectors

Chapter 8: Polar Coordinates and Vectors Chapter 8: Polar Coordinates and Vectors 8.1 Polar Coordinates This is another way (in addition to the x-y system) of specifying the position of a point in the plane. We give the distance r of the point

More information

COMPLEX NUMBERS

COMPLEX NUMBERS COMPLEX NUMBERS 1. Any number of the form x+iy where x, y R and i -1 is called a Complex Number.. In the complex number x+iy, x is called the real part and y is called the imaginary part of the complex

More information

Lecture 5. Complex Numbers and Euler s Formula

Lecture 5. Complex Numbers and Euler s Formula Lecture 5. Complex Numbers and Euler s Formula University of British Columbia, Vancouver Yue-Xian Li March 017 1 Main purpose: To introduce some basic knowledge of complex numbers to students so that they

More information

Some commonly encountered sets and their notations

Some commonly encountered sets and their notations NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS (This notes are based on the book Introductory Mathematics by Ng Wee Seng ) LECTURE SETS & FUNCTIONS Some commonly encountered sets and their

More information

The choice of origin, axes, and length is completely arbitrary.

The choice of origin, axes, and length is completely arbitrary. Polar Coordinates There are many ways to mark points in the plane or in 3-dim space for purposes of navigation. In the familiar rectangular coordinate system, a point is chosen as the origin and a perpendicular

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

Chapter 6 Additional Topics in Trigonometry, Part II

Chapter 6 Additional Topics in Trigonometry, Part II Chapter 6 Additional Topics in Trigonometry, Part II Section 3 Section 4 Section 5 Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Vocabulary Directed line segment

More information

Complex Numbers Introduction. Number Systems. Natural Numbers ℵ Integer Z Rational Q Real Complex C

Complex Numbers Introduction. Number Systems. Natural Numbers ℵ Integer Z Rational Q Real Complex C Number Systems Natural Numbers ℵ Integer Z Rational Q R Real Complex C Number Systems Natural Numbers ℵ Integer Z Rational Q R Real Complex C The Natural Number System All whole numbers greater then zero

More information

2 Recollection of elementary functions. II

2 Recollection of elementary functions. II Recollection of elementary functions. II Last updated: October 5, 08. In this section we continue recollection of elementary functions. In particular, we consider exponential, trigonometric and hyperbolic

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Unit 3 Specialist Maths

Unit 3 Specialist Maths Unit 3 Specialist Maths succeeding in the vce, 017 extract from the master class teaching materials Our Master Classes form a component of a highly specialised weekly program, which is designed to ensure

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 5. Overview We know that the square of a real number is always non-negative e.g. (4) 6 and ( 4) 6. Therefore, square root of 6 is ± 4. What about the square

More information

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q.

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH 1141 HIGHER MATHEMATICS 1A ALGEBRA. Section 1: - Complex Numbers. 1. The Number Systems. Let us begin by trying to solve various

More information

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i}

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i} Chapter 8 Complex Numbers, Polar Equations, and Parametric Equations 6. { ± 6i} Section 8.1: Complex Numbers 1. true. true. true 4. true 5. false (Every real number is a complex number. 6. true 7. 4 is

More information

MATH 135: COMPLEX NUMBERS

MATH 135: COMPLEX NUMBERS MATH 135: COMPLEX NUMBERS (WINTER, 010) The complex numbers C are important in just about every branch of mathematics. These notes 1 present some basic facts about them. 1. The Complex Plane A complex

More information

Solutions to Tutorial for Week 3

Solutions to Tutorial for Week 3 The University of Sydney School of Mathematics and Statistics Solutions to Tutorial for Week 3 MATH9/93: Calculus of One Variable (Advanced) Semester, 08 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

Math Precalculus Blueprint Assessed Quarter 1

Math Precalculus Blueprint Assessed Quarter 1 PO 11. Find approximate solutions for polynomial equations with or without graphing technology. MCWR-S3C2-06 Graphing polynomial functions. MCWR-S3C2-12 Theorems of polynomial functions. MCWR-S3C3-08 Polynomial

More information

C. Complex Numbers. 1. Complex arithmetic.

C. Complex Numbers. 1. Complex arithmetic. C. Complex Numbers. Complex arithmetic. Most people think that complex numbers arose from attempts to solve quadratic equations, but actually it was in connection with cubic equations they first appeared.

More information

Department of Physics, Korea University

Department of Physics, Korea University Name: Department: Notice +2 ( 1) points per correct (incorrect) answer. No penalty for an unanswered question. Fill the blank ( ) with (8) if the statement is correct (incorrect).!!!: corrections to an

More information

MAT01A1: Complex Numbers (Appendix H)

MAT01A1: Complex Numbers (Appendix H) MAT01A1: Complex Numbers (Appendix H) Dr Craig 14 February 2018 Announcements: e-quiz 1 is live. Deadline is Wed 21 Feb at 23h59. e-quiz 2 (App. A, D, E, H) opens tonight at 19h00. Deadline is Thu 22 Feb

More information

PreCalculus: Chapter 9 Test Review

PreCalculus: Chapter 9 Test Review Name: Class: Date: ID: A PreCalculus: Chapter 9 Test Review Short Answer 1. Plot the point given in polar coordinates. 3. Plot the point given in polar coordinates. (-4, -225 ) 2. Plot the point given

More information

Exercises involving contour integrals and trig integrals

Exercises involving contour integrals and trig integrals 8::9::9:7 c M K Warby MA364 Complex variable methods applications Exercises involving contour integrals trig integrals Let = = { e it : π t π }, { e it π : t 3π } with the direction of both arcs corresponding

More information

Complex numbers in polar form

Complex numbers in polar form remember remember Chapter Complex s 19 1. The magnitude (or modulus or absolute value) of z = x + yi is the length of the line segment from (0, 0) to z and is denoted by z, x + yi or mod z.. z = x + y

More information

Revision Problems for Examination 1 in Algebra 1

Revision Problems for Examination 1 in Algebra 1 Centre for Mathematical Sciences Mathematics, Faculty of Science Revision Problems for Examination 1 in Algebra 1 Arithmetics 1 Determine a greatest common divisor to the integers a) 5431 and 1345, b)

More information

STEP Support Programme. STEP III Complex Numbers: Solutions

STEP Support Programme. STEP III Complex Numbers: Solutions STEP Support Programme STEP III Complex Numbers: Solutions 1 A primitive nth root of unity is one that will generate all the other roots. This means that a is a primitive root of unity iff 1 a, a, a,...,

More information

UNIT TWO POLAR COORDINATES AND COMPLEX NUMBERS MATH 611B 15 HOURS

UNIT TWO POLAR COORDINATES AND COMPLEX NUMBERS MATH 611B 15 HOURS UNIT TWO POLAR COORDINATES AND COMPLEX NUMBERS MATH 611B 15 HOURS Revised Dec 10, 02 38 SCO: By the end of grade 12, students will be expected to: C97 construct and examine graphs in the polar plane Elaborations

More information

Solving equations UNCORRECTED PAGE PROOFS

Solving equations UNCORRECTED PAGE PROOFS 1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1.3 Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal equations and simultaneous equations 1.6 Review

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER /2018

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER /2018 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 2. Complex Numbers 2.1. Introduction to Complex Numbers. The first thing that it is important

More information

Winter 2014 Practice Final 3/21/14 Student ID

Winter 2014 Practice Final 3/21/14 Student ID Math 4C Winter 2014 Practice Final 3/21/14 Name (Print): Student ID This exam contains 5 pages (including this cover page) and 20 problems. Check to see if any pages are missing. Enter all requested information

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( ) Syllabus Objectives: 5.1 The student will explore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

MTH 122: Section 204. Plane Trigonometry. Test 1

MTH 122: Section 204. Plane Trigonometry. Test 1 MTH 122: Section 204. Plane Trigonometry. Test 1 Section A: No use of calculator is allowed. Show your work and clearly identify your answer. 1. a). Complete the following table. α 0 π/6 π/4 π/3 π/2 π

More information

Complex Numbers CK-12. Say Thanks to the Authors Click (No sign in required)

Complex Numbers CK-12. Say Thanks to the Authors Click  (No sign in required) Complex Numbers CK-12 Say Thanks to the Authors Click http://www.ck12.org/saythanks No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2 Inverse Trigonometric Functions: The inverse sine function, denoted by fx = arcsinx or fx = sin 1 x is defined by: y = sin 1 x if and only if siny = x and π y π I.e., the range of fx = arcsinx is all real

More information

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 3.1 TRIGONOMETRY 1 (Angles & trigonometric functions) by A.J.Hobson 3.1.1 Introduction 3.1.2 Angular measure 3.1.3 Trigonometric functions UNIT 3.1 - TRIGONOMETRY 1 - ANGLES

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x)

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x) Evaluate the function: c. (g o f )(x + 2) d. ( f ( f (x)) 1. f x = 4x! 2 a. f( 2) b. f(x 1) c. f (x + h) f (x) h 4. g x = 3x! + 1 Find g!! (x) 5. p x = 4x! + 2 Find p!! (x) 2. m x = 3x! + 2x 1 m(x + h)

More information

Solutions to Exercises 1.1

Solutions to Exercises 1.1 Section 1.1 Complex Numbers 1 Solutions to Exercises 1.1 1. We have So a 0 and b 1. 5. We have So a 3 and b 4. 9. We have i 0+ 1i. i +i because i i +i 1 {}}{ 4+4i + i 3+4i. 1 + i 3 7 i 1 3 3 + i 14 1 1

More information

1) INTERGAL POWER OF IOTA, EQUALITY

1) INTERGAL POWER OF IOTA, EQUALITY COMPLEX NUMBERS Q.1) If 1) INTERGAL POWER OF IOTA, EQUALITY OF COMPLEX NUMBERS 200 = a + ib a) a = 2 b = -1 b) a = 1 b = 0 c) a = 0 b = 1 d) a = -1 b = 2 2) The sum of the series i 2 + i 4 + i 6 + -------(2n

More information

Lesson 28 Working with Special Triangles

Lesson 28 Working with Special Triangles Lesson 28 Working with Special Triangles Pre-Calculus 3/3/14 Pre-Calculus 1 Review Where We ve Been We have a new understanding of angles as we have now placed angles in a circle on a coordinate plane

More information

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is Radian Measure Given any circle with radius r, if θ is a central angle of the circle and s is the length of the arc sustained by θ, we define the radian measure of θ by: θ = s r For a semi-circle with

More information

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS ACS MATHEMATICS GRADE 0 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS DO AS MANY OF THESE AS POSSIBLE BEFORE THE START OF YOUR FIRST YEAR IB HIGHER LEVEL MATH CLASS NEXT SEPTEMBER Write as a single

More information

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS 4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS MR. FORTIER 1. Trig Functions of Any Angle We now extend the definitions of the six basic trig functions beyond triangles so that we do not have to restrict

More information

Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions

Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions David R. Wilkins Copyright c David R. Wilkins 2005 Contents 7 Trigonometric and Exponential Functions 1 7.1 Basic Trigonometric

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

Math 1060 Midterm 2 Review Dugopolski Trigonometry Edition 3, Chapter 3 and 4

Math 1060 Midterm 2 Review Dugopolski Trigonometry Edition 3, Chapter 3 and 4 Math 1060 Midterm Review Dugopolski Trigonometry Edition, Chapter and.1 Use identities to find the exact value of the function for the given value. 1) sin α = and α is in quadrant II; Find tan α. Simplify

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Lesson 73 Polar Form of Complex Numbers. Relationships Among x, y, r, and. Polar Form of a Complex Number. x r cos y r sin. r x 2 y 2.

Lesson 73 Polar Form of Complex Numbers. Relationships Among x, y, r, and. Polar Form of a Complex Number. x r cos y r sin. r x 2 y 2. Lesson 7 Polar Form of Complex Numbers HL Math - Santowski Relationships Among x, y, r, and x r cos y r sin r x y tan y x, if x 0 Polar Form of a Complex Number The expression r(cos isin ) is called the

More information

Sect 7.4 Trigonometric Functions of Any Angles

Sect 7.4 Trigonometric Functions of Any Angles Sect 7.4 Trigonometric Functions of Any Angles Objective #: Extending the definition to find the trigonometric function of any angle. Before we can extend the definition our trigonometric functions, we

More information

P3.C8.COMPLEX NUMBERS

P3.C8.COMPLEX NUMBERS Recall: Within the real number system, we can solve equation of the form and b 2 4ac 0. ax 2 + bx + c =0, where a, b, c R What is R? They are real numbers on the number line e.g: 2, 4, π, 3.167, 2 3 Therefore,

More information

Chapter 8B - Trigonometric Functions (the first part)

Chapter 8B - Trigonometric Functions (the first part) Fry Texas A&M University! Spring 2016! Math 150 Notes! Section 8B-I! Page 79 Chapter 8B - Trigonometric Functions (the first part) Recall from geometry that if 2 corresponding triangles have 2 angles of

More information

Mathematics Extension 2 HSC Examination Topic: Polynomials

Mathematics Extension 2 HSC Examination Topic: Polynomials by Topic 995 to 006 Polynomials Page Mathematics Etension Eamination Topic: Polynomials 06 06 05 05 c Two of the zeros of P() = + 59 8 + 0 are a + ib and a + ib, where a and b are real and b > 0. Find

More information

Geometry in the Complex Plane

Geometry in the Complex Plane Geometry in the Complex Plane Hongyi Chen UNC Awards Banquet 016 All Geometry is Algebra Many geometry problems can be solved using a purely algebraic approach - by placing the geometric diagram on a coordinate

More information

National Quali cations

National Quali cations National Quali cations AH08 X747/77/ Mathematics THURSDAY, MAY 9:00 AM :00 NOON Total marks 00 Attempt ALL questions. You may use a calculator. Full credit will be given only to solutions which contain

More information

Iterated, double, and triple integrals

Iterated, double, and triple integrals Iterated, double, and triple integrals Double integrals in polar coordinates We ve discussed integration over rectangular regions, and integration over general regions where the bounds for the regions

More information

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i.

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i. . 5(b). (Problem) Show that z n = z n and z n = z n for n =,,... (b) Use polar form, i.e. let z = re iθ, then z n = r n = z n. Note e iθ = cos θ + i sin θ =. 9.(Problem) Evaluate each of the following,

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 . CONCEPTS & FORMULAS. INTRODUCTION Radian The angle subtended at centre of a circle by an arc of length equal to the radius of the circle is radian r o = o radian r r o radian = o = 6 Positive & Negative

More information

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3.

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3. Complex Numbers Class Work Simplify using i. 1. 16 2. 36b 4 3. 8a 2 4. 32x 6 y 7 5. 16 25 6. 8 10 7. 3i 4i 5i 8. 2i 4i 6i 8i 9. i 9 10. i 22 11. i 75 Complex Numbers Homework Simplify using i. 12. 81 13.

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M. K. Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1. This question was in the class test in 016/7 and was worth 5 marks. a) Let

More information

CHAPTER 1 COMPLEX NUMBER

CHAPTER 1 COMPLEX NUMBER BA0 ENGINEERING MATHEMATICS 0 CHAPTER COMPLEX NUMBER. INTRODUCTION TO COMPLEX NUMBERS.. Quadratic Equations Examples of quadratic equations:. x + 3x 5 = 0. x x 6 = 0 3. x = 4 i The roots of an equation

More information

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10.

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10. Complete Solutions to Examination Questions 0 Complete Solutions to Examination Questions 0. (i We need to determine + given + j, j: + + j + j (ii The product ( ( + j6 + 6 j 8 + j is given by ( + j( j

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 2 - COMPLEX NUMBERS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 2 - COMPLEX NUMBERS EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - ALGEBRAIC TECHNIQUES TUTORIAL - COMPLEX NUMBERS CONTENTS Be able to apply algebraic techniques Arithmetic progression (AP):

More information

Polar Coordinates: Graphs

Polar Coordinates: Graphs Polar Coordinates: Graphs By: OpenStaxCollege The planets move through space in elliptical, periodic orbits about the sun, as shown in [link]. They are in constant motion, so fixing an exact position of

More information

PRACTICE PAPER 6 SOLUTIONS

PRACTICE PAPER 6 SOLUTIONS PRACTICE PAPER 6 SOLUTIONS SECTION A I.. Find the value of k if the points (, ) and (k, 3) are conjugate points with respect to the circle + y 5 + 8y + 6. Sol. Equation of the circle is + y 5 + 8y + 6

More information

CBSE QUESTION PAPER CLASS-X MATHS

CBSE QUESTION PAPER CLASS-X MATHS CBSE QUESTION PAPER CLASS-X MATHS SECTION - A Question 1:If sin α = 1 2, then the value of 4 cos3 α 3 cos α is (a)0 (b)1 (c) 1 (d)2 Question 2: If cos 2θ = sin(θ 12 ), where2θ and (θ 12 ) are both acute

More information

Notes on Complex Numbers

Notes on Complex Numbers Notes on Complex Numbers Math 70: Ideas in Mathematics (Section 00) Imaginary Numbers University of Pennsylvania. October 7, 04. Instructor: Subhrajit Bhattacharya The set of real algebraic numbers, A,

More information

1.7 Sums of series Example 1.7.1: 2. Real functions of one variable Example 1.7.2: 2.1 General definitions Example 2.1.3: Example 2.1.

1.7 Sums of series Example 1.7.1: 2. Real functions of one variable Example 1.7.2: 2.1 General definitions Example 2.1.3: Example 2.1. 7 Sums of series We often want to sum a series of terms, for example when we look at polynomials As we already saw, we abbreviate a sum of the form For example and u + u + + u r by r u i i= a n x n + a

More information

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4)

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4) Chapter 4 Complex Numbers 4.1 Definition of Complex Numbers A complex number is a number of the form where a and b are real numbers and i has the property that z a + ib (4.1) i 2 1. (4.2) a is called the

More information

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2 Trigonometry 1st Semester Review Packet (#) Name Find the exact value of the trigonometric function. Do not use a calculator. 1) sec A) B) D) ) tan - 5 A) -1 B) - 1 D) - Find the indicated trigonometric

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University March 14-18, 2016 Outline 1 2 s An angle AOB consists of two rays R 1 and R

More information

TRIGONOMETRIC RATIOS AND GRAPHS

TRIGONOMETRIC RATIOS AND GRAPHS Mathematics Revision Guides Trigonometric Ratios and Graphs Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 TRIGONOMETRIC RATIOS

More information

Pure Core 2. Revision Notes

Pure Core 2. Revision Notes Pure Core Revision Notes June 06 Pure Core Algebra... Polynomials... Factorising... Standard results... Long division... Remainder theorem... 4 Factor theorem... 5 Choosing a suitable factor... 6 Cubic

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How a sinusoidal

More information

Vector Analysis 1.1 VECTOR ANALYSIS. A= Aa A. Aa, A direction of the vector A.

Vector Analysis 1.1 VECTOR ANALYSIS. A= Aa A. Aa, A direction of the vector A. 1 Vector nalsis 1.1 VECTR NYSIS Introduction In general, electromagnetic field problem involves three space variables, as a result of which the solutions tend to become complex. This can be overcome b

More information

5.3 Properties of Trigonometric Functions Objectives

5.3 Properties of Trigonometric Functions Objectives Objectives. Determine the Domain and Range of the Trigonometric Functions. 2. Determine the Period of the Trigonometric Functions. 3. Determine the Signs of the Trigonometric Functions in a Given Quadrant.

More information

abc Mathematics Further Pure General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES

abc Mathematics Further Pure General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES abc General Certificate of Education Mathematics Further Pure SPECIMEN UNITS AND MARK SCHEMES ADVANCED SUBSIDIARY MATHEMATICS (56) ADVANCED SUBSIDIARY PURE MATHEMATICS (566) ADVANCED SUBSIDIARY FURTHER

More information

Alpha Trigonometry Solutions MA National Convention. Answers:

Alpha Trigonometry Solutions MA National Convention. Answers: Answers: 1 A C C D 5 A 6 C 7 B 8 A 9 A 10 A 11 C 1 D 1 E 1 B 15 C 16 C 17 D 18 C 19 B 0 C 1 E A C C 5 E 6 B 7 E 8 D 9 D 0 B 1 Solutions: 1 A Need to check each answer to 1 k60 and 1 (60 ) = 06. C An even

More information

Complex Numbers and Polar Coordinates

Complex Numbers and Polar Coordinates Chapter 5 Complex Numbers and Polar Coordinates One of the goals of algebra is to find solutions to polynomial equations. You have probably done this many times in the past, solving equations like x 1

More information

Topic 1 Part 3 [483 marks]

Topic 1 Part 3 [483 marks] Topic Part 3 [483 marks] The complex numbers z = i and z = 3 i are represented by the points A and B respectively on an Argand diagram Given that O is the origin, a Find AB, giving your answer in the form

More information

Transition to College Math

Transition to College Math Transition to College Math Date: Unit 3: Trigonometr Lesson 2: Angles of Rotation Name Period Essential Question: What is the reference angle for an angle of 15? Standard: F-TF.2 Learning Target: Eplain

More information

JUST THE MATHS UNIT NUMBER 6.2. COMPLEX NUMBERS 2 (The Argand Diagram) A.J.Hobson

JUST THE MATHS UNIT NUMBER 6.2. COMPLEX NUMBERS 2 (The Argand Diagram) A.J.Hobson JUST THE MATHS UNIT NUMBER 6.2 COMPLEX NUMBERS 2 (The Argand Diagram) by A.J.Hobson 6.2.1 Introduction 6.2.2 Graphical addition and subtraction 6.2.3 Multiplication by j 6.2.4 Modulus and argument 6.2.5

More information

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows.

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows. 978-0-51-67973- - Student Solutions Manual for Mathematical Methods for Physics and Engineering: 1 Preliminary algebra Polynomial equations 1.1 It can be shown that the polynomial g(x) =4x 3 +3x 6x 1 has

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers Syllabus Objectives: 5.1 The student will eplore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 6 Inverse Circular Functions and Trigonometric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 6.2 Trigonometric Equations Linear Methods Zero-Factor Property Quadratic Methods Trigonometric

More information

Lone Star College-CyFair Formula Sheet

Lone Star College-CyFair Formula Sheet Lone Star College-CyFair Formula Sheet The following formulas are critical for success in the indicated course. Student CANNOT bring these formulas on a formula sheet or card to tests and instructors MUST

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

Introduction. The first chapter of FP1 introduces you to imaginary and complex numbers

Introduction. The first chapter of FP1 introduces you to imaginary and complex numbers Introduction The first chapter of FP1 introduces you to imaginary and complex numbers You will have seen at GCSE level that some quadratic equations cannot be solved Imaginary and complex numbers will

More information

Scalar & Vector tutorial

Scalar & Vector tutorial Scalar & Vector tutorial scalar vector only magnitude, no direction both magnitude and direction 1-dimensional measurement of quantity not 1-dimensional time, mass, volume, speed temperature and so on

More information